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ABSTRACT. In this paper, the multi-child genetic algorithm (MCGA) is first proposed to
enhance the solution searching abilities and increase the computational speed of genetic
algorithms. The advantage of MCGA is verified based on schema theorem in this article.
The MCGA adopts a method for producing multi-child offspring to preserve chromosomes
which are excellent. The method also improves the chance of generating superior chro-
mosomes to assist the solution exploration. The MCGA also uses the operating method
of population evolution. This method solves the problem that in traditional genetic al-
gorithm excellent chromosomes in offspring produced by crossover may be damaged and
unable to survive in the process of mutation. Ezperiments were conducted on typical
problems which include non-linear, uni-modal, multi-modal and pathological functions.
The results showed that the average computational time for MCGA is 1.8 to 5.1 times
faster than the traditional GA and the average number of iteration steps for MCGA is
24% to 45% of the traditional GA, when the population entirely converges toward global
optimal solutions under the given condition. It is proved that MCGA has stronger global
searching capacity and higher convergence rate compared to traditional genetic algorithm.
Keywords: Multi-child genetic algorithm, Biological evolution, Schema theorem, Pop-
ulation evolution

1. Introduction. A genetic algorithm (GA), which is based on natural selection and
evolutionary principle, is a highly parallel, stochastic, self-adaptive and heuristic search
technique used in computing to find true or approximate solutions to optimization and
search problems [1-3]. John Holland, the professor of the University of Michigan, invented
GA and he first promulgated this idea in his book “Adaptation in Natural and Artificial
Systems” in the year 1975 [4-6]. Afterwards, many scholars conducted thorough research
on GA and pushed forward the development of evolutionary algorithms. So far various
kinds of improved genetic algorithms have been proposed, such as hierarchical GA, CHC
algorithms, messy GA, adaptive GA, multi-niche crowding GA, hybrid GA and parallel
GA [7-12]. In these researches, two or multiple parents generate double individuals (chro-
mosomes) [13-15], or one parent creates an individual [16-19]. Namely, the number of
new individuals produced by parents is equal to or less than the number of the parents.
However, in the process of biological evolution, the number of children is normally more
than the number of their parents, which is beneficial to not only the survival of the species
but increasing the probability of generating better individuals for the species. Thus, this
species has a higher ability to adapt to environment.

In GA, looking for the best solution depends on new born chromosomes, which are
generated by crossover and mutation operations to have higher ability (fitness) of finding
better solutions. When the solution searching comes to a standstill, superior (poten-
tial) chromosomes are required in order to break free from the local extremum, explore
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unsearched areas and speed up the solution searching progress. If most of the new born off-
spring, which have low fitness, are eliminated by selection, the solution searching progress
may slow down and even halt at a standstill. It is an important issue for parents to
generate better individuals in offspring as a means of speeding up the solution searching
process. Since an increase in the number of new born chromosomes enhances the proba-
bility of generating better individuals, the quantity of new born chromosomes will affect
GA’s solution exploration ability directly. In order to efficiently drive the population and
improve the rate of convergence toward optimum solution for GA, the multi-child genetic
algorithm (MCGA) is proposed in this paper based on this theory of biological evolution.
The MCGA is including generating multi-child offspring and population evolution, for en-
hancing the solution searching abilities and increasing the computational speed of genetic
algorithms.

The rest of this paper is organized as follows. The concept of MCGA is presented in
Section 2. The MCGA is analyzed based on schema theorem in Section 3. A method of
producing multi-child offspring for MCGA is given in Section 4. The population evolution
of MCGA is described in Section 5. The test functions, experimental settings, test results
and analysis are presented in Section 6. Finally, some conclusions are drawn in Section 7.

2. Concept of MCGA. Multi-child genetic algorithm (MCGA) is a new concept, and
the definition of MCGA is provided in this article as follows.

Definition 2.1. The number of new individuals created by parents is more than their
parents in genetic algorithm, called as multi-child genetic algorithm (MCGA).

In general, the number of new individuals is an integral multiple of the number of their
parents in MCGA. Representing the number of new individuals by N; and the number of
their parents by Ny, we have

le)\'No, )\E{IL’|1‘Z2,IIIEN} (].)

where the ) is the proportional coefficient between the number of new individuals and
their parents.

Since the number of children is more than their parents’, the chance of producing ex-
cellent individuals that have high fitness in offspring increases. In competition, a large
number of individuals that have strong adaptability survive and a large number of individ-
uals that show less adaptability will be eliminated, which is based on Darwin’s principle
“Survival of the fittest” [20]. Compared with the traditional GA, there is the fiercer com-
petition among individuals and the higher efficiency of evolution in MCGA. Thus, the
convergence rate of the MCGA to optimum solutions is faster than the traditional GA.

