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ABSTRACT. This paper addresses the problem of determining an optimal LQR design
for a robust power system stabilizer (PSS). For achieving optimal PSS design, first, the
different loads of a PSS are described using fuzzy a-cut numbers, and a fuzzy parametric
uncertain system is formulated into an interval state-space controllable canonical form
system. Second, the mazimum uncertainty interval of the system is translated into the
weighting matriz Q of the LQR problem to guarantee that the designed optimal controller
is robust under worst-case conditions. The designed PSS is applied to a single machine
infinite bus (SMIB) system operating under various loading conditions. The simulation
results showed that the performance indexes of proposed method are superior to those of
typical Phase Lead based method.
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1. Introduction. Power systems are often experiencing uncertainty disturbances such
as power consumption changes, variation of operating conditions, and faults. The dis-
turbances cause low frequency oscillation which may result in serious consequences. The
problem of underdamped oscillations within power systems has received a great deal of at-
tention in past decades [1]. Various power system stabilizers (PSS) have been designed to
provide additional damping and maintain stability over a wide range of operating points
[2]. According to Kharitonov’s theory the nonlinear power system can be converted into
an uncertain parametric interval system. Then the classical robust Phase-Lead PSS con-
troller design can be determined by examining the root locus diagrams associated with
extreme conditions of interval system [3-5]. However, this type of PSS design is often
conservative; it assumes that the parameters of characteristic polynomials vary indepen-
dently. In addition, the interval representation has another drawback of considering the
range of all possible outcomes in the same probability. Last, this kind of controller is
suboptimal.

Optimization methods based on evolutionary algorithms or swarm intelligence have
also been applied to the PSS design [6-8]. Techniques such as particle swarm optimization
(PSO), gravitational search algorithms (GSAs), and genetic algorithms (GAs) are used for
solving the optimal problem while working within system constraints. Considering the
time or frequency domain specification (e.g., a large overshoot or eigenvalue location),
these types of technique can be used to find a near-optimal solution. To simplify the
calculation of the objective function, the proposed controller was limited to a typical
Phase-Lead configuration, and only a few specific operating points were evaluated.

State feedback controllers, based on linear quadratic control theory (LQR), are an
alternative optimal method for PSS design. They have shown improved performance over
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classical PSS [9,10]. Furthermore, different techniques (e.g., output feedback methods,
observer-based controllers and modified Heffron-Phillip models) have been proposed to
compensate the limitations of immeasurable state variables [11-14]. However, this type of
approach is still difficult because the determination of the weighting matrices () and R is
often arbitrary or based on trial and error. In addition, the LQR controller is not robust;
its performance is degraded under condition of system parameter uncertainty.

To solve the aforementioned problem, fuzzy logic control (FLC) offers powerful tools to
overcome the uncertainty problem. For example, the Takagi-Sugeno (T-S) fuzzy model
is a nonlinear model that uses fuzzy membership functions connected by if-then rules.
The analysis and the control of T-S fuzzy systems can be easily applied to some firmly
established linear system theories to solve the problem of uncertainty system [15-18]. An
alternative FL.C strategy is representing uncertainty as a fuzzy number with a membership
function, which is a possibility approach based on fuzzy set theory. Such a fuzzy dynamic
system can be viewed as an extension of uncertain parametric interval systems [19,20].
Because fuzzy logic has an interpolative characteristic, fuzzy-set-based approaches can
describe the uncertainties in PSS design [21]. In addition, an a-cut representation can be
used to create a family of crisp sets from a given fuzzy set. Thus, a system with fuzzy
uncertainties becomes a system with interval uncertainties for each a-cut. For a-cut = 0,
we obtain maximum uncertainty. The design of a robust controller must stabilize all the
systems corresponding to each o € [0,1]. In [22], a robust controller design for a fuzzy
parametric uncertain system can be converted into an optimal LQR problem. When the
solution of the algebraic Riccati equation of LQR problem was determined, the robust
controller can be implemented.

In this study, a novel PSS controller design was proposed and applied in a single machine
infinite bus (SMIB) power system. The proposed method has the following advantages:
1) the different PSS loads are described using fuzzy a-cut numbers, which is compromised
between uncertainty and probability; 2) the maximum fuzzy uncertainty interval of the
system is translated into a weighting matrix @) of the LQR problem, which guarantees
that the designed optimal controller is robust even under worst-case conditions. Com-
pared with traditional state feedback methods, the proposed method is more intuitive,
involves simpler computations, and improves the robustness of the LQR controller. Sim-
ulation studies of the PSS designed by the proposed method are also given in the paper.
The results show that both robustness and optimization of controller can be considered
simultaneously.

