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ABSTRACT. It is a fundamental and important issue to identify influential nodes in
complex network. In the existing evidential semi-local centrality, it modified the eviden-
tial centrality according to the actual degree distribution, but the topological connections
among the neighbors of a node in weighted network are not taken into account. In this
paper, a novel measure called evidential local structure centrality is proposed to identify
influential nodes. Firstly, the value of modified evidential centrality is calculated by tak-
ing actual degree distribution. Secondly, local structure centrality combined with modified
evidential centrality is extended to be applied in weighted networks. Then, in order to
evaluate the performance of the proposed method, we use the susceptible-infected-recovered
(SIR) model and susceptible-infected (SI) model to simulate the spreading process on real
networks. Ezxperiment results show that our method is effective and efficient to identify
influential nodes.

Keywords: Complex network, Influential node, Weighted network, Dempster-Shafer
theory of evidence, Local structure

1. Introduction. How to identify influential nodes in complex network has become a
hot topic in many fields such as effectively controlling disease [1,2] and computer viruses
spreading, rumors diffusion [3], as well as promoting new products, looking for the leaders
[4], and ranking scientists and publications [5,6].

In a complex network analysis, a variety of centrality indices were proposed to identify
influential nodes in weighted networks. In [7], degree centrality (DC), betweenness cen-
trality (BC), and closeness centrality (CC) were extended to be widely applied in weighted
networks. DC is simple and less relevant, since a few highly influential neighbors may be
more influential than a node with a larger number of less influential neighbors. Global
metrics such as BC and CC can well identify influential nodes by ranking nodes, but
their computational complexity is considerable, so they are not feasible for large-scale
networks. Simultaneously, another constraint of CC is lack of applicability to networks
with disconnected components, two nodes that belong to different components but do not
have a finite distance between them. After that, Gao et al. [8] proposed a local structure
centrality (LSC) measure which considers both the number and the topological connec-
tions of the neighbors of a node. For nodes with the same number of neighbors, the one
with denser connected neighbors is supposed to be more influential since denser connected
neighbors get more chance to influence each other. However, it is incapable of being ap-
plied in weighted networks. In the past two years, several centrality measures are also
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proposed to identify influential nodes, such as Weighted LeaderRank [9], neighborhood
coreness centrality [10], and Weighted k-shell decomposition [11].

Dempster-Shafer evidence theory (D-S evidence theory for short) was first proposed
by Dempster [12], formed by the further expansion of Shafer [13]. In this theory, belief
function and plausibility function of proposition A are respectively represented by lower
bound and upper bound of evidence interval. Furthermore, the D-S evidence theory is
qualified to combine a pair of evidence or belief functions to obtain a new evidence or
belief function. Based on the D-S theory, evidential centrality (EVC) [14] measure is
raised as a tradeoff between degree and strength of each node to derive node importance
in weighted network. In the literature [15], evidential semi-local centrality (ESC) measure
is proposed by a combination of the modified evidential centrality which considers degree
distribution of real network and the extension of semi-local centrality in weighted network.
The values of centrality measure for each node are obtained by both these centrality
measures, respectively. Then, we can obtain the orders of the nodes by comparing these
values. It can be seen that the higher the value is, the more influential the node is.

However, the evidential centrality measure is similar with DC — simple but of little
relevance, since it does not take account of the global structure information of the network.
Hence, in order to rank nodes effectively, it is better to design the ranking algorithms
based on the local information of the network. For example, the local structure centrality
considers not only the number of node’s neighbors, but also the topological connections
among its neighbors. Inspired by both of the ideas, in this paper, combining the modified
evidential centrality with taking degree distribution into account and the extension of
local structure centrality in weighted network, a new centrality measure is proposed to
identify influential nodes. The value of the new centrality measure for each node is ranked
in descending order. The higher the value of centrality measure is, the more influential
the node is. In order to validate the performance of the proposed method, the susceptible-
infected-recovered (SIR) model is used to examine spreading influence of nodes ranked by
different centrality measures in real network.

The primary contributions of this paper can be summarized as follows.

e A new centrality measure called evidential local structure centrality (ELSC) is pro-
posed to identify influential nodes by combining the modified evidential centrality
with taking degree distribution into account and the extension of local structure
centrality in weighted network.

e The proposed method is raised as a tradeoff between degree and strength of each
node; meanwhile, it also considers both the number and the topological connections
of node’s neighbors.

e The local structure centrality is extended to be applied in weighted network very
well.

