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Abstract. This paper introduces switching strategy between admission control and pric-
ing control policies as well as searching strategy in a customized service providing com-
pany. The company should spend the so-called search cost to find customers, which creates
the search option on whether to continue the search or not. For an appearing customer
by paying the search cost, the company has an option on which policy to choose between
the two control policies, that is, it determines whether or not to admit the customer’s
request for the service (admission control) or decides a price of the customer’s request
and offers it to the customer (pricing control). We clarify the properties of the optimal
switching strategy as well as the optimal search strategy in order to maximize the total
expected net profit. In addition, in order to validate the economic effects of our switching
strategy we implement numerical study examining the relative difference of the maximum
expected profits between our switching model and the model without switching strategy.
According to our results, employing the switching strategy can significantly improve the
maximum expected profit as high as 13 percent.
Keywords: Switching strategy, Admission control, Pricing control, Search cost

1. Introduction. Let us consider a company that provides the customized service to
meet customers’ various requests. A sequently arriving customer requests his/her offer
to the company, and the service for admitted request will be provided according to the
service process for a certain period. Suppose that the company admits all the requests
from arriving customers regardless of their profitabilities. Then the service capacity would
be soon full. As a result, the customer’s request arriving thereafter could not be admitted.
In contrast, in order to avoid such a situation and keep allowance in the service capacity
if the company is excessively reluctant to admit customers who are not highly profitable,
then all requests that have been admitted may be completed and the capacity becomes
empty, and this leads to being server’s idle. Therefore, it is important for a system
manager to decide how to admit the consequently arriving customers considering the
service capacity. As for this problem, two kinds of policies, the admission control polices
and the pricing control policies, have been formulated so far.

Both the admission and pricing control policies have been widely investigated to im-
prove the performance of queueing system in the telecommunications and manufacturing
industries [1, 2, 4, 13]. In the admission control, an arriving customer proposes a price
for his request, and the decision maker decides the admission merely based upon the pro-
posed price of the customer. In general, it is assumed that the customer has one’s own
maximum permissible offering price, which is also referred to as the reservation price, and
that the stronger the desire the customer is to be served, a price closer to the reservation
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price may be proposed. On the other hand, in the pricing control, the decision maker
suggests a price to an arriving customer who has a service request. The customer then
makes a service request to the company if and only if this suggested price is lower than or
equal to the reservation price. Hence, the decision maker should determine the offering
price to maximize the expected profit.

Most of the prior researches have adopted exactly one of the two forementioned polices
in accordance with their model’s characteristics. However, in what follows, both types
of policies were considered. First, Yoon and Lewis [14] formulated and analyzed the
problems involving both admission and pricing control policies, but as distinct entities.
Furthermore, Gans and Savin [3] considered a rental firm with two types of customers
where one is controlled by the admission policy and the other by the pricing policy. Hew
and White [5] integrated a call admission and dynamic pricing problem with hand-offs
and price-affected arrivals. In their formulation, the former arrivals are controlled by only
the admission policy, while the latter ones are sequentially controlled by both policies.
Son [12] gave separate formulations of the admission and the pricing control problems,
yet showing that both problems can be analyzed within an identical framework.

Whether we consider these two policies separately or within an identical framework,
the switching strategy between the two has not been introduced so far. In reality, a
system manager is not restricted to use only one policy to control the system capacity.
For example, let us consider a travel company that provides airline tickets, hotels, car
rentals, and the other travel related services on the website. The website allows visitors
to buy tickets after comparing the prices provided by the company, so the company
should control the offering prices to maximize its profit, using admission control policy.
Meanwhile, visitors can also bid for the travel services on the website, and the company
should decide whether to admit them or not based on their bid prices, adopting admission
control policy. These two types of website are managed separately, which implies that two
policies are used independently. However, the company may employ switching strategy
that changes the control policy from one type to the other as long as a higher profit is
expected. Motivated by these observations, we propose a basic switching strategy between
admission control and pricing control policies. We also introduce in the paper the so-
called search cost that is the cost a company would spend in order to find customers. The
search cost has been introduced in the conventional optimal stopping problem [6, 8, 11].
By introducing the search cost in the system, it would eventually create a search option on
whether or not to conduct the search. Therefore, the objective of this paper is to examine
the structure of an optimal switching strategy as well as an optimal search policy in order
to maximize the total expected net profit over an infinite planning horizon. In addition,
in order to validate the economic effects of our switching model we examine the relative
difference of the maximum expected profits between our switching model and the model
without switching strategy. According to our results, employing the switching strategy
can significantly improve the maximum expected profit as high as 13 percent.

