International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 5, October 2015 pp. 1779-1793

EFFICIENT MINING OF HIGH UTILITY SOFTWARE BEHAVIOR
PATTERNS FROM SOFTWARE EXECUTING TRACES

Haitao HEY?, TENGTENG YINV2* JUN DONGY2, PENG ZHANG!?
AND JIADONG REN!?

LCollege of Information Science and Engineering
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
Yanshan University
No. 438, West Hebei Ave., Qinhuangdao 066004, P. R. China
{ haitao; jdren }@ysu.edu.cn; *Corresponding author: yin_teng_teng@sina.com

Received April 2015; revised August 2015

ABSTRACT. In order to improve the understanding of the program, software behavior
mining is very meaningful work. Finding desirable patterns can help the program main-
tainers comprehend the software adequately. These high utility software behavior patterns
are some invocation patterns which shed light on program behaviors and capture unique
characteristic of software traces. In this paper, a movel approach to mine high utility
path patterns (HUPPMiner) from software executing traces is proposed. In HUPPMiner
algorithm, a trace can contain repeated occurrences of interesting patterns due to loops.
The loop times for a pattern are not much different in a software sequential pattern.
Therefore, a continuous repetitive patterns eliminating algorithm is given firstly. Sec-
ondly, a novel structure called PL-Index-List storing both the location index and utility
information of a pattern, and a HUPP-PL Tree storing the promising utility path pat-
terns are put forward. Thirdly, an upper bound model and a new pruning strategy can
be applied to prune the unpromising patterns early. Finally, the experimental results on
synthetic datasets and real datasets show the proposed approach outperforms the tradi-
tional approaches in pruning effect and execution efficiency.

Keywords: Software execution sequence, High utility path pattern, Software behavior,
Repetitive patterns eliminating

1. Introduction. Improving software quality is an important goal of software engineer-
ing because software plays a critical role in businesses, governments and societies. Software
behavior learning is one of the most important tasks in all stages of software development
lifecycle [1]. These software behavior patterns can be used to detect the exception for a
new software execution trace. For example, the functions of the mined software behavior
patterns follow a specific order. If we find the functions in a new execution trace do not
follow the order, it is possible that there exists an exception somewhere. As a result, how
to mine desirable patterns from the large amounts of software traces is a very meaningful
work.

From data mining viewpoint, each software executing trace can be considered as a se-
quence. Traditional frequent pattern mining algorithms consider only binary frequency
values of items in transactions. Other information about items is not considered. To han-
dle this, Yun and Leggett [2] proposed weighted sequential pattern mining. In addition,
they designed an average weight function to evaluate the weight value of a pattern in a
sequence. Nevertheless, a large number of candidate subsequences were still generated due
to the upper-bounds of overestimating weighted values for the candidates. The TUA algo-
rithm proposed in [3] is an efficient projection-based algorithm with an improved strategy

1779

1780 H. HE, T. YIN, J. DONG, P. ZHANG AND J. REN

for weighted sequential pattern mining. It can prune more unpromising subsequences
thanks to a tighter upper-bound in the mining process. As the weighted sequential pat-
tern mining does not hold the property that the weight of the same item can be different
in different sequences, the high utility pattern mining [4] model was proposed. However,
since the downward-closure property in frequency-based mining cannot be directly used
in utility mining, designing a proper upper bound that satisfies the downward-closure
property is crucial to utility mining. Lan et al. [5] proposed a maximum utility measure.
In addition, an efficient projection-based algorithm (PHUS) was also proposed by them.
However, algorithm PHUS also suffers from producing and using projected databases. Yin
et al. [6] presented a similar maximum utility concept to mine sequential patterns with
high-utility. Moreover, they also proposed a tree-based mining approach named USpan.
However, the USpan approach has to spend a great deal of execution time to traverse the
LQS-Tree. Thus, how to reduce upper-bounds of utilities for subsequences in mining is
quite important.

Software failure prediction is an important application of software behavior learning.
Some sequential pattern mining algorithms also have been applied to software behavior
mining. Feng and Chen [7] presented a multi-label software behavior learning algorithm
named ML-KNN, which automatically classified a failure into one or more fault labels.
Because a failing execution may be caused by several faults simultaneously, their ap-
proach can improve the effectiveness of software behavior learning significantly. Xia et al.
[8] proposed a composite algorithm named MLL-GA which combined various multi-label
learning algorithms by leveraging genetic algorithm. Their experiment results showed
that MLL-GA had better efficiency than ML-KNN. Lo et al. [9] developed an algorithm
called Closed Iterative Pattern MinER (CLIPER) that captured repetitive occurrences of
the patterns within each trace and across multiple traces. Based on algorithm CLIPER,
a method to classify software behaviors was put forward in [10]. They mined a set of
discriminative features to detect failure. Li et al. [11] presented an approach of using
the pattern position distribution as features to detect software failure. In their approach,
the distribution of all patterns was used as features to train a classifier. Du et al. [12]
put forward an approach that detected software failure by mining discriminative patterns
from software behavior sequences. By selecting frequent closed unique iterative patterns
as candidate pattern sets, they mined the discriminative binary and numerical patterns
for sequence classification. A rule captures a constraint between its precondition and
postcondition. The rules mined from software traces can reflect some interesting program
behavior. Khoo [13] presented an algorithm to mine non-redundant significant recurrent
rules from a set of program execution traces. Their algorithm also had good performance
even at low support thresholds. To technically deepen research on iterative pattern min-
ing, Lo et al. [14] introduced mining iterative generators. They referred to these rules
as representative rules which could improve program understanding. To find common
temporal rules, Lo et al. [15] developed an algorithm to mine rules of arbitrary lengths on
traces which could be used to detect bugs. Acharya et al. [16] presented a framework to
automatically extract frequent API patterns among user-specified APIs, directly from the
source code from the perspective of static traces. These ordering rules existing between
APIs govern the secure and robust operation of the system. Czibula et al. [17] proposed a
method based on relational association rule mining for detecting faulty entities in existing
software systems.