The rest parts are organized as follows. In Section 2, we give an overview of centrality
measures in brief and introduce evidence theory. A new method for identifying the influ-
ential nodes is proposed in Section 3. In Section 4, we present data sets and apply the
SIR and SI models to evaluate the performance of the proposed method. Finally, some
conclusions are summarized in the last section.

2. Preliminaries.

2.1. Definition. Assuming that a weighted and undirected network G = (V, E, W) is
composed of |V| = N nodes and |E| = M edges. W is the weight set of E, i.e., the edge
E,, from node u to node v has a weight w,, € W.
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In the literature [8], local structure centrality of node v, denoted as Cpg(v), is defined
as follows.

Crs(v) = Y Q(u)

u€l(v)
(1)
= Z aN(u) + (1 — «) Z Cu
u€l(v) wels(u)

Here, local clustering coefficient [16] of node w quantifies how close its neighbors connect
each other, which is defined as follows.

~ 2{ey i, 5 € Ti(w), e € B}
=T G Cl) ) ?

where Cy(w) is the degree of node, and I',(v) denotes the set of neighbors within h-hops
from node v. N(v) is the amount of the nearest and the next nearest neighbors of node
v, i.e., N(v) = [Ty (v)].

For each neighbor node u of node v, the Q(u) is seen as node u’s contribution to the
final local structure centrality value of node v. We think about its nearest and next
nearest neighbor set T's(u) to calculate Q(u) for each node u. As we mentioned before,
the local structure centrality measure considers both the number of the neighbor and the
topological connections among the neighbors. Specially, For each node w € T'y(u), the
former contribution of node w to Q(u) is simply 1, namely each node in I'y(u) is equally
treated and only counted once in the calculation of Q(u). The latter contribution of node
w to Q(u) is its local clustering coefficient ¢,. We set a parameter « to balance both of
the contributions. The total contribution of node w to Q(u) is a x 1 + (1 — ) * ¢,. By
summing contributions of all the nodes in I'y(u), the @Q(u) can be obtained. Then, by
summing all the Q(u) for each neighbor node « of node v, we can get the local structure
centrality Cg(v) as defined in Formula (1).

Local structure centrality considers not only the number of neighbors of a node, but
also the topological connections among the neighbors. And it can be used to analyze a
large-scale network. Nevertheless, it just can be applied in unweighted network, so in this
paper, it is extended to be applied in weighted network. A new centrality measure called
evidential local structure centrality (ELSC) is given.

Definition 2.1. (ELSC in a Weighted Network) ELSC wvalue of node v is denoted by
elsc(v), which satisfies

elsc(v) = Z Q“ (u)

u€l'1 (v)
(3)
= Z aN“(u) + (1 — ) Z c
u€l'1 (v) wels(u)

where T (v) is the set of neighbors within h-hops from node v. N¥(u) denotes the sum
of the nearest and the next nearest neighbors’ mec of node u. « (0 < a < 1) is balance
parameter. In weighted network, ¢ is the local clustering coefficient of node w [17], and
its definition is as follows.

1 Wi + Wk
w wj w (]
Cu) - Sw(kw . 1) Xk: 2 aw]a]kakw (4)
Js
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where j, k are any two nodes connected to the node w, s, is the sum of weights of all
edges connecting with node w, and k,, means the degree of node w. The weight between
node w and node j is denoted by wy;, and the value of a,; s 1 if node w is linked to node
j, otherwise (. It is clear that the closer connection among nodes is, the higher the local
clustering coefficient is.

2.2. Dempster-Shafer theory of evidence. In Dempster-Shafer evidence theory, prob-
lem domain © = {ay,as, -+ ,a,} is a nonempty set which consists of a finite number of
mutually exclusive and exhaustive hypotheses, called the frame of discernment.

Suppose O is the frame of discernment, a mass function is mapping m: 2° — [0,1], (2°
is the power set of the ©), basic probability assignment (BPA) is defined as follows.

m(®) = 0 and Z m(A) =1 (5)

AC29

where @ is the empty set and A is any element of 29, and mass m(A) represents how
strongly the evidence supports A.

