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ABSTRACT. The distributed integration of process planning and scheduling (DIPPS) not
only integrates manufacturing planning and scheduling parts together but also arranges
them in the distributed environment to make the manufacturing system more dynamic
and efficient. In this paper, we first propose a new DIPPS model to deal with the in-
tegrated manufacturing process in the distributed context. Then, an enhanced genetic
algorithm (EGA) is constructed to solve the mathematical model. In particular, the EGA
features three-segmental and two-dimensional encoding method, improved crossover and
double-layer mask mutation scheme to deal with the big solution space in DIPPS. Also,
a clear and fast decoding strategy is proposed to decode the chromosome into practical
schedules conveniently. In the experiment, the extraordinary capability of EGA is verified
by a case study and a comparison with the conventional genetic algorithm.

Keywords: The distributed integration of planning and scheduling, Integrated manu-
facturing, Genetic algorithm

1. Introduction. In manufacturing activities, both process planning and scheduling are
indispensable parts to solve resource conflicts and improve productivity. Specifically, pro-
cess planning is a function that establishes the technological requirements necessary to
convert a part from initial material to a finished form, while scheduling is another manu-
facturing function that aims to assign manufacturing resources to the operations indicated
in the process plans [1]. Meanwhile, with the wide application of distributed manufac-
turing and the accompanying challenges, process planning and scheduling are of greater
importance in manufacturing systems. In early researches, most efforts merely strived to
arrange the scheduling part by solving the job-shop scheduling problem (JSP). Although
there are modeling and technical breakthroughs in JSP research, this independent research
without considering the planning part and the distribution feature of manufacturing may
cause unexpected consequences in the dynamic manufacturing environment today, such
as job conflicts in raw material and manufacturing equipment.

On the one hand, integrated process planning and scheduling (IPPS) was proposed in
view of the urgent need for comprehensive research of process planning and scheduling
in manufacturing systems. In general, IPPS features the simultaneous arrangement of
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process planning and scheduling, and can be viewed as an extension of the JSP in the
dimension of the planning part.

On the other hand, many scholars focused on the distributed job-shop problem (DJSP)
that deals with the JSP in the distributed environment. A typical scenario of DJSP con-
sists of multiple independent manufacturing cells (MCs) located in one factory where each
MC is capable of handling one or more services based on the availability of manufacturing
resources.

In this paper, we combine the integration feature of the IPPS with the distribution fea-
ture of the DJSP and propose the distributed integration of process planning and schedul-
ing (DIPPS). This creative model takes process planning and scheduling into consideration
simultaneously and sets them in a distributed environment. With these improvements,
the manufacturing process can be more efficient even under distributed manufacturing
environments. Overall, the DIPPS problem can be summarized as follows. Given I jobs
consisting of multiple alternative producing processes with different operations in N op-
tional (MCs) with distinct assembly techniques and equipment, we must determine the
plans and schedules including cells, process plans and machines for each job by consider-
ing the objectives and constraints. Figure 1 shows the distributed environment structure
of DIPPS.
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FIGURE 1. The distributed manufacturing environment

To tackle the massive information and constraints in DIPPS, we propose an enhanced
genetic algorithm (EGA) in this paper. The EGA has creative encoding and decoding
methods, and improves the crossover and mutation operations of the conventional GA. It
is competent to solve the DIPPS problem with efficiency and effectiveness.

The remainder of this paper is organized as follows. In Section 2, we review literature
related to IPPS and DJSP. In Section 3, the DIPPS problem and its solution, the EGA,
are detailed and discussed. In Section 4, experiments with case study and comparison are
proposed to show the superiority of the EGA in solving the DIPPS problem. In Section
5, we will draw the conclusion.