Considering that the items in software executing sequences are ordered and consecutive,
the general sequential pattern mining algorithms are not applicable. The path sequential
pattern has a property that the items appearing in the pattern must be adjacent with
respect to the underlying ordering as defined in the pattern. Zhou et al. [18] proposed

HUPPMINER: HIGH UTILITY SOFTWARE BEHAVIOR PATTERNS MINING 1781

a Two-Phase utility mining method to discover high utility path traversal patterns from
weblog databases. Because their upper bound is loose, the number of candidates is large.
Ahmed et al. [19] provided a very efficient algorithm for utility-based web path traversal
mining by using a pattern growth sequential mining approach. However, longer patterns
with less item utility may result in higher values. For this reason, Thilagu and Nadarajan
[20] proposed an efficient algorithm to discover effective web traversal patterns based on
average utility model. To reveal better results and resolve the problem occurring due to
pattern length, the algorithm mined high average utility patterns rather than patterns
with actual utility. Despite all this, the algorithm cannot deal with the sequences with
both forward and backward references. Ahmed et al. [21] proposed a framework to mine
high utility web access by two new tree structures. The algorithm avoids the level-wise
candidate generation and test methodology.

Most of the existing high utility pattern mining and path traversal pattern mining
algorithms do not consider that one item can appear multiple times in a sequence. As
a consequence, these algorithms are not applicable for software executing sequences. In
summary, our main contributions include the following.

e We extract software execution traces by tracing the executing process of software
dynamically. In order to eliminate the influence of the loops, a continuous repetitive
patterns eliminating algorithm is given basically.

e We propose two new data structures called PL-Index-List and HUPP-PL Tree re-
spectively. By exploiting the two data structures, a new efficient algorithm for mining
high utility path patterns based on pattern growth model is designed. These patterns
shed light on some important software behaviors.

e We demonstrate through a comprehensive set of experiments to evaluate the effi-
ciency and scalability of the proposed algorithm. In order to show the utility of the
algorithm, we also analyzed the experimental results.

The remaining paper is organized as follows. Section 2 gives the definitions. The
proposed mining algorithm HUPPMiner is stated in Section 3. Section 4 gives the ex-
periments to analyze performances of the algorithm. The conclusion and future work are
illustrated in Section 5.

2. Definitions. A software behavior can be viewed as a series of events. An event in
turn corresponds to a unit behavior of interest. This can correspond to the execution of
a statement, function, class, interface, etc. In this paper, we discuss from the function
perspective. When software running, a series of events corresponding to a software be-
havior form an execution trace. Let I be a set of distinct functions. We denote a software
executing trace T' as < Fgqapp, Bo, -+, Eeng >. E; (start < i < end) is an element in T’
represented by a two tuple (Sg, Fname) where Sg is the entrance-exit sign of function,
namely a caller or callee in software. If it is a caller, Sg can be denoted as E, otherwise
be X. Fname is function name from a functions set 1.

Definition 2.1. STP (Software Trace Pattern). For a software trace, STP is defined as
P(< E;,--- ,E; >) where E; and E; are the elements derived from sequence T, satisfying:
E;.Sg=F, E;. Fname = E;.Fname, F;.Sg = X.

In fact, the relationship between different ST Ps is very complex. Because of the exis-
tence of the loops in software execution trace, we mainly focus on the kind of continuous
repetitive patterns.

Repetitive relationship: A software trace pattern Py(< si,89,---,S,; >) is consid-
ered repetitive if another software trace pattern P(< fi, f2, -+, f, >) = P; and P, is the

1782 H. HE, T. YIN, J. DONG, P. ZHANG AND J. REN

adjacent pattern of P;. Then the repetitive relationship of them is denoted as P;*. Here,
P, is Continuous Repetitive Pattern of P, or vice versa.

Software execution trace contains entrance-exit sign which is neither complete nor intu-
itive. For this reason, the software executing sequences can be obtained by preprocessing
the software execution traces. The set of input software executing sequences database
under consideration is denoted by D.

Definition 2.2. Path pattern is a subsequence of software executing sequence. It satisfies
that items appearing in a software executing sequence containing the path pattern must
be adjacent with respect to the underlying order as defined in the path pattern. A path

pattern o =< aq, o, ,ap > is called a sub path pattern of another path pattern [=
< By, Bay -+, B > if there exist integers 1 < 17 < g < i3 < ig-++ < i, < n < m where
oy = By, ag = Biyy e, = i, . We express this relation as o C 5.

From Definition 2.2, we can know that path pattern does not allow gaps between
different items.

Definition 2.3. Join and Erasure. Given two patterns Py(< aq, -+, a, >) and Py(< by,
oo by >), if ap = by and the location index of a, is equal to the location index of by in a
same software executing sequence, joining Py and Py will result in a longer pattern P3(<
Aty Ay bay o by >). Py ois called prefix pattern and Py is suffiz pattern. Considering
a trace T(< Ey, FEy, -+, E, >) and an event E(E € T), the erasure of T to E, denoted by
T — E, is defined as a new sequence Ty, formed from T where the events (FEy, Ey,--- , E)
are removed from T.