Assuming that masses m; and msy are both basic probability assignments of ©, orthog-
onal sum m(A) is calculated from the two sets of masses m; and my in Dempster’s rule

of combination.

m(A) = = 3 m(Bm() ©

BNC=A
with

BN C=d

where A, B and C are elements of 2°.

3. Influential Node Identifying by Evidential Local Structure Centrality. Ac-
cording to the definition of evidential centrality, it seems that evidential centrality is
defined as a tradeoff between degree and strength of each node to derive node importance
in weighted network. Nevertheless, just like the degree centrality, evidential centrality
only captures the characteristics of single node, rather than the local structure feature of
the network. Here, we extend the local structure centrality in weighted network to iden-
tify the local structure feature of the network. Thus, in this paper, the influence of the
node is identified by a new centrality measure, called evidential local structure centrality.

In ELSC measure, the influences of degree and strength of each node are remarked
by basic probability assignments (BPAs). The BPA obtained from degree of a node is
based on the real degree distribution. Then for these BPAs of each node as to degree and
strength, the influence value of each node is obtained by Dempster-Shafer theory of evi-
dence. Further, both the neighbors information of a node and the topological connections
among neighbors are taken into consideration. The sum of the nearest and next nearest
neighbors influence value of each node is calculated and the topological connection among
neighbors is measured by the local clustering coefficient. Finally, the influence of node
is identified by ranking the value of ELSC. In a word, the ELSC combines the modified
evidential centrality with taking degree distribution into account and the extension of
local structure centrality in weighted network. The algorithm called Identify Influential
Nodes-ELSC for identifying influential node by ELSC is performed as follows.

In the algorithm, there are two evaluation indices which are high or low for the influence
of degree and strength of nodes in weighted network. Hence, in Step 1, a frame of
discernment 6 is denoted as § = (high,low). Then in Step 2, in order to modify the
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Algorithm 1 Identify Influential Nodes-ELSC

Input: Adjacent matrix and adjacent list corresponding to weighted networks.
Output: The ranked list and the corresponding value of ELSC with different balance
parameter o (0 < o < 1).
Step 1. Construct a frame of discernment ©.
Step 2. Ascertain a corrected parameter to modify the BPA of degree.
Step 3. Calculate BPAs of each node with respect to the degree and strength.
Step 4. Achieve the BPA of influence value of the ith node by the Dempster’s rule of
combination.
Step 5. Let m;(#) allocate to m;(h) and m;(l) normally.
Step 6. Calculate the modified evidential centrality mec(i).
Step 7. Ensure mec(i) is a positive number.
Step 8. Calculate the sum of the nearest and the next nearest neighbors’ mec of each
node.
Step 9. Obtain the local clustering coefficient of each node according to the definition
of evidential local structure centrality.
Step 10. Calculate the values of ELSC for each node.
Step 11. Rank the values of ELSC for each node in descending order.

BPA of degree, the real degree distribution is considered as a parameter. Assume node
i with degree k; follows a degree distribution P(k;). Thus, the parameter is defined as
Ai =) i, P(4), where jis a set of degree of nodes which is lower than &;. Next, in Step
3, BPAs of high or low influence for the degree of ith node are represented for mq(h)
or my(l) (i = 1,2,...,N), separately; Likewise, BPAs of high or low influence for the
strength of ith node are represented for m;,(h) or m,(I) (i = 1,2,..., N), respectively.
They are expressed as follows.

ki — k|
maa(h) = M ©)
ki —k
maal) = (1~ 2 = )
My (h) o 5wm| (10)
mas(t) = = (1)
where o and § are given as
o=ky+p— (km—p)=ky —kn+2u (12)
d=wy+e— (wWn—¢)=wy —wn + 2 (13)

where 0 < < 1, 0 < £ < 1, paper [14] demonstrated that the values of y and & have no
impact on the ranking orders of nodes in weighted network. kj,; and k,, are the maximum
and minimum values of degree, and w;; and w,, correspond to the maximum and minimum
values of weight, respectively. According to the above statement, the BPAs of degree and
strength of ith node are obtained, respectively, as