3. Analysis of MCGA Based on Schema Theorem. In order to illustrate the ad-
vantages of MCGA, it is necessary to analyze the mathematical mechanism of MCGA
based on Schema Theorem, because there are a lot of stochastic operations in MCGA.
Some definitions are given as follows before the analysis.

Definition 3.1. A schema is a template that identifies a subset of strings (chromosomes)
with similarities at certain string positions.

In strings with binary code, a schema is a character string based on a character set
which includes three characters (0,1, %) in which the symbol x represents arbitrary char-
acter (0 or 1). For example, the model {* 1 %} describes a subset with four elements
{010,011,110, 111}.

Definition 3.2. The number of certain positions in schema H is called as schema order,
denoted by O(H). For example, O(01 %1 % %) = 3.
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Definition 3.3. The distance between the first and the last certain position in schema H
is called as defining length, denoted by §(H). For example, §(01 % x1 x x) = 4.

Let us suppose that we have a population of chromosomes (strings) whose total number
is represented by n. The population at time ¢ is represented by A(¢). The number of
chromosomes which include certain schema H in A(t) at time ¢ is represented by m(H, t).
In selection process, each chromosome is selected according to its fitness. Representing
an arbitrary chromosome in A(t) by A;, the probability that the string A; is selected is

pi= 2)

J=1

where f; represents the fitness of A;.
We can thus write the number of strings that include schema H at time (£ + 1) as

m(H,t+1) = m(H, 1) -n - L) (3)
;fj

where f(H) represents the average fitness of strings containing schema H at time t.
The average fitness of the population can be written as

i i
f=". (4)

n

Hence, Equation (3) can be represented as
H
m(H,t+ 1) = m(H, 1) - % (5)
Assuming that beginning with ¢ = 0 the fitness of chromosome containing schema H
is invariably higher than the average fitness of the population, putting f(H) — f = cf,
where ¢ is a constant, the equation of schema growth can be written as

. (f+_cf)
f

From (6), it is shown that in the operation of selection schema of which fitness is higher
than the average fitness of population shows up as exponential growth. As with tradi-
tional GAs, obviously MCGA does not produce new schemata but increase the number of
existing schemata with high fitness. Therefore, we need to take crossover (recombination)
operation.

In order to illustrate the effect of crossover on schema in MCGA, we first take the
traditional GA with single point crossover for example. Let us suppose that we have a
specified string C' whose length is seven. And two representative schemata H; and Hy are
contained in string C', as follows.

m(H,t+1) = m(H,t) =(1+¢)-m(H,t)=(1+c)"-m(H,0). (6)

C=1000111
H = %0 % % x %1 (7)
Hy =% % %01 % %

Assuming that string C' is selected to participate in crossover operation and a crossover
point is selected randomly, if the crossover point is between the third and fourth position
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of this string, we analyze the effect of crossover on schemata H; and H,. Representing
cross-site by ‘|’, (7) can be written as

C=100]/0111
Hy =50 % | % x 1 (8)
Hy =% %|01 % x

Obviously, schema H; will be destroyed, if the certain position of schema H; in the
object that is crossed over with string C' is different with string C'. However, with the
same cross-site, schema H, will be kept in a string in offspring. Thus, the schema H,
is more difficult to survive than H,. Because the cross-site is randomly selected, the
probabilities that each cross-site is randomly selected are equal. Since §(H;) = 5 and
§(Hz) = 1 according to Definition 3.2, the probabilities that schemata H; and H, are
destroyed are respectively 5/6 and 1/6. In general, the probability that schema H is
destroyed in traditional GA can be written as

Pd(traditionalGA) = %7 (9)
where 0(H) <1 —1.