Definition 2.4. The utility of function i in a software execution sequence S, denoted as
u(i, S), is the product of iu(i, S) and eu(i), where u(i,S) = iu(i, S) x eu(q).

Remark 2.1. It should be noted that the eu(i) in Definition 2.4 represents the external
utility of function i which is the utility value of © in the utility table of D. It is the specific
value assigned by a user to express the user’s preference. This value reflects the importance
of a function, which is independent of software executing sequences. If the user prefers
function e; to function e;, eu(e;) is greater than eu(e;). The iu(i, S) indicates the internal
utility of function i which is the occurrence count of i in software execution sequence S.

Definition 2.5. The utility of sequence S, denoted as su(S), is the sum of the utilities
of all the items in S and the total utility of D, denoted as tsu =) ¢ ., su(Si), is the
sum of the utilities of all the sequences in D. The minimum utility threshold ¢ is given by
the percentage of the total transaction utility values of the database. The minimum utility
value can be defined as minutil = tsu X .

Definition 2.6. For a path pattern X =< iy, ig, -+ ,i, > (X C S; and |X| represents
the length of X), its utility in a software execution sequence S; denoted as u(X,S;) and
the utility of X denoted as uw(X) are defined respectively as follows.

u(X, ;) = (Z S, s») /IX]. (1)

XCS;ieX
WX) =D 0 ces XS (2)

The most challenging problem for high utility pattern mining is that the patterns utility
does not hold the downward closure property. A pattern is a high utility pattern, but
its super-pattern may be not. To maintain the downward closure property in high utility
path pattern mining, we define a new upper bound for a path pattern.

HUPPMINER: HIGH UTILITY SOFTWARE BEHAVIOR PATTERNS MINING 1783

Definition 2.7. Suppose the maximum utility in software executing sequence S; denoted
as msu(S;) and the occurrence count in S; of a path pattern X denoted as oc(X,S;). The
utility upper-bound puubx of pattern X is represented below.

puubyx = ZSiEDAXgSi msu(S;) X oc(X, S;). (3)

A path pattern is high utility upper-bound path pattern if its upper bound value is
greater than or equal to a predefined minimum utility threshold minutil.

Definition 2.8. High Utility Path Pattern (HUPP). A path pattern X is high utility
pattern if u(X) is no less than a predefined minimum utility threshold minutil; otherwise,
it 1s a low utility pattern.

Lemma 2.1. The utility upper-bound of a pattern maintains the downward closure prop-
erty.

Proof: Supposing y is a super-path pattern of path pattern x, then y cannot exist in
any software executing sequences where x is absent. Therefore, the utility upper-bound
puub,, of x is the maximum upper-bound of utility value of y. Accordingly, if puub, is
less than a predefined minimum utility threshold, then y cannot be a high utility path
pattern. [

Lemma 2.2. For a software executing sequence database D and a predefined minimum
utility threshold called minutil, the set of high utility path patterns HUPPS is a subset
of high utility upper-bound path patterns BHUPPS.

Proof: Let = be a high utility path pattern. According to Equation (2) and Equation
(3), the actual utility u(z) of x must be less than or equal to its utility upper-bound
puub,. Accordingly, if z is a high utility path pattern, then it must be a high utility
upper-bound path pattern. As a result, x is a member of the set BHUPPS. 0

3. High Utility Path Pattern Mining from Software Executing Traces. In this
section we describe the process of our approach in detail. At first, we propose algorithm
CRPE (continuous repetitive patterns eliminating), simplifying the software executing
traces by eliminating the continuous repetitive patterns. Then an algorithm called HUPP-
Miner (high utility path pattern mining) is put forward. The framework of our work can
be seen as Figure 1. Software executing traces will be extracted from the process of soft-
ware dynamic execution firstly. Secondly, due to the loop existing, we need to simplify
these traces to eliminate continuous repetitive patterns. At last, high utility path patterns
will be obtained by mining these simplified software executing sequences.

source code

software
execution
sequences

software
execution
traces

void main(){ extract simplify HUPPMiner high utility

path patterns

éifun();

=

FIGURE 1. The framework of our work

1784 H. HE, T. YIN, J. DONG, P. ZHANG AND J. REN

3.1. Continuous repetitive patterns eliminating. Because of the loops existing in
software executing trace, a trace can contain continuous repeated occurrences of some
interesting patterns. Looping 10 times and looping 100 times for a pattern are not much
different in a software sequential pattern. We only retain one occurrence for continuous
repeated patterns. There is no need to eliminate the discontinuous repeated patterns,
because the number of occurrences represents the importance of the patterns to some
extent. Furthermore, if we eliminate continuous repetitive patterns, the experimental
time can be reduced and the efficiency of the experiment can be improved greatly. The
continuous repetitive patterns eliminating (CRPE) algorithm is described as Algorithm
1.

Algorithm 1: CRPE Algorithm

Input: software executing trace T’
Output: software executing sequence S
1. for (int ¢ = 0; ¢ < T'length; i =i +t) do

2. if (T'(i).Sg=='E’) then

3. for each element y € T — T'(i) do

4. if (y.Sg==X" and T'(i).Fname==y.Fname) then

5. replace (Pi, P(T(i),y)) in S; break; //the S is initialized to T" at first call
6. else t =1, break;

7. call procedure Del-CRP(S, gap) //Eliminate Continuous Repetitive Patterns,
initialize gap to 1

8. call CRPE(S) repetitive until S is stable

9. return S

Procedure: Del-CRP

10. if (gap==1) then //gap represents the interval between repetitive patterns
11. delete other continuous repetitive patterns in S, retain the first one

12. if (gap!=1) then

13. delete other continuous repetitive patterns in S, retain the first one //we omit
the elimination process

14. gap++
15. call procedure Del-CRP(S,gap) recursively until S is stable
16. return S

In lines 1 to 9, we patternize T' to be S iteratively until S becomes stable. There are
two processes mainly in the algorithm, the first is patternization (Line 5) and the second
is elimination (Line 7). Lines 10 to 16 elaborate the process of eliminating continuous
repetitive patterns.