Mqy(i) = (mia(h), mia(l), mia(0)) (14)
M, (1) = (miw(h), miw(l), miu(0)) (15)
where

mig(0) =1 = (mia(h) + mia(1)) (16)
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Mies (0) = 1 = (mies (h) + i (1)) (17)
For the above BPAs of the ith node as to degree and strength, the BPA of influence value
of ith node is achieved by the Dempster’s rule of combination in Step 4, and is listed by

M(i) = (mq(h), mi(l), mi(0)) (18)

where 6 = (high,low). In Equation (18), m;(#) means the probability of high or low of
the ith node. In Step 5, letting m;(6) allocate to m;(h) and m;(l), then the probabilities
of high or low influence of the ith node are given by

Mi(h) = ma(h) + ﬁ (19)
Mi(1) = ma(l) + th(g) (20)

Apparently, the higher the value of M;(h) is, the more influential the node is. On the
contrary, the lower the value of M;(l) is, the more influential the node is. So the modified
evidential centrality mec(i) of the ith node is defined as

mec(i) = M;(h) — M;(1) = m;(h) — m;(l) (21)

In Equation (21), the value of mec(i) is a positive or negative number. Thus, in Step
7, to ensure mec(i) is a positive number, the numerical treatment and normalization are
denoted as below.

|min(mec)| + mec(i)
N 22
> {|min(mec)| + mec(i)} (22)

=1

mec(i) =

where |min(mec)| is the absolute minimum value of mec. In Step 10, for the results from
the Step 8 and Step 9, the value of ELSC for each node is achieved according to the
definition of ELSC. In the end, the value of ELSC for each node is ranked in descending
order. To sum up, the higher the value of ELSC is, the more influential the node is.

4. Experimental Analysis. SIR model [18] is a widely used tool to examine the spread-
ing influence of nodes in weighted networks, and there are three states, namely Suscep-
tible(S), Infected(I) and Recovered(R). At the initial time, only one node is in infected
state. At each step, each node in the infected state randomly selects their susceptible
neighbors with probability P and enters the recovered state with probability equal to 1.
The spreading process terminates when there is no node which is infected. In weighted
networks, node j is infected by node ¢ with probability

B

w..

P=—"— >0
(wM—i—1> ’ B

[19], where w;; is the weight of edge F;; and wy is maximum of weights. Notice that
this model is slightly different from the standard STR model where all the neighbors of an
infected node have the chance to be infected. The present mechanism is usually used to
mimic the limited spreading capability of individuals [20,21]. The spreading capacity of
node v is defined as the number of nodes that are finally infected at the end of spreading
process which originates from node v. Except for the standard SIR model, the standard
SI model [20] is applied to examine the spreading influence of top-ranked nodes, and it
has two compartments, namely Susceptible(S) and Infected(I). The spreading process
stops when all nodes in the network become infected. At time ¢, the number of infected
node is denoted by F(t), and it is treated as an indicator to estimate the influence of
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initially infected node. At the steady state, the number of infected nodes is equal to the
total number of nodes in network. In our case, we set ¢ = 5 for further investigation,
because the spreading in early stage is more important in fact. The results are obtained
by averaging over 100 independent realizations.

To validate consistence of the ranked list generated by a centrality measure and one
by SIR, we use Kendall’s tau coefficient (7) [22]. It considers a set of joint observations
from two random variables X and Y (in this paper, X is the values of a certain centrality
measure and Y can be the simulation results for all nodes). Any pair of observations
(z;,y;) and (z;,y;) are said to be concordant if the ranks for both elements agree: if both
x; > x; and y; > y; or if both x; < z; and y; < y;. They are said to be discordant if
x; > xj and y; < y; or if x; < x; and y; > y;. If ; = x; or y; = y;, the pair is neither
concordant nor discordant. The Kendall’s tau coefficient 7 is given a definition as

Ne — Ng
~0.5n(n— 1)’
where n. and ny mean the number of concordant and discordant pairs respectively. The
higher the value of 7 is, the more accurate the ranked list generated by a centrality
measure is.