2. Model Formulation. We consider the following discrete-time queueing model with a
single server and the system capacity k (k ≥ 1). A customer appears with the probability
λ (0 < λ ≤ 1) only after the search cost c ≥ 0 has been paid at the previous point in time.
The service for the admitted request is completed with the probability q (0 < q < 1) at
the next point in time. The sequentially arriving customers are assumed to have their
reservation prices, ξ1, ξ2, · · · , which are i.i.d random variables determined by a known
distribution function Fξ(x) with the expectation value µξ, and the density function is
defined as follows:

fξ(x) > 0, if a ≤ x ≤ b, fξ(x) = 0, otherwise, (1)
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where a and b (0 < a < b < ∞) are certain given numbers. For an arriving customer with
the reservation price ξ, the decision maker must decide which policy to adopt between
the admission and pricing control policies. Adopting the former, the decision maker then
has to determine whether or not to admit the customer based on the price w = αξ where
α ∈ [0, 1] is a ratio which denotes the customer’s degree of desirability for the service,
i.e., the greater the customer’s desirability, α is closer to 1. These ratios α1, α2, · · · are
i.i.d random variables from a known distribution function Fα(x) with the expectation µα.
Therefore, it is clear that µw = µαµξ. Now the distribution function of w will be

Fw(x) = Pr(w ≤ x) = Pr(αξ ≤ x) = Pr(ξ ≤ x/α)

=

∫ ∞

0

Fξ(x/α)fα(α)dα = Eα[Fξ(x/α)],

and the density function becomes

fw(x) = Eα

[

1

α
fξ(x/α)

]

. (2)

On the other hand, if the pricing control policy is adopted, the decision maker then
proposes a price z to the customer’s request and the customer makes a service request
if and only if the proposed price z is less than or equal to his own reservation price ξ.
Accordingly, the probability that the customer requests the service will be p(z) = Pr(z ≤
ξ).

Let us denote by i the number of customers in the system, and let V (i) represent the
maximum expected net profit in the current state i. In such case, by using the Markovian
Decision Process we can describe the optimality equations of the model as follows:

V (0) = max











C : β

(

λ max

{

Ew[max{w + V (1), V (0)}],

maxz{p(z)(z + V (1)) + (1 − p(z))V (0)}

}

+ (1 − λ)V (0)

)

− c,

K : βV (0)











, (3)

V (i) = max



































C : β(1 − q)

((

λ max

{

Ew[max{w + V (i + 1), V (i)}],

maxz{p(z)(z + V (i + 1)) + (1 − p(z))V (i)}

}

+ (1 − λ)V (i)

)

I(1≤i<k)

+V (i)I(i=k)

)

+ βq

(

λ max

{

Ew[max{w + V (i), V (i − 1)}],

maxz{p(z)(z + V (i)) + (1 − p(z))V (i − 1)}

}

+ (1 − λ)V (i − 1)

)

− c,

K : β(1 − q)V (i) + βqV (i − 1)



































for 1 ≤ i ≤ k, (4)

where β and I(·) represent the discount factor and the indicator function, respectively.
The letters C and K denote the decision of conducting the search and skipping the search,
respectively.