2. Problem Statement and Preliminaries.

2.1. Single machine infinite bus model. The power system was derived using the
Heffron-Phillips model. A block diagram of the linearized single machine infinite bus
(SMIB) model is shown in Figure 1 [3]. Such a model is common in the literature.

The operating points of the PSS model are loading dependent. The parameters ki-kg
can be derived from the different operation points F,, and ),,. The formulas of the k
parameters are explained in the Appendix. The deviation signal Aw is used as an input
signal for the conventional PSS. The linear state equation for the power system under
study is written as follows:

& = Az + Bu (1)
y=Cx
where
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The fourth-order transfer function in (1) is written as

Aw bs
— 3
U (3)

as8* + a3s® + as8% + a15 + ag

where the transfer function coefficients expressed in terms of the k parameters are written
as

b= kEkag,, Ay = MTTE, a3 = M(T + TE); (4)
a9 = M + kalTTE + kEkgkgM, a; = Ldokl (T + TE) - ka2k3k4TE,
g = (,U()(kl — k2k3k4 — kEk2k3k5 —+ kEklkng)
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e kg ks Jr —pO—bO_. ] Ao
1+ Tgs B X AE, - . Ms

................................. PSS

FIGURE 1. Linearized model of a single machine infinite bus power system

2.2. Fuzzy parametric a-cut representation of different loads of PSS. The un-
certain parameters are represented by a fuzzy number, §¢;, with membership function
a-cut = p(g;) € [0,1]. The membership function (§;) may be any nonsymmetrical trian-
gular membership function but decreases to the interval endpoint. The fuzzy parametric
uncertainty a-cut is defined using

G() =g (), ¢ ()], ¢ (0)=q¢, ¢0)=q¢" ¢Q)=¢1)=q¢ (6

where ¢ (.) is an increasing function and ¢;"(.) is a decreasing function.

Consider a power system with two uncertain operating parameters, Py, and Q,p. As-
sume the linguistic information of operating condition: “high load”, “normal load”, and
“low load” are represented as fuzzy sets with triangular membership function. For a-cut
= 1, we obtain nominal condition { normal load: P,,(1) =1, Q,(1) = 0}; for a-cut =
0, we obtain maximum uncertainty {high load: P} (0) = 1.15, @/ (0) = 0.4} or {low
load: P, (0) = 0.2, Q,,(0) = —0.4}. These total membership function can be described
in terms of the uncertain operating parameters P,, and (),, (shown in Figure 2), where
P,, = tri(0.2,1,1.15) and Q,, = tri(—0.4,0,0.4).
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FIGURE 2. Membership function for P,, and Q)

The nonlinear power system is represented as an uncertainty interval system with a
degree of confidence of o € [0, 1]. For a-cut = 0, using (4), the extreme values of interval
transfer function coefficients are calculated as follows:

a; = min q; a = max a; (6)
P=(0),Q(0) P+(0),Q%(0)

This study focuses on the question of converting the fuzzy uncertainty robustness prob-

lem into an optimal LQR control problem for a worst-case condition of a-cut = 0.

3. Optimal-Approach-Based Robust Controller Design for a Fuzzy Parametric
System.

3.1. Kharitonov stability theory. Using the Kharitonov theory to demonstrate the
robust Hurwitz stability of an interval uncertain system is efficient and intuitive. An
interval polynomial, in which each coefficient a; is independent of the others and varies
within the bounds of an interval, can be written as

p:ans”—i—an,lsnfl—i-.---i-ao, a; = [ Cl; a“;r ] (7)

This type of uncertain interval polynomial is robust and stable if and only if the fol-
lowing four extreme characteristic polynomials (8) possess Hurwitzian stability; in other
words, if they all have no roots in the right half plane.

— - - 2 3 — 4
Py =ay +a;s+ajs’+tais’ta; st +... (8)
— a2 — o3 4
pit=af +als+ays®+a;s+afst+. ..
— — — a2 3 4
pi =af +a;s+ayst+ais’+afst+. ..

pit=ay +afs+afs®+azstagst 4.

The Kharitonov theorem assumes that the coefficients in the interval polynomial per-
turb independently. Even the interval characteristic polynomial does not conform to the
assumptions made by the Kharitonov theorem in real-world problems; the theorem can
still obtain conservative stability bounds and a sufficient condition of stability for poly-
nomials with dependent coefficients [23].
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3.2. Optimal robust controller design for a system with fuzzy parametric un-
certainty. Nonlinear dynamic equations can be represented as linear models at specific
operating points. When a nonlinear system can be stabilized at different operating points,
it can be equivalent to stabilize the parametrical uncertain linear model. Consider an un-
certain system represented as a system with fuzzy parametric uncertainty, as described
by the transfer function.