2. Related Work. The DIPPS discussed in this paper basically depends on the previous
studies in IPPS and DJSP. Therefore, we mainly review the literature related to these
two areas in this section.
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2.1. The work in TPPS. A large amount of research has been conducted to tackle
IPPS. Among the various methods used to solve this problem, GA is the one with great
popularity and convenience. Morad and Zalzala [2] described a GA-based approach that
considers the processing capabilities of machines, including processing costs, as well as the
number of rejects produced by alternative machines simultaneously with the scheduling
of jobs. This is an extension of the traditional JSP problem in terms of its planning
feature; unfortunately, it lacks processing flexibility and sequencing flexibility. Moon et
al. [3] proposed an evolutionary search approach based on a topological sort to solve the
[PPS problem in a supply chain. Qiao and Lv [4] proposed an improved GA with a new
initial selection method and new genetic representations to improve the ability of solving
the IPPS problem. Li et al. [5] proposed an active learning GA whose learning operator
learns from both the excellent individuals that the population has achieved so far and the
excellent peers in the current generation to facilitate the integration and optimization of
the IPPS problem. The simple GA method may fail to meet the desired expectations at
few instances; thus, additional algorithms are needed to further enhance the GA. Despite
the ability of GA to perform global searches, they sometimes fall into local optimums.
Li et al. [6] and Amin-Naseri and Afshari [7] utilized local search procedure to overcome
this weakness.

In addition to GA, other algorithm-based methods also have been proposed to deal
with IPPS. Li and McMahon [8] utilized a unified representation model and a simulated
annealing-based approach to facilitate the integration and optimization processes. Guo et
al. [9, 10] employed a modern evolutionary algorithm, i.e., the particle swarm optimization
(PSO) algorithm enhanced with new operators to optimize the IPPS problem.

Agent-based methods have also been considered in recent years. Li et al. [11] carried
out an optimization agent based on an evolutionary algorithm to manage the interactions
and communications between agents to enable proper decision making. Wong et al. [12]
employed two types of agents, part agents and machine agents, to represent parts and
machines, respectively. Leung et al. [13] integrated an ant colony optimization (ACO)
algorithm into an established multi-agent system to solve the IPPS problem. Wong et al.
[14] extended the ACO algorithm in two stages to improve the feasibility.

Given the research depth in model and the hybrid use of algorithms, the above methods
can adequately handle the IPPS problem, and defects in algorithm search such as local
optima are also overcome gradually. Furthermore, these methods increase search efficiency
using distributed computations. However, to the best of our knowledge, few researches
have applied IPPS in distributed environment. Besides, although the methods are fully
implemented, they are incapable of dealing with the distributed manufacturing.

2.2. The work in DJSP. The DJSP broadens the traditional JSP to a more sophis-
ticated level. The conditions and restrictions involved are not only the selection and
scheduling of machines, but also the selection of distinct manufacturing cells. Accord-
ingly, improved methods are constructed.

Liet al. [15] utilized the sequence representation of chromosomes to encode the identity
of a factory. Jia et al. [16] proposed a modified GA that has two steps in the encoding
procedure; the first step encodes factory information, and the second step encodes all
jobs’ operations and their processing sequences. These two steps enable a chromosome to
present, sufficient information and also offer convenient computations. Furthermore, Jia
et al. [17] combined a GA with a Gantt chart to cope with the distributed environment.
Chan et al. [18] not only introduced a new crossover mechanism, namely, dominated gene
crossover, to enhance the optimization ability and eliminate the determination processes
of the crossover rate, but also included a saturation operator to avoid excessive similarity
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of chromosomes. To heighten the power of the GA’s local search, De Giovanni and Pezzella
[19] employed a creative local search operator to improve available solutions by refining
the most promising individuals of each generation.

Clearly, the GA used in the DJSP is quite mature, and with the appropriate encod-
ing methods combined with other methods, it is competent of solving DJSP. However,
although the DJSP is a more realistic scenario, it only highlights the scheduling part
without emphasizing the planning one. The absence of planning skills prohibits the DJSP
from adapting to more dynamic environments.