To explain this model in more details, suppose that a customer appears with the proba-
bility λ in the state i having paid the search cost c. When adopting the admission control
policy, in the case that the customer proposes the price w for the service and the company
admits it, the profit w would be obtained and the state would increase to i+1; otherwise,
the state would remain as i. When the pricing control policy is employed instead, as we
mentioned before we first assume that the decision maker offers the price z to an arriv-
ing customer in state i. If the customer requests his service with probability p(z), the
company obtains the profit z and the state becomes i + 1; otherwise, the state remains
as i. Hence, the decision maker should offer a price z that pertains to the maximization
of {p(z)(z + V (i + 1)) + (1 − p(z))V (i)}. Note that when i = k, if the current service is
not yet completed with the probability (1 − q), an arriving customer’s request cannot be
met due to the service capacity, and so the state remains as i.
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3. Transformation of the Optimality Equations. In this section, we transform the
optimality equations described in the preceding section and present the optimal switching
and search policies. Let us begin by defining

hi = V (i) − V (i + 1), 0 ≤ i ≤ k − 1. (5)

For concise expression and for the convenience of model analysis, let us further define the
following functions.

Tp(x) = max
z

p(z)(z − x), (6)

Tw(x) = Ew[max{w − x, 0}], (7)

J(x) = Tw(x) − Tp(x), and (8)

K(x) = max{Tw(x), Tp(x)} = max{J(x), 0} + Tp(x). (9)

Moreover, we will denote the value z which maximizes p(z)(z − x) by z(x) in Equation
(6). Corresponding to Equation (7), we will also define

bo = sup{x|Tw(x) > 0}. (10)

Since the expectation of immediate reward at any point in time is finite, by using the
conventional method outlined in a Markovian Decision Process [10], we can easily verify
that V (i) ≤ M/(1−β) for a sufficiently large M > 0, i.e., V (i) is finite. Hence, we can see
that the system of Equations (3) and (4) has a unique solution, regardless of the details
of the optimal decisions. Now, the terms max{w + V (i + 1), V (i)} and maxz{p(z)

(

z +

V (i + 1)
)

+
(

1 − p(z)
)

V (i)} can be represented as max{w + V (i + 1) − V (i), 0} + V (i)

and maxz p(z)
(

z + V (i + 1) − V (i)
)

+ V (i), respectively, i.e., max{w − hi, 0} + V (i) and

maxz p(z)
(

z−hi

)

+V (i) via the definition in Equation (5). Hence, Equations (3) and (4)
now become

V (0) = βV (0) + max

{

βλ max

{

Ew[max{w − h0, 0}],
maxz p(z)(z − h0)

}

− c, 0

}

, (11)

V (i) = β(1 − q)V (i) + βqV (i − 1) + βλ max

{

(1 − q) max

{

Ew[max{w − hi, 0}],

maxz p(z)(z − hi)

}

I(1≤i<k)

+q max

{

Ew[max{w − hi−1, 0}],
maxz p(z)(z − hi−1)

}

− c, 0

}

, 1 ≤ i ≤ k. (12)

Then using Equations (6) to (9), we rearrange these equations as follows.

V (0) = max{βλ(max{J(h0), 0} + Tp(h0)) − c, 0}/(1 − β), (13)

V (i) = γβqV (i − 1) + γ max
{

β(1 − q)λ(max{J(hi), 0} + Tp(hi))I(1≤i<k)

+βqλ(max{J(hi−1), 0} + Tp(hi−1)) − c, 0
}

, 1 ≤ i ≤ k, (14)

where γ = (1 − β(1 − q))−1 > 1, which lead to the following optimality equations.