T T<1

4.1. Experimental data. In this paper, three real weighted networks are applied. (i)
Zachary’s Karate Club Network [23], the undirected and weighted network consists of 34
nodes. The data is collected from the members of a university karate club by Wayne
Zachary. A node represents the member of the Club, every link means they have a
friendship outside the Club activities, and the weight of edge signifies how closely the
members associate each other. (ii) Les Miserable Network [24], the network is a weighted
network with 77 characters, and a character is denoted by a node, each edge represents the
two characters appearing in the same chapter of book, and the weight indicates how often
such a co-appearance occurred. (iii) Netscience network, the network of co-authorships
between scientists who are themselves publishing on topic of network. There are in total
1589 scientists in this collaboration network [25]. Here, we consider the largest component
with 379 scientists. In Table 1, the basic topological properties of these three networks
are shown. n and m are the total number of nodes and links respectively. < k£ > and
kmax denote the average and maximum degree. < w > and wnax denote the average and
maximum weight. C'is the clustering coefficient.

TABLE 1. The basic topological features of the three real networks

Network n m <k> kpx <W> Whax C

Zachary 34 78 4.5882 17 29615 7  0.5817
Les miserable 77 254 6.5974 36 3.2283 31 0.6057
Netscience 379 914 4.8232 34 0.5356 4.75 0.7610

4.2. Experimental results. In Club network, firstly, by setting the balance parameter
a of ELSC to be 0.8, the 7 value by ELSC is compared with the ones by ESC and EVC
under different 5 (1 < f < 2) values corresponding to different spreading probabilities
and the results are shown in Figure 1. As seen in Figure 1, ELSC can achieve better
performance on a wide range of 5 value. The Kendall’s tau coefficient 7 can only estimate
the consistency of the ranked list generated by a certain centrality measure and the
ranked list generated by SIR model, while the real spreading ability of top-ranked nodes
is incapable of being evaluated. Thus, Figure 2 shows the average number of infected
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0.5 T
—e— ELSC
—a— ESC
0.4F —a— EVC ||

17 (Kendall’s tau coefficient)

FiGUrRE 1. The Kendall’'s tau 7 values corresponding to three centrality
measures in Club network
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FIGURE 2. The average number of F(¢) (¢t = 5) of top-L nodes as ranked
by the three centrality measures

nodes (i.e., F'(t)(t = 5)) by the top-L nodes as ranked by three centrality measures. Here,
B = 1.1. Obviously, the curve for our proposed centrality measure is downward sloping
more gently than ESC and EVC, namely the average spreading ability of top-L. nodes
obtained by our ELSC decreases more steady with the increasing of L.

Meanwhile, the top-5 nodes ranked by the proposed method, ESC and EVC are listed
in Table 2. Apparently, the spreading abilities between node 1 and node 34 as well as
between node 3 and node 33 need to be distinguished to validate the efficiency of the
proposed method. In Figure 3(b), the spreading speed and stability of node 3 and node
33 are almost the same. Here, 5 = 1.8. Besides, in Figure 3(a) there is subtle difference
between node 1 and node 34 in the aspect of spreading ability, and in early stage, the
number of nodes infected by regarding node 34 as the initial node is a little higher than
the number of nodes infected by regarding node 1 as the initial node. Therefore, the
proposed method can well identify the influential nodes in the Club network.



IDENTIFYING INFLUENTIAL NODES IN WEIGHTED NETWORK 1773

TABLE 2. The top-5 ranked nodes by ELSC with a = 0.8, ESC and EVC

L ELSC ESC EVC

1 34 1 34
2 1 34 1
3 33 3 33
4 3 33 3
5 2 9 2

35 35 . ——
[P eeeeetEmmmEE

g 30 g 30 —na3ll
= 5 ——N3
£ 25 £ 25
& 2
£ <
5 20f & 20t
S b
o o
€ 15+ € 15t
> >
o o
(<5} [}
£ 10 = 10t
A A
T 5 T 5¢

0 : : ‘ : ‘ : 0 : : ‘ : ‘ :

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

t t

(a) Spreading ability between node 1 and node 34 (b) Spreading ability between node 33 and node 3

FIGURE 3. The number of infected nodes by initially infected nodes in the
top-5 list

In Les miserable network, balance parameter « is equal to 0.5 and parameter [ in
spreading ability P ranges from 0 to 1. From Figure 4, we survey that the Kendall’s
tau calculated by ELSC is higher than the ones calculated by ESC and EVC on a large
scale. That is to say, the ranked list generated by ELSC is much closer to the ranked list
generated by the real spreading process.