Example 3.1. Consider the following software sequence database D shown in Figure
2(a). In sequence S1, pattern < A, B,C > continuous repeated twice and it needs to be
eliminated one occurrence. Similarly, pattern < A, B,D > in S2 and pattern < C >
in S3 also need to be eliminated. The result of elimination is shown Figure 2(b). As is
shown in Figure 2(c), the external utility table includes sixz items, A, B, C, D, E and F,
and their external utility values are 1, 4, 5, 3, 2 and j respectively. For S1 in Figure
2(b), the internal utility values of A, B, C and F are 2, 2, 2 and 1 orderly. The utility
value of A can then be calculated as 2 x 1(= 2). All the other software executing sequences
can be similarly processed. The utility values of the three sequences are shown as Figure

HUPPMINER: HIGH UTILITY SOFTWARE BEHAVIOR PATTERNS MINING 1785

Sid software executing sequence Sid software executing sequence
S1 | <A,B,C,AB,CABF,.C> S1 <A,B,C/AB,FC>
S2 | <F,C,A,B,D,A,B,D,A F> S2 <F,C,A,B,D,A, F>
S3 | <C,C,C,E A, B,D,E, A> S3 <C,E,A,B,D, E,A>
(a) The sample database (b) The simplified database

item | A|B|C|D|E|F
Utility | 1 |4 |5 3| 2| 4

(c) The external utility table

Sid software executing sequence with utility su | msu
S1 | <A(2), B(8), C(10), A(2), B(8), F(4), C(10)> 44 | 10
S2 | <F(8),C(5),A(2), B(4), D(3),A(2), F(8)> 32 8
S3 | <C(5), E(4),A(2), B(4), D(3), E(4), A(2)> 24 5

(d) The sample sequences with utility

FIGURE 2. Database

2(d). In the third column of Figure 2(d) su shows the utility of each software executing
sequence. The total utility of the database is 100. In the fourth column of Figure 2(d) msu
shows the maximum utility of the sequence corresponding to the sequence serial number,
for example, msu(S1) is 10.

3.2. High utility path pattern mining. In section A, we propose a PL-Index-List
structure to maintain the utility and location information of a pattern. In section B, we
exploit the HUPP-PL Tree to describe the process of generating path patterns. A pruning
strategy by using the PL-Index-List structure is also put forward. The algorithm HUPP
Miner is described particularly in section C.

A. PL-Index-List Structure. To mine high utility path pattern, many previous
algorithms directly perform on an original database. They have to compute the exact
utilities of candidates by scanning the database. In the section, we propose a pattern
index list structure based on location information (PL-Index-List) to maintain the utility
and location information about a pattern. Firstly, the occurrence count of all items is
calculated by the first database scan. If their upper-bound is less than minutil, these
items are no longer considered in the subsequent mining process. Otherwise, construct
the initial PL-Index-Lists for them by the second database scan. Each element in the
PL-Index-List of pattern X contains five fields: sid, eindex, nitem, util and msu.

e sequence serial number containing X

the location index of the last item of pattern X

the adjacent item of the last item of pattern X

the utility of pattern X corresponding to sid

the maximum utility of all the items in the sequence corresponding to sid

Suppose pattern Pz is the combination of pattern P with item x, y is an item, and
Pz.PL and y.PL are the PL-Index-Lists of pattern Pz and y. Algorithm 2 details how
to construct the PL-Index-List for new path pattern Pxy combined by path pattern Px
and y.

For each common software executing sequence S, the algorithm will generate an element
E and append it to the PL-Index-List of Pxy. The sid field and the field msu of E are
the sid and msu of S. The eindex and nitem of E are the eindex and nitem associated
with S in the PL-Index-List of y respectively. The wutil field of F is calculated according
to the formula in line 5. Without scanning the database, the PL-Index-List of 2-length

1786 H. HE, T. YIN, J. DONG, P. ZHANG AND J. REN

Algorithm 2: Join Algorithm

Input: Pz.PL, the PL-Index-List of Px; y.PL, the PL-Index-List of pattern y
Output: Pxy.PL, the PL-Index-List of Pxy

1. Pxy.PL = NULL

2. for each element Fx € Pz.PL do

3. if dFy € y.PL and FEx.sid == Ey.sid then

4 if Fx.nitem ==y and (FEx.eindex + 1) == Ey.eindex then

5. Exy =< Ex.sid, Ey.eindex, Ey.nitem, (Ex.util X | Px|+ Ey.util) /|Pxy|, Ex.msu >
6 append Exy to Pxy.PL

7. return Pxy.PL

pattern Pxy can be constructed by the intersection of the PL-Index-List of Px and that
of y. By comparing the sid, eindex and the nitem of the two PL-Index-Lists, we can
judge whether the two patterns can be joined together.