V (0) = max{Q0, 0}/(1 − β), (15)

V (i) = γβqV (i − 1) + γ max{Qi, 0}, 1 ≤ i ≤ k, (16)

where Q0 = βλK(h0)−c and Qi = β(1−q)λK(hi)I(1≤i<k) +βqλK(hi−1)−c for 1 ≤ i ≤ k.
In what comes below, we derive some equations related to hi. By setting i = 0 in

Equation (5), we obtain h0 = V (0) − V (1), and replacing V (1) by Equation (16) with
i = 1 produces h0 = (1 − γβq)V (0) − γ max{Q1, 0}. Since 1 − γβq = γ(1 − β), this can
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be rewritten as h0 = γ(1 − β)V (0) − γ max{Q1, 0}. Combining this with Equation (15)
now leads to

h0 = γ max{Q0, 0} − γ max{Q1, 0}. (17)

In a similar way, for 1 ≤ i ≤ k − 1, we obtain the following equation.

hi = γβqhi−1 + γ max{Qi, 0} − γ max{Qi+1, 0}, 1 ≤ i < k. (18)

Based upon our discussions so far, we are now ready to describe the optimal policies
with respect to the switching strategy and the search option for a given state as follows:

(a) Optimal Switching Strategies. For 0 ≤ i < k,
1. If J(hi) > 0, adopt the admission control policy (See Equations (13) and (14)). In

this case, if the proposed price w of an arriving customer is greater than hi, then
admitting the customer is optimal in state i; otherwise, rejection is optimal (See
Equations (11) and (12)).

2. If J(hi) ≤ 0, adopt the pricing control policy (See Equations (13) and (14)). In
this case, the optimal price to offer to an arriving customer is determined by z(hi)
which maximizes p(z)(z − hi) in state i (See Equations (11) and (12)).

(b) Optimal Search Strategies. For 0 ≤ i ≤ k, it is optimal to conduct the search if Qi > 0,
and to skip it otherwise (See Equations (15) and (16)).

4. Results. In what follows, we examine the structure of the optimal policies described
above and consider their implications. We start with the lemma that represents the
properties of the functions of K(x) and J(x), both of which play an important role in
clarifying the characteristics of the optimal policies.

Lemma 4.1. We have

(a) J(x) = 0 on [b,∞), and if bo < b, then J(x) is negative and increasing on (bo, b).
(b) K(x) is convex and decreasing on (−∞,∞), and strictly decreasing on (−∞, b).
(c) K(x) > 0 on (−∞, b) and K(x) = 0 on [b,∞).
(d) x + νK(x) is increasing on (−∞,∞), where 0 ≤ ν ≤ 1.

Proof: (a) From Equation (2) and the definition of Tw(x) given in Equation (7), we
have Tw(x) =

∫∞

0
max{w−x, 0}Eα[ 1

α
fξ(w/α)]dw. Substituting w = αξ into this equation

leads to

Tw(x) = Eα

[

α

∫ ∞

0

max{ξ − x/α, 0}fξ(ξ)dξ

]

= Eα

[

αTξ(x/α)
]

, (19)

where Tξ(x) = Eξ

[

max{ξ − x, 0}
]

. Here we note that if b ≤ x, then b ≤ x/α due to
the inequality 0 < α ≤ 1. Subsequently, Tξ(x/α) = 0 from Equation (1). Hence, from
Equation (19) we have Tw(b) = Eα

[

αTξ(b/α)
]

= 0. Furthermore, if b ≤ x, we have
z(x) = b maximizing p(z)(z − b), so Tp(x) = max p(z)(z − x) = p(b)(b − x) = 0 because
p(b) = 0 from Equation (1). Therefore, we get J(x) = 0 on (b,∞) from Equation (8).
Now, from the definition of bo in Equation (10) and the fact that Tw(x) is decreasing in
x, we see that if x < bo, then Tw(x) > 0 and Tw(x) = 0 otherwise. This validates the
relation bo ≤ b. Suppose that bo ≤ x < b, then Tw(x) = 0 as shown above and Tp(x) > 0
due to Equations (6) and (1). Thus, from Equation (8) we have J(x) = −Tp(x) < 0,
which is increasing on (bo, b) because Tp(x) is decreasing on (−∞,∞) from Equation (6).

(b) This is immediate from Equation (9) and the fact that both Tp(x) and Tw(x) are
convex and decreasing on (−∞,∞) from Equations (6) and (7).