3. An EGA for the DIPPS.

3.1. Problem definition and representation. Generally, in the manufacturing system
of DIPPS, there are several independent jobs and several independent and distributed
MCs. Each job is permitted to be accomplished via one of the alternative plans. Further-
more, every plan consists of numerous, order-specific operations that can be processed
by a couple optional machines. Because of the disparity of machines and technical skills,
the plans and operations for a specific job are distinguished by different MCs. This urges
the system to determine working MCs, schemes, and appropriate machines for given jobs
simultaneously according to the designated criteria. In light of the distribution feature,
the transportation time of finished parts from an MC to the control center is also taken
into consideration.
DIPPS is generally based on the following assumptions and constraints.

(1) All MCs and their machines are exploitable at time zero and each MC has the capa-
bility to process every job.

(2) Because of the technique and manufacturing resources differences among MCs, each
job has different plans and schedules in different MCs.

(3) Once a job is assigned to a specific MC, all operations of the job are processed in the
assigned MC.

(4) Processing two or more operations of the same job simultaneously is not allowed.

(5) Every machine can only process one operation at a time, and operation interruption
is not allowed.

(6) The setup times of the operations and machines are incorporated into the processing
time, and the corresponding transfer time is ignored.

(7) The finished parts processed in the same MC are delivered together to the control
center once all jobs in the MC are completed.

Here, we construct an example with two MCs and four independent jobs. Then, in
order to represent and illustrate the alternative plans in DIPPS, the directed acyclic
graph (DAG) is modified and employed. In general, DAG consists of a certain number of
nodes and directed edges. For our purposes, one node here represents a specific operation
and a directed edge connecting the nodes represents the processing priority order between
a pair of operations. When a node has two or more edges to follow, only one of them can
be chosen for a plan. Besides, we introduce two dummy operations with no processing
time, i.e., the beginning node and ending node, to represent the start and end of a job.
Figure 2 and Figure 3 show the alternative plans and schedules for jobs in two MCs with
the representation of DAGs; for a node in the graph, the top number indicates the index,
and the bottom array indicates the optional machines and corresponding processing time.
Along with a group of directed edges from the beginning node to the ending node, one
specific plan with a set of operations is determined. We define the serial numbers of
plans in one DAG according to the following rule: when a node has more than one edge
to choose from, the plan selecting the upper edge has a prior plan serial number. For
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FI1GURE 2. Representation of alternative plans and schedules in MC 1
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example, for Job 1 processed in MC 1 as shown in Figure 2, the first plan, i.e., Plan
1, follows the operation sequence 1-2-3-7-10; and the second plan, i.e., Plan 2, follows
1-2-3-8-10. The remaining plans can be numbered in a similar manner. Hence, one DAG
exhibits all possible plans for a job in a certain MC.

3.2. The EGA. As mentioned in the related work, both algorithm-based and agent-
based methods show their capability in solving IPPS and DJSP problems [20,21]. In
particular, GA is widely used and has achieved remarkable performance. In our previous
work [22,23], GA was also adopted to tackle supply chain management problems. However,
owing to the feature of distribution and integration, DIPPS is more complicated and
requires additional flexibility and constraints. In this circumstance, a conventional GA
falls short of our requirements. Therefore, we propose a creative EGA for DIPPS by
equipping it with an upgraded representation and encoding technique to contain the
information demanded. Furthermore, the genetic operations are improved to reinforce
EGA’s potential in exploiting the optimal plan and schedule.

3.2.1. Fitness function. The final makespan is adopted as the evaluation criteria. Mean-
while, it is converted to the fitness function to ensure that the fitness value is in the interval
[0, 1]. Because the problem is distributed and MCs are independent, the makespan of each
MC is determined first; then, the final makespan of all MCs is calculated with the addition
of delivery time.

The following definitions and notation are necessary for the DIPPS problem:

offm The k' operation of alternative process plan j of job ¢ in MC n processed
by machine m, where k, j, ¢, n, and m are all indices.