Example 3.2. The database D is shown as Figure 2(d), the items set = {A, B,C, D, E,
F}. Suppose the ¢ is 0.12, the minutil is 12 and then we no longer take item E into
consideration after the first database scan. During the second database scan, the initial
PL-Indez-Lists are constructed. Figure 3 depicts the PL-Indez-Lists of all the high utility
upper-bound 1-length path patterns and partial 2-length path patterns. For example, con-
sider the PL-Index-List of pattern < A >. In S1, it occurs two times and u(A,S1) = 2,
so elements < 1,1,B,2,10 > and < 1,4, B,2,10 > are in the PL-Indez-List of < A >
(< x1, 22,23, x4, 25 > means < sid, eindex, nitem, util, msu >, and 1 represents S1 for
simplicity.). The rest can be figured out in the same manner. To construct the PL-Indez-
List of pattern < AB >, Algorithm 2 intersects the PL-Index-List of < A > and that
of < B >, which results in < 1,2,C,5,10 >, < 1,5, F,5,10 >, < 2,4,D,3,8 > and
<3,4,D,3,5 >.

<A> <C> <D> <F>
1]1[B]2[10][1]2]c[s 0] [1]3]AT10]10] [2]5]A]3 8] [1]6]C 10
1141B] 2110/ M1]s5[F[8|w]|1]7]¢ [10][10] [3]5][E[3 1]cls]s
diAuL
sl3(Bl2 5| 3L4[P]4 S|TIEIS]S
3[7lg[2]5

<AB> <BD> <CA> <FC>
1]2]cls 10 2[5]A[35]8 1 B[610 [1][7]g]7]10
1]s5[F[5 |10 3[5|E[35]5 2[3[B[35]8 212 |Al65] 8
2l4|D[3|8
3l4|D[3]5

F1GURE 3. The PL-Index-List of patterns

B. The HUPP-PL Tree and Pruning Strategy. The HUPP-PL Tree is used to
store the path patterns and each pattern holds a PL-Index-List structure. The HUPP-PL
Tree is an extension of the prefix tree. Given a set of items I = {fi, fo, -, fn}, the
prefix tree can be constructed in the following way. Firstly, the root of the tree is created.
Secondly, the m(m < n) child nodes of the root representing m high utility upper-bound
1-length patterns are created respectively. Thirdly, for a node which represents pattern

HUPPMINER: HIGH UTILITY SOFTWARE BEHAVIOR PATTERNS MINING 1787

P(< fs---fe > (1 < s < e < n)), supposing the number of its different next items is k&
(only for these items which are included in high utility upper-bound 1-length patterns),
the k child nodes of P representing patterns < fg--- fofer1 >, < fo - fefera >, -+,
< fs -+ fefesr > are created. The third step is done repeatedly until all leaf nodes are
created. An extension strategy is also proposed to ensure the efficiency of the algorithm.

Adjacent Path Pattern Extension Strategy. Considering that extension of soft-
ware path patterns is consecutive, when a path pattern is extended, only node in next
adjacency position of the path pattern needs to be considered. If node in next adjacency
position of the path pattern is not a high utility upper-bound 1-length pattern, extension
process will stop.

This strategy will avoid to produce some unpromising path patterns. To reduce the
search space, we can exploit the msu value in the PL-Index-List of a path pattern. The
sum of all the msu in the PL-Index-List is the upper-bound according to Definition 2.7.
The path pattern can be extended further if the sum is no less than minutil; otherwise,
we can prune the path pattern and its descendants safely according to Lemma 2.1.

Example 3.3. Figure 4 depicts a HUPP-PL Tree representing all path patterns of Figure
2(d). Shaded rectangles represent candidates whose upper bound is no less than minutil.
In Figure 4, patterns < AB > and < AF > are the 1-extensions of < A >, and < ABD >
is the 2-extension of < A >. For pattern < C >, its next items are A and FE, but E has
been removed when constructing the initial PL-Index-Lists for those upper bound 1-length
patterns. According to our Adjacent Path Pattern Fxtension Strateqy, we do not extend
pattern < C' > by E. For pattern < B >, its three 1-extensions are < BC' >, < BF > and
< BD >, and we only extend < BD > because its upper bound is no less than minutil.

C. The HUPPMiner Algorithm. The algorithm HUPPMiner is proposed to mine
high utility path patterns from software executing sequence in this section. In Algorithm
3, firstly the high utility upper-bound 1-length path patterns are generated and are put in
the set BHUPP1. Secondly, the initial PL-Index-Lists (PILs) for them are constructed.

9

T N

A B c D F
<1,1,B,2,10> <1,2,C,8,10> <1,3,A,10,10> <2,5,A,3,8> <1,6,C,4,10>
<1,4,B,2,10> <1,5,F,8,10> <1,7,9,10,10> <3,5,E,3,5> <2,1,C,8,8>
<2,3,B,2,8> <2,4,D,4,8> <2,2,A,5,8> <2,7,0,8,8>
<2,6,F2,8> <3,4,D,4,5> <3,1,E,5,5>
<3,3,B,2,5>

AF AB BC BF BD CE CA DE DA FC
<2,7,9,5,8>/| <1,2,C,5,10>(|<1,3,A.9,10>|<1,6,C,6,10>|| ., 5 A 3 5 g <1,4,B,6,10> <2,6,F,2.5,8>[<1,7,9,7,10>
<15F510> | |ZEEAr <2,3,B,3.5,8> <2,2,A.,6.5,8>
dHch <3,5,E,3.5,5>
<2,4,D,3,8>
<3,4,D,3,5>
ABC ABD ABF BDA BDE CAB FCA
1,3,A,20/3,10 <2 5 A 3,8> | [<1,6,C,14/3,104 | <2,6,F.3,8> <1,5,F,20/3,10> <2,3,8,5,8>
<3,5,E,3,5> <2,4,D,11/3,8>
ABDA ABDE CABF CABD
2,6,F11/4,8> <1,6,C,6,10>] <2,5,A,3.5,8>)