(c) The proof follows from (a), Equation (9), and the fact that Tp(x) > 0 for x < b and
Tp(x) = 0 for b ≤ x, as shown in the proof of (a).
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(d) We note that x+νK(x) = max{x+νTw(x), x+νTp(x)}. Accordingly, we can prove
the assertion by showing that each of x + νTw(x) and x + νTp(x) are increasing in x. Let
x1 < x2. Since Tw(x) = Eα

[

αTξ(x/α)
]

from Equation (19), we have

νTw(x2) + x2 − νTw(x1) − x1 = (x2 − x1) + νEα

[

α
(

Tξ(x2/α) − Tξ(x1/α)
)]

= (x2 − x1) + νEα

[

α

(

∫ ∞

0

max{ξ − x2/α, 0}dF (ξ)

−

∫ ∞

0

max{ξ − x1/α, 0}dF (ξ)

)]

≥ (x2 − x1) + νEα

[

α

(

∫ ∞

x1/α

(ξ − x2/α)dF (ξ)

−

∫ ∞

x1/α

(ξ − x1/α)dF (ξ)

)]

= (x2 − x1) − νEα

[

α(x2/α − x1/α)(1 − Fξ(x1/α))
]

= (x2 − x1)(1 − ν)Eα

[

1 − Fξ(x1/α)
]

≥ 0,

and so Tw(x1) + x1 ≤ Tw(x2) + x2. Thus, Tw(x) + x is increasing on (−∞,∞). The proof
for Tp(x) + x can be found in [7]. 2

The lemma given below guarantees the property of nonnegativity of hi.

Lemma 4.2. hi ≥ 0 for i (0 ≤ i ≤ k).

Proof: Since hi is given by Equation (5), to prove that the assertion is true we will
show that V (i) is decreasing in all i. Consider a value iteration algorithm corresponding
to Equations (3) and (4) for t ≥ 1 with V0(i) = 0 for all i. Clearly, V0(i) is decreasing in i.
If we assume that Vt−1(i) is decreasing in i, then it is immediate that Vt(i) is decreasing
in i as well, so the assertion holds. 2

Theorem 4.1. If βλK(0) ≤ c, then Qi ≤ 0 for 0 ≤ i ≤ k.

Proof: Assume βλK(0) ≤ c. Then from Lemmas 4.2 and 4.1(b) we have 0 ≥ βλK(0)−
c ≥ βλK(h0) − c = Q0, 0 ≥ βλK(0) − c = (1 − q)(βλK(0) − c) + q(βλK(0) − c) ≥
(1 − q)(βλK(hi) − c) + q(βλK(hi − 1) − c) = Qi for 1 ≤ i < k, and 0 ≥ βλK(0) − c >
βqλK(hk−1) − c = Qk. 2

This result indicates that when the search cost c is sufficiently large as c ≥ βλK(0), it
is optimal not to conduct the search for customers; hence, no customer is at present in
the system.

Lemma 4.3. If Qi ≤ 0 for a given i (1 ≤ i < k), then hi−1 ≥ hi.

Proof: Let Qi ≤ 0 for a given i (1 ≤ i < k). Then from Equation (16) we have
V (i) = γqβV (i− 1), and hence V (i + 1) = γqβV (i) + γ max{Qi+1, 0} = (γqβ)2V (i− 1) +
γ max{Qi+1, 0}. Accordingly, we get

hi − hi−1 = 2V (i) − V (i − 1) − V (i + 1)

= 2γqβV (i − 1) − V (i − 1) − (γqβ)2V (i − 1) − γ max{Qi+1, 0}

= −(1 − γqβ)2V (i − 1) − γ max{Qi+1, 0} ≤ 0

due to V (i − 1) ≥ 0 from Equations (15) and (16) and the fact that 1 > γqβ. Therefore,
hi−1 ≥ hi. 2
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Theorem 4.2. Suppose hi−1 ≤ hi for a given i (1 ≤ i < k). Then we have Qj > 0 for j
with i ≤ j < k and

(a) hi−1 ≤ hi ≤ · · · ≤ hn−1 < b,
(b) z(hi−1) ≤ z(hi) ≤ · · · ≤ z(hn−1) < b.