1 The number of jobs to be processed.

N The number of MCs.

atin The actual accomplishment time of job ¢ from MC n to the control center.

Tin Ty € {0,1}, where 1 indicates that job i is processed in MC n, and 0
indicates that the job is processed in another MC.

ttin The transportation time of the finished part of job 7 from MC n to the

control center.
EM¢y,s The estimated maximal value of the final makespan.

st/ The starting time of /"™,

stl.=™  The starting time of the former operation of o/ processed on the same
machine m.

pt!*™  The processing time of o/

pt{f,’f*m The processing time of the former operation of ogfm processed on the same
machine m.

J; The number of alternative process plans of job i in MC n.

Kfn The number of operations of alternative process plan j of job i in MC n.

M, The quantity of machines in MC n.

The makespan for jobs in a certain MC (ms,,) is given by

ms, = max}(atm ‘Zin)  Vn € [1,N] (1)
1,1
The final makespan (fms) is given by

— ma + max (tti, - @ 2
e = gy (o it ) ?
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The fitness function (Fl,,,) is given by

fms
17 3)

The following formulas are formularizations of several constraints in Subsection 3.1:

F’fms:1

i=1 n=1
stiFm _ gtiZ KT Tk (5)
Vi€ [1,1], Yn € [1,N], Vj,5* € [1, Ji), Yk, k* € [1, K ], ¥m € [1, M,)]
stif — stV — pl*D > g (6)
Vi e [1,1], Yn € [1,N], Vj € [1, Ji], Yk € [1, K]
N
2 min (stin - in) (7)

Formula (4) imposes that all operations of one job should be processed in the same
MC. Formula (5) imposes that one machine can only process one operation at the same
time. Formula (6) implies that two operations of the same job cannot be processed
simultaneously. Finally, Formula (7) implies that the starting time of operations is zero,
i.e., machines are exploitable at time zero.

3.2.2. Encoding and decoding. Due to the increasing amount of information that must
be considered, conventional GAs used in the previous work are incapable of representing
and solving DIPPS; therefore, we propose an EGA that is competent to tackle this task.
In this section, we discuss the encoding and decoding processes of a chromosome in the
EGA.

Unlike the traditional IPPS problem, the magnitude of difficulty in DIPPS information
encoding increases. The plans, schedules, and machines are distinct among different MCs,
which results in a massive amount of information that must be encoded. To this end, EGA
extends the traditional structure to a three-segmental chromosome with two-dimensional
gene (Figure 4). These three segments represent the arrangement of the MC, process
plans, and schedules, respectively. In particular, the third segment has two-dimensional
genes to exhibit the schedule information.

The first and second segments of the chromosome contain the same number of genes,
and the number depends on the number of jobs. In this example, there are four jobs and
two MCs, so the numbers of genes in the first two segments are both four. These genes
represent Job 1, Job 2, Job 3 and Job 4 in the sequences. Every gene in the first segment
carries the MC information, while every gene in the second segment represents a selected
plan of a job. For instance, the first genes in the first and second segments in Figure 4
are both 2, which means Job 1 is processed in MC 2, and Plan 2 is selected in this cell.

In the third one, i.e., the scheduling segment, every gene is adopted to represent an
operation for a specific job. In each gene of this segment, the first digit is the job number,
and the second one is the machine number the operation chooses. To avoid machine
variations when plan changes occur, we propose a substituted machine number, i.e., a
successive number beginning from 1 to represent the optional machines for each operation.
For example, Figure 2 shows that the first operation of Job 1 can be processed on Machines
1, 2, 4, 6, 7, or 8. Therefore, we use substituted machine numbers 1, 2, 3, 4, 5 and 6
to represent these six machines in the chromosome. Generally, the gene number of this
segment is the addition of the selected operations of all jobs. However, since operation
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quantities are different among different plans, the gene quantity that every job occupies
varies once the plans and MCs change. To prevent this situation, the factitious operation
is introduced to fix the gene quantity of each job as the operation number of the longest
plan. When the chosen plan has fewer operations than the longest plan of the same job,
the rest of the genes the job occupies are regarded as factitious operations. Consider the
215 gene of the third segment in Figure 4, i.e., (3,2), which stands for the 6" operation
of Job 3. According to the first two segments and Figure 2, if Job 3 chooses process Plan
2 in MC 1, there are only five operations that need to be processed. Therefore, this gene
is a factitious operation and will not be processed.