Moreover, we compare the spreading ability of the nodes that either appear in the top-
10 list by ELSC or other two centrality measures including ESC and EVC (not appearing
in both lists). Note that without considering the effects of common nodes in both rank-
ing lists, the differences of these methods can be well distinguished. The top-10 nodes
generated by these three centrality measures are displayed in Table 3. Figure 5(a) and
Figure 5(b) show the simulations on the cumulative infected nodes, namely F'(t), as a
function of time for Les miserable network. The number of cumulative infected nodes
increases with time and ultimately reaches the steady value. As shown in Figure 5(a),
the average number of infected nodes by the proposed method in each step is a bit larger
than that by ESC, that is, the result for our proposed method is slightly better than the
result for ESC, and the new method is almost similar to the EVC in Figure 5(b). Hence,
the proposed method has the better performance than other centrality measures in the
Les miserable network.

Furthermore, when considering the Netscience network, we set the balance element «
to be 0.4. The results for the comparison of the Kendall’s tau value with respect to ELSC,
ESC and EVC are shown in Figure 6. The value of parameter 3 ranges from 0 to 1. It is



1774 J. REN, C. WANG, H. HE AND J. DONG

0 0.2 0.4 0.6 0.8 1
p

FIiGURE 4. The Kendall’'s tau 7 values corresponding to three centrality
measures in Les miserable network

TABLE 3. The top-10 ranked nodes by ELSC with o = 0.5, ESC and EVC

L ELSC ESC EVC
1 12 12 12
2 49 49 56
3 28 26 99
4 26 29 49
5 26 26 63
6 29 28 26
7 24 65 65
8 27 63 28
9 65 64 27
10 71 66 60
80 80
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(a) Comparison by ELSC or ESC (b) Comparison by ELSC or EVC

FIGURE 5. The number of infected nodes by initially infected nodes in the
top-10 list under 5 = 0.5
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FiGURE 6. The Kendall’s tau 7 values corresponding to three centrality
measures in Netscience network

TABLE 4. The top-10 ranked nodes by ELSC with a = 0.4, ESC and EVC

L ELSC ESC EVC
1 4 5 4
2 5 4 26
3 16 16 5
4 26 15 51
5 15 45 95
6 45 46 67
7 70 47 16
8§ 231 176 52
9 67 177 169
10 51 1 70

clear that the curve for ELSC is located between the curves for ESC and EVC, in other
words, ELSC can achieve better performance than ESC, but EVC performs slightly better
than ELSC.

Table 4 shows the top-10 nodes generated by ELSC, ESC and EVC, respectively. We
compare the spreading ability of different nodes in the top-L (top 5 and top 10) by the
proposed method or each of the two centrality measures, and the results are shown in
Figure 7 and Figure 8. From the error bar of Figure 7 and Figure 8, it is observed that no
matter whether the value of L is 5 or 10, both reveal that the proposed method performs
a quicker spreading than ESC, but spreading speed of the top-L nodes ranked by EVC is
a little faster than that by the proposed method. Thus, to some extent, our method is
effective as well for identifying the influential nodes in Netscience network.

5. Conclusions. In this paper, we propose a new approach to identify influential nodes
in weighted network called evidential local structure centrality which is based on the
Dempster-Shafer theory of evidence. The proposed centrality measure considers not only
the degree and strength of a node, but also the topological connections among the neigh-
bors in weighted network. Firstly, the value of modified evidential centrality is calculated
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FIGURE 8. The number of infected nodes by initially infected nodes in the
top-10 list under 5 = 0.4

by taking actual degree distribution. Secondly, local structure centrality combined with
modified evidential centrality is extended to be applied in weighted networks. In order to
verify the performance of ELSC, we make the experiments on three real networks. From
the experimental results, we observe that ranked list of spreading ability of nodes by ELSC
is more accurate than that by other centrality measures such as ESC, EVC. Moreover, we
adopt the susceptible-infected (SI) model to simulate the epidemic spreading process of
the top-L nodes, and it shows that ELSC is effective under the SI model. Experimental
results on three real networks show that our approach can well identify influential nodes
in weighted networks.
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