Proof: (a) Let hi−1 < hi for a given i (1 ≤ i < k), so hi−1 ≤ hi. Then from
the contrapositions of Lemma 4.3 we get Qi > 0; accordingly, using Lemma 4.1(b) we
have 0 < Qi = β(1 − q)λK(hi) + βqλK(hi−1) − c ≤ β(1 − q)λK(hi−1) + βqλK(hi−1) =
βλK(hi−1) − c, which gives K(hi−1) > c/βλ ≥ 0, and hence hi−1 < b due to Lemma
4.1(c). Further, from Equation (18) we have

hi = γqβhi−1 + γβ(1 − q)λK(hi) + γβqλK(hi−1) − γc − γ max{Qi+1, 0}

≤ γqβ
(

hi−1 + λK(hi−1)
)

+ γβ(1 − q)λK(hi) − γc. (20)

Assume hi ≥ b. Then the above inequality becomes hi ≤ γqβ(hi−1 + λK(hi−1)) − γc
due to K(hi) = 0 from Lemma 4.1(c). Since hi−1 < b, using Lemma 4.1(d), we have
hi ≤ γqβ(b + K(b)) − γc = γqβ(b − 0) − γc ≤ γqβb < b due to γqβ < 1, which is
a contradiction. Hence, it must be hi−1 < (≤)hi < b. Noting this result and Lemma
4.1(d), we arrange Equation (20) as hi ≤ γqβhi + γβλK(hi) − γc, and this inequality
becomes (1 − γqβ)hi ≤ γβλK(hi) − γc. Since hi−1 ≥ 0 from Lemma 4.2, we have hi > 0
due to the assumption hi−1 < (≤)hi. From this and the fact that 1 > γqβ we obtain
(1 − γqβ)hi > 0 · · · (1∗), so γ(βλK(hi) − c) > 0 · · · (2∗). Now, suppose Qi+1 ≤ 0. Then
Lemma 4.3 and the above result give hi+1 ≤ hi < b. Moreover, from Lemma 4.1(c) we have
0 ≥ Qi+1 = β(1−q)λK(hi+1)+βqλK(hi)−c ≥ β(1−q)K(hi)+βqλK(hi)−c = βλK(hi)−c,
which contradicts (2∗), so Qi+1 > 0. Because both Qi and Qi+1 are positive, we can rewrite
Equation (18) as hi = γβq(hi−1 + λK(hi−1)) + γβ(1 − 2q)K(hi) − γβ(1 − q)K(hi+1).
Noting the assumption hi−1 < (≤)hi, from Lemma 4.1(d) we get hi ≤ γβq(hi +λK(hi))+
γβ(1 − 2q)λK(hi) − γβ(1 − q)K(hi+1) = γβqhi + γβ(1 − q)

(

K(hi) − K(hi+1)
)

, which

leads to (1 − γβq)hi ≤ γβ(1 − q)
(

K(hi) − K(hi+1)
)

. Since (1 − γqβ)hi > 0 from (1∗),
we get K(hi+1) ≤ K(hi), implying hi ≤ hi+1 due to Lemma 4.1(b). Repeating the same
procedure leads to the completion of the induction.

(b) It is immediate from the fact that z(x) is increasing in x [7]. 2

From the above result we see that if hi−1 < hi for a given state i (1 ≤ i < k), then
the optimal admission threshold hj and the optimal pricing z(hj) are given as increasing
functions in the number of customers j with i ≤ j < k. Therefore, hi and z(hi) appear as
one of the following functions. 1) Both hi and z(hi) are decreasing in i. 2) For some value
m > 0, both hi and z(hi) are decreasing in i < m and increasing in i ≥ m, which means
that both hi and z(hi) are convex unimodal in i. 3) Both hi and z(hi) are increasing in i.