One job Job number One operation Factitious opcration
P ¥

e
P = ey

:"'"“/ e 1 £ 'E__)/ \&‘i' paach: |
;(2H1HI)—(2)-----‘-{_2}*:-(1)—(2)—(3} ‘( H23HAAHB.OH L 2HA2H 2 HA 33 T HLAHBIH2 AHA T H2,3H3 4H2.2H2 5 H(1L LH3,2H44H3.2)(1.6)

\J Y \i
MC number Plan number Substituted machine number
First Secon :
- N econd uL Third segment —|
segment segment | |

FIGURE 4. The encoding of EGA

In the decoding procedure, the operations in the third segment will be decoded from
left to right. To decode them, Bierwirth and Mattfeld [24] discussed three schedules:
active, semi-active, and non-delay. Among them, active schedule is the best method to
generate an efficient schedule. Thus, in the decoding phrase, we will adopt active schedule.
Meanwhile, since all MCs work independently without mutual interference, the decoding
mechanism is definitely applicable in all of them. In this paper, we propose a clear and
fast method to achieve active schedule.

For a specific MC, the processing steps of decoding are as follows. Note that JCT =
0 is the largest completion time of the former operations in the same job of the current
operation, MCT = 0 is the largest completion time of the former operations on the same
machine of the current operation, PT is the processing time of the current operation, and
IP is the time of the first available idle point.

Step 1: Scan the operations in the same MC from left to right to detect the unprocessed
gene.

Step 2: Operate the first operation by comparing its JCT and MCT. If JCT>MCT,
occupy the time from JCT to (JCT4PT) of the assigned machine, and update JCT and
MCT according to JCT = JCT+PT and MCT = JCT+PT, respectively. Proceed to Step
5; otherwise, check the idle areas from JCT to MCT on the machine.

Step 3: If no idle area exists, occupy the time from MCT to (MCT+PT) on the ma-
chine, and update JCT and MCT according to JCT = MCT+PT and MCT = JCT+PT,
respectively. Proceed to Step 5; otherwise, if an idle area exists, seek the available idle
area with a successive period of time the same length as PT.

Step 4: If an idle area is available, occupy the time from IP to (IP+PT) and update
JCT = IP+PT, and then proceed to Step 5. If there is no available idle area, occupy the
time from MCT to (MCT+PT) on the machine, and update JCT and MCT according to
JCT = MCT+PT and MCT = MCT+PT, respectively. Proceed to Step 5.

Step 5: Check the set for unprocessed genes. If unprocessed genes are found, return to
Step 2; otherwise, end the process and produce the next set.

After the process above is completed, all the makespans of MCs are calculated; the
final makespan is then calculated by using (2) in Subsubsection 3.2.1. The flow chart of
the process is shown in Figure 5.
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F1GURE 5. The flow chart of the decoding algorithm

3.2.3. Initial population. According to the encoding principle discussed above, the gene
numbers in the first segment, i.e., the MC codes, are generated first. Next, the plan
numbers are settled according to the MC. After the MC and plan are determined, the
operations of different jobs are randomly arranged in the third segment. The gene num-
ber every job occupies in the third segment is determined by their maximum-operation-
number plan. Finally, the substituted machine numbers are randomly generated for every
operation. Here, because the operations can choose no more than six machines in this
example, the range of the substituted machine number for each factitious operation is
1, 6].