From (1), in MCGA, the number of children is A times than their parents’. Thus, a
pair of parents needs to produce children whose number is 2A. In order to create 2\
individuals, the both parents must be crossed at stochastic cross-sites A times. If we
suppose that one of the both parent’s chromosomes contains schema H, the chance that
schema H is destroyed in MCGA can be represented as

A
PamccA) = <(;(_—H1)> ) (10)

where 0(H) <1 —1.
It is worth remarking from (10) that with the increase of the value of A, the probability
that schema H is destroyed is constantly reduced. From (9) and (10), we evidently have

A
iy )
-1 -1
where A € {z|x > 2,z € N}.
Namely,
PamccA) < Pd(traditionalGA) - (12)
Because crossover is stochastic process, representing the crossover probability by p., we
can write the lower boundary of survival probability of schema H in MCGA as

S(H)\
prs(mcaay =1 —pe - <l(——1)> : (13)
Considering the effect of the selection and crossover on schema in MCGA, because

selection and crossover are not related, the lower boundary of the number of schema H
in offspring can be obtained as

A
mL(MCGA)(H,t+1) :m(H,t)@ ll—pc (%) ] . (14)
From (11) and (14), we evidently have

m(H,w-@-ll—pc(%)A]>m<H,t>-@-[1—pc-@}, (15)
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where A € {z]|x > 2,2 € N}, 6(H) <[ - 1.

Obviously, in (15), m(H,t) - @ . [1 — Pe- %] is the lower boundary of the number

of schema H in traditional GA at time (¢ + 1).

PUttlng m(Ha t) : @ ' |:]- —Pc- @] = ML (traditional GA) (Ha 1+ 1)7 we have

mrvcaay(H, t + 1) > mpgraditionaic.a)(H, t + 1). (16)

From (11) and (12), supposing that the schema H just has excellent chromosomes, the
chance that the schema H is destroyed in MCGA is significantly less than in the traditional
GA. Hence, the MCGA can efficiently preserve chromosomes which are excellent currently.

It is shown from (16) that, when we suppose that the schema H is a superior (potential)
schema whose fitness is higher than the average fitness of population, the number of
schema H in MCGA is significantly more than in traditional GA at time (¢ 4 1), if the
numbers of schema H in MCGA and traditional GA are all m(H,t) at time ¢. As a
result, compared with the traditional GA, MCGA has the higher efficiency of population
evolution and the faster rate of convergence toward optimum solution. To verify the above
conclusions, this study presents a method for producing multi-child offspring of MCGA.

4. The Method of Producing Multi-Child in MCGA.. Let us suppose that we have
Parent, and Parent, that represent respectively two different parent chromosomes which
are selected from a population according to their fitness to take part in the crossover.
The coding lengths of Parent; and Parent, are [, and then the number of crossover
point selected randomly is n (n <1 — 1), so the chromosomes Parent; and Parents are
divided into n+1 segments, namely Parent; = AjAs Az -+ Ag -+ Ap_1AnAnyq, Parenty =
BB3;Bs---By---B,, 1B,B, 1. The method of producing multi-child is as follows.

The two segments on both sides of each crossover point of parent chromosomes are
regarded as substrings.

(1) AgAz--- Ay -+ A, 1ARA, 1 and BoB3 - -+ By - - - B, 1B, B, 41 are two substrings af-
ter first crossover point of two parent chromosomes. They are exchanged to produce two
individuals C'hild, and Childs, so we have obviously

Chlldl = AlBng e Bk e Bn—anBn+1 and Chlldg = BlA2A3 e Ak e An—lAnAn—i—l-

(2) Double substrings Ag--- Ay -+ A, 1A Api1and By -+ By - - - B,_1 B, B, 11 after sec-
ond crossover point of these two parent chromosomes are exchanged to produce two indi-
viduals Childs and C'hildy, so we have

Ohlldg = A1A283 st Bk st ananBTH»l and Chlld4 = BIBQAg st Ak te AnflAnAnA»l-

(3) In the same way, we finally have Childy, | = AjAsAz--- Ay -+ A, 1A, Bn1 and
Childy,—y = B1B3Bs---By---Bn,_1B,A,11. As a result, we can obtain the offspring
made up of many children which are produced by crossing over the parents. The general
equation of arbitrary pair of individuals in the offspring can be written as

C’hildgk_l = A1A2A3 e AkBk+1 e Bn—anBn+1
Chlldgk == BlBng e BkAk+1 e An—lAnAn—I—l 5 (]_7)
n<l-1

where [ is the coding length of parent chromosomes.

From (17), it is shown that the number of new individuals is 2n which is n times
the number of parents, namely the proportional coefficient between the number of new
individuals and their parents is equal to the number of crossover points selected randomly
(namely A = n). The method of producing multi-child offspring in MCGA is shown in
Figure 1.
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FIGURE 1. The method of producing multi-child offspring in MCGA

In Figure 1, C'hild; is the ¢-th individual in the offspring formed by crossing over
the parents. It is demonstrated in Figure 1 that crossing over a pair of parents can
create 2n new individuals (multi-child offspring) in MCGA. The number of producing
new individuals in MCGA is n times more than in traditional GA.