Theorem 4.3. If Qi > 0 for a given i (0 ≤ i < k), then Qj > 0 for i ≤ j < k.

Proof: Let Qi > 0 for a given i (1 ≤ i < n). First, assume hi−1 < hi. Then Qi+1 > 0
from Theorem 4.2. Next, let hi−1 ≥ hi. Then since K(hi−1) ≤ K(hi) due to Lemma 4.1(c),
we get 0 < Qi = β(1−q)λK(hi)+βqλK(hi−1)−c ≤ βλK(hi)−c. Suppose Qi+1 ≤ 0. Then
hi ≥ hi+1 due to Lemma 4.3. Noting K(x) is convex on (−∞,∞) from Lemma 4.1(b), we
have βλK((1− q)hi+1 + qhi)− c ≤ βλ

(

(1− q)K(hi+1) + qK(hi)
)

− c ≤ 0 < βλK(hi)− c,
implying K((1 − q)hi+1 + qhi) < K(hi), and hence (1 − q)hi+1 + qhi > hi due to Lemma
4.1(b). Therefore, hi < hi+1 due to the assumption q < 1, which is a contradiction. Thus,
Qi+1 > 0. We can complete the induction by repeating the same procedure. Now, if
Q0 > 0 and Q1 ≤ 0, we get to a contradiction in quite the same way as above, so it must
be that Q1 > 0. 2
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The above result states that if it is optimal to continue the search in a given state i,
then it will be so in all states j ≥ i. This means that starting from the initial state 0, if
Q0 > 0, then the optimal policy is to conduct the search in all states.

Theorem 4.4. If βλK(0) > c, we have

(a) Qi > 0 for 0 ≤ i < k.

(b) hi and z(hi) are increasing in i (0 ≤ i < k).

Proof: (a) Since V (i) ≥ 0 from Equations (15) and (16), we have V (0)≥max{βλK(0)−
c, 0} = βλK(0)−c > 0 due to the assumption. Therefore, V (0) > 0. If Q0 ≤ 0 in Equation
(15), then V (0) = 0 (note β < 1), which contradicts V (0) > 0. Hence, Q0 > 0. This and
Theorem 4.3 give the stated result.

(b) From Equation (17) we have h0 = γ(Q0 − Q1) = γβ(1 − q)λ
(

K(h0) − K(h1)
)

due
to (a). If h0 = 0, then K(h1) = K(h0) = K(0), so h0 = h1 = 0. And if h0 > 0,
then K(h0) > K(h1), so h0 < h1 due to Lemma 4.1(b). Applying Theorem 4.2 on this
completes the proof. 2

An implication of the result (a) is that when λβK(0) > c, it is optimal to search for
customers in all states i (0 ≤ i < k). The result (b) means that as i increases, the decision
maker will become more selective whether to choose the admission control policy or the
pricing control policy.

5. Numerical Studies. In this section, we demonstrate cases where the switching occurs
between the admission and the pricing control policies and examine the optimal search
policies through some numerical experiments. The experiments have been made under the
following conditions: β = 0.97, λ = 0.99, c = 0.05, k = 15, and Fξ(x) and Fα(x) are the
uniform distributions on [0, 1] and [0.5, 0.9], respectively. Note that βλK(0)−c ∼= 0.29 > 0
in this case.