3.2.4. Reproduction. We employ the roulette wheel selection strategy [25] as the repro-
duction scheme for the chromosome. In this method, the chromosome with higher fitness
value has a greater probability to be selected for the next generation. In general, the

Fh H .
fms [ S F;Lms’ where H is the number

h=1
of chromosomes in one generation. However, because the magnitude of the fitness value

discrepancy between different chromosomes is not significant, the proportions in the whole
wheel are very close, which may cause a failure to differentiate excellent chromosomes.
As a result, we adopt a scheme that adds the minimum fitness value in current generation

min
_Fm

H .
S) Z (F;Lms - ;'1717172)
h=1

roulette wheel is divided into H sections based on

. h
F" to expand the area discrepancy, i.e., (Ffms

3.2.5. Crossover. One-point crossover is adopted in the first and second segments of the
chromosome, and according to the cut point, the crossover scheme for the third segment
is settled (Figure 6). First, two chromosomes are selected as parents Par 1 and Par 2
on the basis of the reproduction scheme explained above. At the same time, two blank
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chromosomes are initialized as offspring Off 1 and Off 2. Then, the schemes are employed
for the three segments. The specific steps are as follows.

Step 1: Randomly set two identical cut points in the first two segments. The genes
before the cut point of Par 1 and the genes after the cut point of Par 2 are transferred to
the same positions as in Off 1. The remaining genes of Par 1 and Par 2 in this segment
are passed down to Off 2 in their original order.

Step 2: For the third segment, the first digits in the genes of Off 1 and Off 2 are
inherited from Par 1 and Par 2, respectively, by keeping their original positions. As the
former cut point separates the job-specific genes into two parts, the second digits in the
genes of the third segment belonging to the jobs ahead of the cut points of Par 1 and
Par 2 are passed down to Off 1 and Off 2 in their original positions and orders. The
remaining digits are replenished by copying the remaining digits in Par 2 and Par 1 to
their corresponding positions in the other parent chromosome.

Par 1 (1-(2H{2H1) (2)—(1)-:r(5]—(3) (1,6H3,3H4,5H2,2H4,1H3,2H2,4H4,2H3,1H4,3H1,3H2,1H3,4H2,5H1, 1 H3,3H4,6H2,4H1,3H2,1H3,4H1,5)
1 1
I 1

Off 1 [ll—(2}—i{1H2) -------- (ZHl}-:r{iHli El.‘-H3.5H4.ZHZ,!H4,4‘};{\3‘11H2,-|H4,5ﬁ3,3l-(4,5_l.(_1,31-(2,5){3.41{2.‘-1il.il--{B.d)--(ﬂ,ﬁ}-iE.--‘}-(1,‘-}-l2.1}--{3.1)-f1."-)

— * O «

' I — e g e e

: I . T — — A
Par 2 (2H1H1H2) '(4)—(2H{3H1) (4,2H2,1H1,3H3,6H2,4H1,5H3,1H2,2H4,4H3,3H1,6H3,4H2,5H4,5H2,2H1,2H3,4{1,5H4,5H3,1H4,6 H2,3)
1 1
] 1
Off 2 (2)—(1}-:421—(1) (4} (2)1(51 (3)(4,5H2,1H1,3H3,3H2,4H1,5H3,2H2,2H4, 1 H3,1H1,6 H3,4H2,5H4,2H2,2H1,2H3,3H1,3H4,3H3,4H4,6H2,3)
: : /’ 7 /‘J ,‘ 3.7-/"'4' __7{:—*“*" 'V
| R S / _ 3

— —

Fo s T e / e T

Par 1 (1-(212)-(1)—(@HLHH51-(3) (1613, 314,512,244, 113,212,414, 373, 14, THL 312,113,412, H(L, 113, 314,612,411, 312 1H3,41L,5)