FIGURE 4. HUPP-PL Tree

1788 H. HE, T. YIN, J. DONG, P. ZHANG AND J. REN

Thirdly, a sub-procedure HUPP is devised to mine high utility path patterns efficiently
from D. Lines 4 to 13 present the sub-procedure HUPP which is a recursive process. When
the procedure HUPP is called in algorithm HUPPMiner firstly, the parameter HU PPC'S
is the same as the BHUPP1. For each pattern x in HUPPC'S, if the utility of x is
no less than the minimum utility threshold minutil, then output it. If the upper bound
value puub, of x is no less than minutil, the pattern x can be extended further. Lines 8
to 13 specify the extending process. The procedure HUPP intersects x and y if the item
y is contained by the set of nitems of z.PL-Index-List. Algorithm Join(z,y) in line 11 is
called to construct the PL-Index-List of pattern Pxy as stated in Algorithm 2. Finally,
the set of PL-Index-Lists of all the 1-extensions of pattern z is recursively processed.

Algorithm 3: HUPPMiner Algorithm

Input: software executing sequence database D, a threshold minutil
Output: high utility path patterns

1. BHUPP1+—finding the high utility upper-bound 1-length patterns
2. construct the initial PILs for all the patterns in BHUPP1

3. call procedure HUPP(BHUPP1)

Procedure: HUPP
Input: HUPPCS //the set of high utility path pattern candidates
4. for each pattern x € HUPPCS do

5. if (u(x) > minutil) then

6. output x

7. if (puub, > minutil) then //it can be extended further
8. exUPPS = NULL

9. for each pattern y € BHUPP1 do

10. if (z.PL-Index-List.nitems.contains(y)) then

11. exUPPS = exUPPS + Join(z, y)

12. if (exUPPS != NULL) then

13. HUPP (exUPPS)

4. Experiment. A series of experiments were conducted to compare the performance of
HUPPMiner with the existing utility path traversal pattern mining approaches Proposed
[20] and EUWPTM [19] with different parameter values. As these two algorithms just
consider the situation that the same item in a sequence is not repeated, to compare
our algorithm with the two algorithms, we need process the datasets in advance. These
algorithms were implemented in Java and the experiments were performed on 64 bit
Windows 7 ultimate, Xeon CPU E5-2603 @1.80GHz, 8G Memory.

Experimental datasets. The synthetic datasets were generated by IBM data gener-
ator. To show the practical performance, two real datasets Mushroom and Chess were
also used in the experiments and the dataset can be downloaded from FIMI Repository
[22]. We also choose a real software c¢flow (for static analysis of C language code) to test
the HUPPMiner. We get the experiment data of cflow with the help of pvtrace, Gephi
and Graphviz on Linux. Similar to the previous algorithms, because the datasets do not
provide the utility values of items, we randomly assign utility to each item. The utility
distributions of items in datasets are generated from Gauss distribution (u =5, 0 = 1.5).

HUPPMINER: HIGH UTILITY SOFTWARE BEHAVIOR PATTERNS MINING 1789

4.1. Running time. We varied the minimum utility threshold and tested the perfor-
mance of the HUPPMiner algorithm on real datasets C'hess and Mushroom. The min-
imum utility threshold range of 0.2-1.0% is used here. The dataset Chess has 3196
sequences, 75 items and the average length of sequence is 37. The dataset Mushroom
has 8124 sequences, 119 items and the average length of sequence is 23. As shown in
Figure 5 and Figure 6, we can find that the running time of the algorithms gets decreased
by increasing the minimum utility threshold. The lower minimum utility threshold is, the
larger performance difference between them becomes. For example, in Figure 5, when the
minimum utility threshold varies between 0.2% and 1%, the three curves nearly cross at
minimum utility threshold being 1%. When the minimum utility threshold is less than
1%, HUPPMiner performs the best, Proposed is second and EUWPTM is the last.

This is because EUWPTM and Proposed are Two-Phase utility mining algorithms.
They produce candidate patterns firstly. Next, they have to scan the database again to
find out the actual high utility path traversal patterns from the candidate patterns. As
a result, if the candidate set is large, the efficiency of the two algorithms is not high. On
the other hand, our algorithm exploits a sequential pattern growth mining approach and
only needs two database scans. It can mine high utility path patterns without candidate
generation, which avoids the costly generation and utility computation of candidates.

1000 800
—=— HUPPMiner I —a— HUPPMiner
—e—EUWPTM 700 - —o— EUWPTM

800 - —— Proposed - 4— Proposed
= S 600 |
[c
3 3
\gg/ 600 fw’, 500 |-
[0}) L
-g é 400 |
g 4oor 2
£ £ 300}
3 3
14 x

200 | 200 |

1 L 1 L 1 I 1 I 1 100 L 1 L 1
02 0.4 0.6 08 1.0 0.2 04 0.6 08
minimum utility threshold (%) minimum utility threshold (%)
FIGURE 5. Running time FIGURE 6. Running time
on Chess on Mushroom

From the experimental results given in Figure 7 and Figure 8, it is also observed that the
number of candidate patterns is decreasing gradually by increasing the minimum utility
threshold. We understand that the number of candidate patterns is greatly reduced in
the HUPPMiner algorithm compared to the two existing approaches. The results indicate
the better performance of HUPPMiner. This benefits from superior pruning strategy of
HUPPMiner, which is applicable for extension of software path patterns. HUPPMiner
can prune more unpromising patterns thanks to a tighter upper-bound in the mining
process. If the upper bound of a pattern is lower than minimum utility threshold, it
is unnecessary to be extended. Considering maximum utility on the entire dataset, the
other two algorithms produce a large number of candidates. In HUPPMiner, the upper
bound of the patterns is the maximum utility in every sequence which is tighter than that
in entire dataset.