5.1. Optimal switching strategy. In Figure 1, we present the graphs of J(x) and hi

where if J(hi) > 0, adopting the admission control policy is optimal; otherwise, the pricing
control policy is optimal. The graph in Figure 1(a) depicts the function J(x) on [0, 1],
where J(x) is less than zero and increasing on (0.89, 1) (note bo = 0.89) by Lemma 4.1(a).
There exists x⋆ = 0.27 a solution of J(x) = 0, such that J(x) > 0 if x < x⋆, and J(x) ≤ 0
otherwise.
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Figure 1. Graphs of J(x) and hi. If J(hi) > 0, adopting the admission
control policy is optimal; otherwise, the pricing control policy is optimal.
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Figure 1(b) demonstrates the fact that hi indeed increases in i as expected from Theo-
rem 4.4(b). This creates a switching threshold i⋆ (= 9) such that if i < i⋆, since hi < x⋆,
we have J(hi) > 0, and hence it is optimal to adopt the admission control policy. On
the other hand, if i ≥ i⋆, since hi ≥ x⋆, we get J(hi) ≤ 0, so it is optimal to employ
the pricing control policy. Therefore, when i < i⋆ (i ≥ i⋆), since adopting the admission
control (pricing control) policy is optimal, the optimal threshold hi (optimal pricing z(hi))
should be set such a way that it increases in the number of customers in the system. The
implications of the monotonicity of hi and z(hi) are discussed in [12].

5.2. Optimal search strategy. Table 1 below represents the optimal search policies
for a given state i (0, 1, · · · , 15). When c = 3.0 (≥ λβK(0) = 0.24), it is optimal not
to conduct the search for customer as proven in Theorem 4.1(b), while when c = 0.05
(< λβK(0) = 0.24), it is always optimal to conduct the search for customers in all states
except the state i = k where the system capacity is full (Theorem 4.4(a)). In state i = k,
both C and K can be optimal even though it appears in the table to skip the search.

Table 1. Optimal search policies

i

c = 0.05

c = 0.30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C C C C C C C C C C C C C C C K

K K K K K K K K K K K K K K K K

5.3. Economic effects of the switching strategy. To start, let Ṽ (i) be the maximum
expected profit when the switching strategy is not in use. Subsequently, let ϕ(i) be the
relative difference between V (i) and Ṽ (i), i.e., ϕ(i) =

(

V (i) − Ṽ (i)
)

/V (i). For conve-
nience, let ϕ(i) for employing admission control and pricing control policies be denoted
by, respectively, ϕa(i) and ϕp(i).

Figure 2 depicts the graph of ϕa(i) and ϕp(i). We see that ϕa(i) and ϕp(i) can be as
high as, respectively, 13% and 7.6%. The bold dotted red line indicates that when the
switching strategy is not in use, if i ≤ 2 or i ≥ 8, it is optimal to adopt the pricing control
policy; otherwise, it is optimal to use the admission control policy. Despite using the best
policy as mentioned above, the maximum relative difference is approximately 5.6%, which
occurs near i = 8. This implies that the decision maker bears the risk of creating a large
opportunity cost by not employing the switching strategy.
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Figure 2. Graph of ϕa(i) and ϕp(i)
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6. Concluding Remarks. We proposed a switching strategy between the admission
and pricing control policies as well as searching strategy in a customized service provid-
ing company. In this research we have clarified the structural properties of the optimal
switching and searching strategies. According to the results, the optimal switching strat-
egy depends on the shape of the function J(x), and the optimal switching threshold exists
in terms of the number of customers in the system under a certain condition. As for the
optimal search strategy, it is optimal to skip the search when the search cost is sufficiently
large. However, when the search cost is sufficiently small, it is optimal to continue the
search except the state where the capacity is full. Furthermore, we have examined the
relative difference of the maximum expected profits between our switching model and
the model without switching strategy, the results of which can be as high as 13 percent.
This validates the economic effects of our switching model as well as representing the
opportunity cost of not adopting the switching strategy.

As a general framework for the derivation of monotonicity properties, Koole [9] proposes
a unified treatment of the various queueing models by concentrating on system events
and the form of the value function instead of focusing on the value function itself. To
investigate in what extent our model with the notion of search skipping fit within the
Koole’s framework would be an interesting topic for a further research. Moreover, one
could incorporate the following conditions which would make our model more practical:
1) future availability of once rejected customers, 2) customer’s reneging from the queue,
3) strategic interaction between the customer and the decision maker by introducing game
theory; and further investigate them.
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