FIGURE 6. The crossover operation of EGA

3.2.6. Mutation. Mutation is a crucial operation in EGA because of its unpredictable
nature. Generally, large-scale mutations change the chromosome dramatically and are
favorable for preventing local convergence, while small-scale mutations can retain the fea-
ture of excellent chromosome. To exploit the merits of both large-scale and small-scale
mutations, we employ a double-layer mask to implement three schemes with different mu-
tation magnitudes on the chromosome (Figure 7). First, a binary set with three numbers
in Layer 1 and four numbers in Layer 2 is initialized. In Layer 1, the binary numbers
from left to right in the mask are mapped to Schemes 1, 2, 3 and 4. In Layer 2, they are
mapped to Jobs 1, 2, 3 and 4. Basically, if some binary numbers are set “1”, it means
the corresponding scheme and job will participate in the mutation. Notice that only one
scheme and one job can be chosen for mutation each time. For a certain chromosome, the
three schemes are carried out as follows after the numbers in the mask are randomly set.

Scheme 1: Once the first number in Layer 1 is settled as “1”, Scheme 1 is put into effect.
Then, according to Layer 2, the corresponding genes in the third segment are mutated
by randomly changing the substituted machine numbers in the reasonable range. For
example, in Figure 7(a), the second number in Layer 2 is set as “17; thus, Job 2’s related
genes in the third segment are mutated by changing the machine numbers.

Scheme 2: This scheme works when the second number in Layer 1 is settled as “1”. In
addition to changing the third segment, this scheme also requires the EGA to mutate the
plan of the corresponding job. According to Figure 7(b), both plan and selected machines
of Job 4 are altered.

Scheme 3: The largest scale of mutation happens when the last number in Layer 1 is
“1”. In this scheme, all corresponding MCs, plans, and machine numbers are transformed
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E[o[o}(eTi o]0
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FIGURE 7. The mutation operation of the EGA

when the specific job-mapping number in Layer 2 is put into “1”. For instance, the MCs,
plans, and machine numbers of Job 1 are completely changed on in Figure 7(c).

By adopting this creative mutation method, different mutation schemes in various mag-
nitudes have the chance to be implemented. This diversity helps overcome the drawbacks
of only using a single scheme.

4. Experiment.

4.1. Case study. To verify the capability of the EGA in solving the DIPPS problem, we
conduct a case study with two MCs and four jobs; the relevant information is illustrated
in Figure 1, Figure 2, Figure 3 and Table 1. Figure 1 exhibits the distributed environ-
ment structure of DIPPS with two MCs. Figure 2 and Figure 3 are representations of
alternative plans and schedules of four jobs in their respective MCs. Table 1 displays the
transportation time of jobs from different MCs to the control center.

TABLE 1. Transportation time

Job
B N | ot | 7enz | 16h3 | e
MC ()
MC1 34 | 27 36 40
MC 2 43 | 29 25 23

The experiment was conducted on a computer running Windows 7, with 2.40 GHz Intel
Core2 Duo CPU and 4.00 GB RAM. The population of every generation was fixed to 30,
and the rates of crossover and mutation were 0.85 and 0.05, respectively. The program
terminated when one of the two conditions was satisfied: (1) five successive generations’
adjacent final makespan difference are all no more than 0.015; (2) the 800" generation is
reached. The evolutionary process is displayed in Figure 8 where the final makespan and
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FiGURE 8. The evolutionary process of the EGA

generation correspond to the vertical and horizontal axes, respectively. Also, the dotted
line and full line represent the mean final makespan and best final makespan, respectively.

The optimal chromosome was determined to have a processing time of 78s and a fi-
nal makespan of 126: (1)-(2)-(2)-(1)---(4)-(1)-(2)-(2)---(4,3)-(1,3)-(2,1)-(2,1)-(3,3)-(2,2)-
(3,3)-(2,3)-(3,2)-(4,4)-(2,4)-(3,4)-(4,3)-(3,2)-(4,4)-(1,4)-(1,5)-(1,1)-(1,4)-(2,4)-(3,3)-(4,3).
This optimal chromosome indicates that Job 1 and Job 4 are processed in MC 1 by
choosing Plan 4 and Plan 2, respectively, with relevant machines, while Job 2 and Job 3
are operated in MC 2 with Plan 1 and Plan 2, respectively, using corresponding machines.
Table 2 shows the best schedule for each job, where O and M stand for the index number
of operation and the operating machine in Figure 2 and Figure 3, respectively.