4.2. Scalability. We studied the scalability of HUPPMiner algorithm on running time
by varying the number of sequences in the dataset and average length of sequences. Figure

1790

H. HE, T. YIN, J. DONG, P. ZHANG AND J. REN

40000
—s— HUPPMiner 20000 - —=—HUPPMiner
35000 o— EUWPTM —eo— EUWPTM
—4— Proposed —a— Proposed
30000 |- ®
8 2 15000 F
S 25000 |- 3
2 5
g)
§ 20000 | S oo |
S o
= 15000 | P
:
£
3 10000 2 5000
5000 |
—_ —_— . - _
O 1 I ke of n L 3 a 0 1 1 T
02 0.4 06 0.8 1.0 02 04 0.6 08
minimum utility threshold (%) minimum utility threshold (%)
FIGURE 7. Number of can- FiGURE 8. Number of can-
didates on Chess didates on Mushroom
500 70
| | —=—HUPPMiner| D=50K, £=0.001 r | —s— HUPPMiner _ _
—e—EUWPTM 60 | —e— EUWPTM D=50K, £=0.01
400 |- | —— Proposed - | —— Proposed
Gé‘ § 50 |-
S 300} S
8 0 40t
[0] L
£ £ 5,0
o 200 | ‘é, |
§ S 2}
3
© 100 - z I
- - . S 10 F
0 1 " 1 " 1 " 1 0 1 " 1 " 1 " 1
8 10 12 14 8 10 12 14

Average Sequence Length Average Sequence Length

FIGURE 9. Running time
with different sequence
lengths according to ¢
0.001

FIGURE 10. Running time
with different sequence
lengths according to ¢
0.01

9 and Figure 10 show the trend of the running time of three algorithms respect to different
average lengths of sequences varying from 8 to 14 based on |D| = 50000 and minimum
utility threshold 0.1% and 1% respectively. The running time of the three algorithms
increase along with the average length of sequences increasing. In all case of different
average lengths of sequences, HUPPMiner outperforms the other two algorithms. Espe-
cially when the average length of sequences is long, the time difference is more obvious.
Figure 11 and Figure 12 show the results by varying the number of sequences from 10000
to 70000 with minimum utility threshold 0.1% and 0.2%. From the results, it is observed
that as the database size increases, HUPPMiner outperforms the two existing algorithms.

The results indicate high accuracy and good scalability of HUPPMiner. This is because
algorithms EUWPTM and Proposed need to calculate projection database iteratively.
This operation is time-consuming for long sequences. The continuity characteristic of
software path patterns is considered in HUPPMiner. Only when the upper bound of
the next adjacency item is no less than the minimum utility threshold, we continue to
extend. Moreover, HUPPMiner only builds PL-Index-Lists for potential high utility path

Number of Sequences (X10°)

FIGURE 11. Running time
with different database sizes
according to ¢ = 0.001

Number of Sequences (X10°)

FIGURE 12. Running time
with different database sizes
according to € = 0.002

TABLE 1. Top 10 high utility and frequent path patterns

high utility path patterns

frequent path patterns

<9,10,11,22,23 >

<9,10,11,12 >

<9,10,11,12,13 > <18,8 >
<9,10,11,25,26 > < 6,17,27 >
<1,2,3,4,7,18 > <1,2,3,4,5>

< 18,6,17 > <1,2,3,4,7,18 >

<1,2,3,18,6,17 > < 18,6,17 >
< 17,27,28 > <7,8>
<1,2,3,18,6 > < 17,27,28 >
<1,2,3,4,5> <1,2,3,18,6 >

<9,10,11,22,23 >

<9,10,11,12 >

HUPPMINER: HIGH UTILITY SOFTWARE BEHAVIOR PATTERNS MINING 1791
1200 800
- | —=—HUPPMiner| ¢=0.001 | | —=—HUPPMiner| ¢=0.002
1000 L | —*—EUWPTM —e—EUWPTM
—— Proposed 600 L —— Proposed
g 800 ’é
8] (8]
8 8
600 400
£ g
()] ()]
£ 400 £
5 S 200}
x (4
200
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
10 20 30 40 50 60 70 10 20 30 40 50 60 70

patterns. If the upper bound of the pattern is lower than minimum utility threshold, it
is unnecessary to build PL-Index-List for the pattern.

4.3. The discussion of results. Table 1 shows the top 10 patterns discovered by the
HUPPMiner and frequency-based algorithm on dataset cflow. The 1-length patterns
are omitted. It is clear that path patterns found by the two algorithms are not always
the same. The high utility path patterns < 9,10,11,12,13 >, < 9,10,11, 25,26 > and
< 1,2,3,18,6,17 > are not frequent. On the other hand, path patterns < 18,8 >, < 6,
17,27 > and < 7,8 > are dropped out by utility mining. The frequent path patterns < 18,
8 >, < 25,26 > and < 7,8 > are referred to < parse_variable_declaration, expression >,
< ident, lookup > and < func_body, expression > respectively. It indicates that the path
pattern < 9,10, 11,25,26 > is high utility but not frequent. The reason is that functions
tdent and lookup have high utility but they are not frequent.