Pr-1()s" ™t + -+ + pr(a)s + pola) (9)
§" + g1 (@)s" L+ + @i (a)s + Go()
where p;(«), ¢;(cv) represent the fuzzy interval number. The a-cut confidence is given as
a € [0,1].

Furthermore, the fuzzy parametric uncertain system is realized in state-space represen-
tation by a controllable canonical form [22]:

G(s,p,q) =

0 1 e 0 0
—Go(a) —qi(a) -+ —Gn(a) 1
y=[nla) pi(@) - Puila) ]z
The compact representation of (10) is
z = A(G(a))z + Bu (11)
y = C(p(a))x

Assume that there exists a nominal value, ¢,om € G(«) such that (A(gnem), B) is stable;
there exists a 1 X n matrix ¢(¢(«)). The uncertainty in A is represented as

A(q(a)) = Algnom) = Bo (4()) (12)

The fuzzy parametric uncertain system can then be rewritten as
= A(guom)e + B (4(c)) + Bu (13)
The problem of designing a robust controller for a system with fuzzy parametric un-
certainty lies in finding a feedback control law v = —kx such that the closed loop system
& = A(guom)t + Bo (i(e)) — Bz (14)

is stable for all @ € [0, 1]. Thus, the aforementioned robust control problem is translated
into an optimal control problem by using an LQR approach, as follows.

For the system with fuzzy parametric uncertainty in (14), the cost function is designed
as

J = / (2" Fz + 2”2 +u" Ru) dt (15)
0

where F'is an upper bound on the uncertainty.
When the uncertain system ¢ (¢(«)) is bounded, the upper bound on F' can be written

as ¢ ()" ¢ (4(a)) < F.
When @ = [F + I, the cost function is rewritten as

J = /OO (z"Qx + u" Ru) dt (16)
0

The LQR optimal control problem is finding the optimal feedback gain v = —kx that
minimizes the cost function. If there exists a feedback control law u = —kx such that
(14) is stable for all §(«a), a € [0,1], the design of a robust controller is considered
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to be successful. For a system with fuzzy parametric uncertainty, the solution to the
LQR problem is the solution of the robust control problem. The following proposition
demonstrates how to determinate the weighting matrix ¢ in the LQR problem.

3.3. Determination of the uncertainty weighting matrix. In (13), the worst case
condition (o = 0) is the largest interval in the uncertain system. An optimal controller
guarantees stabilization of the entire uncertain interval.

For o« = 0, consider the maximum uncertainty described by ¢; € [ q; q;r ] For o €

[0,1], the uncertainty [ ¢; (a;) ¢;" () | can be written as any value in [ ¢; ¢;" ]. For

the sake of demonstration, assume that the nominal value is ¢, = [ Q% 9 0 Gy ] .
The system in (10) can then be written as
0 | 0 0
T = : S : s+ | |u (17)
0 o --- 1 0
—q —@ o 1
In (12), the uncertain system B¢ (G) can be written as
o 1 -~ 0 o 1 - 0 0 @ —d 1"
S O PO S I A N I
0 o -- 1 0 o --- 1 0 :
—Go —G1 -+ —Gn-1 0% —¢ 1 Tn—1 = Gn—1
(18)
The maximum uncertainty ¢ (¢) is bounded by
[0 —alla —a] - a0 — a0 llan—1 — duei]
F=¢p< : s : (19)
a1 — Guilas —a0] (a1 — Guillan—1 — ¢l
Let @ = [F + I], and designate @ as the cost function for the LQR optimal control
problem. With the feedback control law v = —kxz, the characteristic equation of closed
loop system in (14) can be written as
8"+ [kn + Gu1) 8"+ [k + G s+ [k +Go) =0 (20)

The Kharitonov theorem in (8) can be used to determine whether the interval poly-
nomial is stable. If and only if the four Kharitonov extreme characteristic polynomials
all have roots in the left half plane (LHP), the controller designed is both optimal and
robust.

4. Simulation Results. This section illustrates how to design a robust power system
stabilizer based on an optimal LQR approach in an SMIB system.
The transfer function of an uncertain SMIB power system is expressed as (3).