TABLE 2. The manufacturing schedule obtained from EGA

Job 1 O1(M4) - 04(M6) - 06(M7) - O10(M2)
MC1

Job 4 O1(M4) - 04(M7) - O7(M4) - O8(M5)

Job2 |OL(M2) - 02(M4) - O4(M3) - O11(M4) - O12(M6)
MC2

Job 3 O1(M5) - 03(M7) - OS(M3) - OL0(MS5)

4.2. Comparison with the conventional genetic algorithm approach in IPPS.
In this part, a conventional genetic algorithm (CGA) approach used to deal with IPPS
is adopted to solve the same case in the first part of the experiment. Then, we compare
EGA with it to demonstrate the efficiency and effectiveness of our method.

The chromosome of the CGA contains only the planning part and the scheduling part.
For convenience, the last two segments in our EGA are adopted here to represent its
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chromosome. To apply the CGA in our distributed case, we need to assign a specific MC
to each job before the application of CGA, and then compare the best results generated
from all conditions to find the best solution. For example, in this case which contains two
MCs and four jobs, there are 16 (2%) ways to settle jobs to MCs. That means we need to
apply CGA 16 times and then get the best solution from comparing 16 results.

For CGA, the crossover procedure adopts the proposed strategy we illustrated in Sub-
subsection 3.2.5, and the mutation procedure is completed by randomly changing the
machines of a same job’s operations. The population of every generation, the rates of
crossover and mutation are 30, 0.85 and 0.05, respectively. Once each CGA reaches its
40" generation (a total of 640 generations for 16 CGAs) or satisfies the first stop criterion
of EGA, it will terminate. We run the comparison of 16 CGAs 10 times, and then get
the best solution and its evolutionary process (Figure 9). This best solution is from the
CGA where Job 2 is assigned to MC 1 and Jobs 1, 3 and 4 are in MC 2. Table 3 shows
the comparison between EGA and CGA. EGA exceeds the CGA in both finding the best
solution and saving the computing time. In addition, with the increase of MCs and jobs,
the computing times of CGA increase exponentially, and will inevitably make the method
more unpractical.

A
210+
200 ‘-‘. L)
1 —Best
190+ "
ik o EeEmaass Average
180+ Y

170+

160

Final Makespan

1504

140+

130+

1204

-~
>

110 5 g A " A : : . ; = ; . F
01 04 07 10 13 16 19 22 25 28 31 34 37 40
Generation

FI1GURE 9. The evolutionary process of the CGA

TABLE 3. The comparison between EGA and CGA

Best final Computing

makespan time
EGA 126 78s
CGA 139 338s
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5. Conclusions. In this paper, a DIPPS model that considers the integration of process
planning and scheduling in distributed manufacturing environment is constructed. Mean-
while, a creative EGA is proposed to find the best plan and schedule in DIPPS. Overall,
the main contribution of this paper can be concluded as follows.

e Propose a DIPPS model that not only integrates the planning part and the sched-
uling part of the manufacturing process but also explores the integrated process in
a distributed environment.

e Propose an EGA that adopts a new chromosome representation with three-segmen-
tal string and two-dimensional genes to encode the information of the DIPPS, and im-
proves the genetic operations with advanced crossover and creative mutation schemes
to enhance the global search capability. Also, a convenient decoding method was
combined to decode the chromosome into active schedules.

Through a case study and a comparison with CGA used in IPPS, the EGA demonstrates
its capability in searching for the optimal plan and schedule for DIPPS, and is competent
to deal with the manufacturing activities with both integration and distribution features.
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