The mined patterns by the two methods are different because that only the occurrence
number of the patterns is considered in frequency-based algorithm. The all items are
treated equally. In that case, frequency-based algorithm will tend to mine short pattern.
In the utility pattern mining, the utility can be defined according to some standards or
features. The results are more desirable. Overall speaking, observed from our experiments,
we realize that high utility path patterns are valuable, which can show the hidden behavior

1792 H. HE, T. YIN, J. DONG, P. ZHANG AND J. REN

patterns of software. These high utility path patterns in turn could be utilized to analyze
the software characteristics.

5. Conclusions and Future Work. In this paper, we extend sequential pattern mining
to consider repeated occurrences of pattern within sequences. In order to eliminate the
loops in software executing traces, a continuous repetitive patterns eliminating algorithm
is given at first. Next, we propose two new data structures called PL-Index-List and
HUPP-PL Tree. The PL-Index-List provides not only utility and location information
about patterns but also the upper bound value for pruning. The HUPP-PL Tree stores
the promising utility path patterns. Then, a novel algorithm HUPPMiner is proposed
to mine high utility path patterns from software executing sequences exploiting the two
data structures. HUPPMiner can mine high utility patterns without candidate generation.
We have demonstrated the performance of HUPPMiner in comparison with some other
algorithms on various databases. Experimental results show that HUPPMiner has better
efficiency, especially in terms of running time. In the future, we plan to apply our proposed
algorithm in some real softwares.

Acknowledgment. This work is supported by the National Natural Science Foundation
of China under Grant No. 61170190, No. 61472341 and the Natural Science Foundation
of Hebei Province P. R. China under Grant No. F2013203324, No. F2014203152 and
No. F2015203326.

REFERENCES

[1] J. F. Bowring, J. M. Rehg and M. J. Harrold, Active learning for automatic classification of software
behavior, ISSTA, pp.195-205, 2004.
[2] U. Yun and J. J. Leggett, WSpan: Weighted sequential pattern mining in large sequence databases,
Proc. of the 3rd International IEEE Conference on Intelligent Systems, pp.512-517, 2006.
[3] G.-C. Lan, T.-P. Hong and H.-Y. Lee, An efficient approach for finding weighted sequential patterns
from sequence databases, Applied Intelligence, vol.41, no.2, pp.439-452, 2014.
[4] C. F. Ahmed, S. K. Tanbeer and B. S. Jeong, A novel approach for mining high utility sequential
patterns in sequence databases, ETRI Journal, vol.32, no.5, pp.676-686, 2010.
[5] G.-C. Lan, T.-P. Hong, V. S. Tseng et al., Applying the maximum utility measure in high utility
sequential pattern mining, Fxpert Systems with Applications, vol.41, no.11, pp.5071-5081, 2014.
[6] J. Yin, Z. Zheng, L. Cao et al., USpan: An efficient algorithm for mining high utility sequential
patterns, KDD, pp.660-668, 2012.
[7] Y. Feng and Z. Chen, Multi-label software behavior learning, International Conference on Software
Engineering, vol.28543, no.1, pp.1305-1308, 2012.
[8] X. Xia, Y. Feng, D. Lo et al., Towards more accurate multi-label software behavior learning, CSMR-
WCRE, IEEE Computer Society, pp-134-143, 2014.
[9] D. Lo, S.-C. Khoo and C. Liu, Efficient mining of iterative patterns for software specification dis-
covery, KDD, pp.460-469, 2007.
[10] D. Lo et al., Classification of software behaviors for failure detection: A discriminative pattern
mining approach, KDD, pp.557-566, 2009.
[11] C. Li, Z. Chen et al., Using pattern position distribution for software failure detection, International
Journal of Computational Intelligence Systems, vol.6, no.2, pp.234-243, 2013.
[12] H. Du, C. Li and H. Wang, Mining multiple discriminative patterns in software behavior analysis,
UCAmI, Lecture Notes in Computer Science, pp.511-518, 2014.
[13] S.-C. Khoo, Mining patterns and rules for software specification discovery, PVLDB, pp.1609-1616,
2008.
[14] D. Lo, J. Li, L. Wong et al., Mining iterative generators and representative rules for software speci-
fication discovery, TKDF, vol.23, no.2, pp.282-296, 2011.
[15] D. Lo, S.-C. Khoo and C. Liu, Mining temporal rules for software maintenance, Journal of Software
Maintenance and Evolution: Research and Practice, pp.227-247, 2008.
[16] M. Acharya et al., Mining API patterns as partial orders from source code: From usage scenarios to
specifications, ESEC/FSE, pp.25-34, 2007.

HUPPMINER: HIGH UTILITY SOFTWARE BEHAVIOR PATTERNS MINING 1793

[17] G. Czibula, Z. Marian and I. G. Czibula, Detecting software design defects using relational association
rule mining, Knowledge and Information Systems, vol.42, no.3, pp.545-577, 2015.

[18] L. Zhou, Y. Liu, J. Wang et al., Utility-based web path traversal pattern mining, International
Conference on Data Mining Workshops, pp.373-380, 2007.

[19] C. F. Ahmed, S. K. Tanbeer, B. Jeong et al., Efficient mining of utility-based web path traversal
patterns, ICACT, pp.2215-2218, 2009.

[20] M. Thilagu and R. Nadarajan, Efficiently mining of effective web traversal patterns with average
utility, ICCCS, vol.1, no.4, pp.444-451, 2012.

[21] C.F. Ahmed, S. K. Tanbeer and B. Jeong, A framework for mining high utility web access sequences,
IETE Technical Review, vol.28, no.1, pp.3-16, 2011.

[22] Frequent Itemset Mining Dataset Repository, http://fimi.ua.ac.be/, 2012.