G(s) = [21 96.1 |s
5= 8.34s* +167.3s% + [ 427.1 744.4 |s2 +[ 2941 7500 |s+ [ 1393 16758 ]

For the sake of convenience, we translate this equation into its controllable canonical
form, and the transfer function of the uncertain system in (21) is expressed as

[25 115 s
st 420153 + [ 51.2 89.3 |s? +[ 352.6 899.3 |s+ [ 167.0 2009.4 |

(21)

G(s) = (22)
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The uncertain system in (22) can be expressed in its state-space controllable canonical
form as

0 1 0 0 0
. 0 0 1 0 0
T = 0 0 0 1 [Tt |"
—[167.0 20094 ] —[352.6 899.3] —[51.2 89.3] —20.1 1
(23)

Assuming the nominal operating condition is P,, = 1 p.u. and @,, = 0 p.u., the
transfer function of the nominal system is given by

85.8s
8.34s* + 167.353 + 63952 + 6252.65 + 12287

The nominal system in (24) can be expressed in its state-space controllable canonical
form as

G(s) = (24)

0 1 0 0 0

. 0 0 1 0 0
r = 0 0 0 1 T+ MK (25)

—1473.4 —-749.7 —-76.7 —20.1 1

Using (23), the uncertainty is given by ¢(q) = [ ¢f —ao @ — a1 ¢ —¢; 0].
1) can

ca

The upper bound of the uncertainty in (2 be expressed as
1842.3
546.7
F = 38 1 [ 1842.3 546.7 38.1 0 ] (26)
0

The LQG weighting matrix ) can be written as

3394144.0 1007085.8 70100.3

0
1007085.8 298816.3 20799.7 0
0
1

Q=[F+1]= (27)

70100.3 20799.7  1448.8
0 0 0

Considering R = 1 and solving the feedback control gain by using the LQR approach,
we obtain Krgr as follows:

Kror = 885.6 413.8 105.4 4.7 ] (28)

With the feedback control law u = —Kpgrx, the characteristic equation over all of the
operating conditions (20) can be expressed as

st +24.785% + [ 156.6 194.7 | s>+ [ 766.5 1313.1 | s+ [ 1052.7 2895 | =0 (29)

The roots of the four Kharitonov polynomials given below are located in the left half
plane (LHP), which proves that the controller designed can stabilize all interval plants.
pr~ = 5" +24.85° + 194.75% + 766.55 + 1052.7 (30)
piT = s 4 24.85° + 156.65% + 1313.15 + 2895
py~ = 5" +24.85° + 156.65% + 766.55 + 2895
pr T = s+ 24.85° +194.75% 4+ 1313.15 + 1052.7
We simulated the optimal-LQR-based robust controller (28) for nominal and worst-case

closed-loop systems. The responses of each state xq, o, 3, and x4 for « = 1 and 0 are
shown in Figure 3. It is clear that all the interval plants are stable.
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FIGURE 3. States x1, x9, 3, and x4 for a-cut = 1 and 0

To demonstrate that the proposed approach has the capability to consider the ro-
bustness and the optimization simultaneously, we evaluated the proposed approach by
comparing two methods with different loading regimes.

Example 4.1. A PSS, designed based on a robust phase-lead approach [5]. The design
procedure 1s summarized as follows.

1) Set up the operating range to determine the polynomial coefficients of the uncertainty
interval.

2) Design the transfer function representation of the phase-lead controller and the con-
troller time constant.

3) Use the generalized Kharitonov theorem and the Routh-Hurwitz criterion to plot the
boundaries of stability region in parametric space.

4) Choose the property controller gain and time constant from stability region of para-
metric space.

The transfer function of the robust phase-lead-based PSS can be written as

1+0.5s
1+ 0.05s

Example 4.2. A PSS, designed based on a PSO approach [6]. The design procedure is
summoarized as follows.

1) Set up the nominal operating point of the state-space representation of the power
system.

2) Design the transfer function representation of the phase-lead controller.

3) Design the PSO parameters and objective function.

4) When the objective function has converged, stop the PSO search iteration.

The transfer function of the PSO-based PSS can be written as

1+ 0.3176s
1+0.077s

Three designed PSSs were evaluated under two operating conditions (a-cut =1 and 0).
The typical PSS parameter values are summarized in the Appendiz. Figure j represents

Go(5) = 50 (31)

G.(s) = 47.95 (32)
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the load angle variations caused by a 0.1-p.u.-step increment in mechanical torque under
the operating condition of a-cut =1 (P,, =1, Q,, = 0). Because the operating conditions
are located in the design loading regimes of all PSSs, all types of PSS can dampen low
frequency oscillation.

Figure 5 represents the load angle variations caused by a 0.1-p.u.-step increment in
mechanical torque under the operating condition of a-cut = 0 (B,, = 1.15, Q),, = —0.4).
As shown in Figure 4, the proposed robust PSS can dampen the low frequency oscillation
in each a € [0, 1].

Pop =1, Qop=0
035 T T T T
without PSS
—-—--PLPSS
031 — — PSOPSS
— +— proposed PSS

0251 B
= = b A L Y e ey
S 02t St} .
@
g) +
- 015} /’f .
: S

ti
0.1F Fi B
7
005k # E
0 1 1 1 1
0 1 2 3 4 5
Time (s)

FIGURE 4. Response of system under the P,, = 1, (),, = 0 condition

Pop =1.15, Qop=-04

07 . T T T
without PSS
06+ —--—--PLPSS H
— — PSOPSS
o5t —+— proposed PSS |

Load angle (delta)

FIGURE 5. Response of the system under the P,, = 1.15, (),, = —0.4 condition
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A comparison of the performance indices in terms of the rise time (RT) and delay
time (DT) that correspond to PSS transient state characteristics is shown in Table 1.
Whether a-cut = 1 or 0, the proposed robust PSS outperforms the other two approaches
regarding both rise time and delay time. The robust Phase-Lead controller (Example
4.1) was designed by selecting parameters arbitrarily from stability region of parametric
space. It needs a lot of trial and error to determine the proper parameters and has to
compromise in optimism. Conversely, the PSO controller (Example 4.2) was evaluated
only under specific operating conditions. It has suffered the performance degradation
in the whole operation regime. Generally speaking, in order to guarantee the stability
in the whole operational condition, Phase-Lead controller has to check each extreme
polynomial of the parametric space; PSO controller has to evaluate iteratively different
specific operating points. However, the proposed method requires few computations and
strengthens the robust property of the LQR. It also provides the most favorable tradeoff
between performance and stability.

TABLE 1. Comparisons of performance index

P,y,=1Q,=0 P,, =1.15, Q, = —04

Controller | Rise Time | Delay Time | Rise Time | Delay Time
Phase Lead 1.72 0.78 1.88 0.85
PSO 1.72 0.62 1.88 0.70
Proposal 1.62 0.62 1.68 0.62

5. Conclusions. In this study, we proposed the optimal LQR approach to design a fuzzy
parametric uncertain controller for a PSS. Using the proposed algorithm, the a-cut co-
efficients of a fuzzy parametric uncertain power system are approximated by uncertainty
interval. The maximum uncertainty interval is then translated into the weighting ma-
trix @ of the LQR problem to guarantee that the designed optimal PSS controller is
robust under various values of a € [0,1]. The advantages of the proposed approach are
that it is intuitive and that it requires only modest computational effort. The results
of our simulation demonstrate that both robustness and optimization can be considered
simultaneously. Furthermore, the methodology can be applied for any other parametric-
uncertainty-related engineering model.
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Appendix A.
Aw: Machine’s speed deviation,
0: Angle between g-axis and infinite bus bar,
Et4: Generator field voltage,
E,: Induced EMF proportional to field current,
kg: Exciter gain,
kq,..., ks k-parameters of power system block diagram,
M Inertia coefficient,
T,,: Disturbance mechanical torque,
0. Open circuit d-axis time constant,
T,: Electrical torque,
Tg: Exciter time constant,
vy: Terminal voltage.
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Appendix B.
P2
K, =C C
P
Ky, =C ,
PP+ @+
K, = fat e
Tq + Te
P
K,=C ,
PP (Q+ C)2)
P Cy +Q
K :C e )
TV Qe { 6P2+(C1+Q)2]

Ko = Ct VP2 +(C +Q)? {xe L Gig(Ci + Q) ]

V2 + Q. P2+ (Cy +Q)?
V2 — 1%
C’1: ) C’?):C’l : 77 C’4: 7
Te + T4 Te + T, Te + T,
Ty — T ro(x, — 2 Te
Cs = fl, 6’62017‘1( 1 d), C; = -
Te + Ty Te + Tq Te + T,

x.: Line reactance,

V': Infinite bus voltage,

z!), x4, v4: Generator, d-axis and g-axis synchronous reactance, respectively,

re = 0.4 pu, z, = 1.55 pu, z4 = 1.6 pu, 2/, = 0.32 pu, V =1 pu, wy = 314.2 rad/s,
T, =6s, M =10s, kg =25, Ty = 0.05 s.