In MCGA, for example, the number of crossover points randomly selected is n = 2
(namely A = 2), and two different parent chromosomes which are selected according to
their fitness are respectively Parent; and Parent,. These two parent chromosomes are
encoded by bit strings as Parent; = 100001000111000 and Parent, = 111110110011011.
Supposing that two crossover points Point; and Point, which are randomly selected are
located respectively in between the sixth and seventh bit binary code and between the
twelfth and thirteenth bit binary code, we then have

Point, Point,

Parent;=100001 1 000111 ! 000,
Parent>=111110 ; 110011 ;011 .

Four new individuals created by crossing over Parent; and Parent, in the way shown
in Figure 1 are
Point; Point
Child=100001 : :
Child»=111110} 000111 ! 000}
Childs=100001 000111 1 011
Childy=111110, 110011

Thus, the number of producing new individuals will greatly go up in MCGA, which
increases the possibility of producing more of the best individuals. Therefore, MCGA
has faster convergence speed and greater capability to find better solutions compared
with traditional GA. It should be noted that, vast increase in the number of producing
new individuals could lead to increasing computational complexity of algorithm program,
which has an effect on computational speed of MCGA instead. As a result, it is extremely
important to take an advisable value of the proportional coefficient A. How to select
the proportional coefficient A needs to be further studied and explored. The smallest
proportional coefficient A = 2 will be taken in this paper, in order to verify the superiority
of MCGA by comparing with the traditional GA.
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5. The Population Evolution of MCGA. The main basis of the population evolution
of MCGA is as follows.

(1) The population size is constant, which can be explained from the view of Biology
that the number of living individuals must not be beyond some constant size because of
the limit of population capacity.

(2) The population should maintain an appropriate degree of diversity.

(3) An excellent individual with high fitness value has a great chance of being selected to
generate children and a weak member with low fitness may be eliminated in the selection
under the limit of population capacity.

According to the above three points, the operating method of population evolution
of MCGA is presented as follows. Firstly, create the initial population with a size of
ng randomly and set the crossover probability p, = 100%. Secondly, take the initial
population as parent population and calculate the fitness of each individual so as to
preserve a few elite individuals with the highest fitness (we suppose that the number of
elites is m). Then cross over the rest of parents to form new multi-child offspring, in

 eeae 3
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FIGURE 2. Basic flowchart of the population evolution of MCGA
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which the number of individuals is n; (n; > ng). Thirdly, reselect m elite individuals
from both the new offspring and elite parents. Fourthly, with a mutation probability,
mutate new offspring at each locus (position in chromosome). Fifthly, pick (ny — m)
excellent individuals from the new offspring according to their fitness. Then put the
excellent individuals and elite individuals together to form a new population. Sixthly, if
the end condition is satisfied, stop, and return the best solution in current population.
The flowchart for the population evolution of MCGA is shown in Figure 2.

In the above population evolution of MCGA, the number of new individuals created by
crossing over parents increases obviously because of taking the crossover probability p. =
100%, which increases the possibility of producing better excellent individuals with higher
fitness. Although schemata with high fitness values could be damaged in the crossover
operation, the excellent chromosomes in the parents are copied into the new population
due to the preservation of elite individuals. Thus, taking the crossover probability of
100% can improve the computational speed of GA. In addition, this population evolution
of MCGA solves the problem that in traditional genetic algorithm excellent individuals
in the offspring made by crossover may be damaged and unable to survive in the process
of mutation. Meanwhile, there are (ng — m) excellent individuals in the new population
after mutation, which help to maintain diversity in the population.

6. Testing and Analyzing of MCGA.

6.1. The selection of the test functions and parameters. Four commonly used
complicated test functions are selected to compare the performance of MCGA proposed
in this article with the traditional GA. These typical test functions which have multiple
local extreme points include varieties of mathematical characteristics such as continuous,
non-linear, uni-modal, multi-modal, and pathological.

Test function 1:

min fi(z,y) = 100(y — 2%)* + (x — 1)*, 10 <=,y < 10. (18)

This function, which is called Rosenbrock function or Rosenbrock’s valley, is non-convex
function used as a performance test problem for optimization algorithms [21]. The global
minimum is inside a long, narrow, parabolic shaped flat valley. The 3-D plot of the
function is shown in Figure 3(a). To find the valley is trivial. To converge to the global
minimum, however, is difficult. It has a global minimum at (x,y) = (1, 1), where f(z,y) =
0.

Test function 2:

3

max (@, y) = [0.05 + (22 + o2

This function has only one global maximum point surrounded by multiple minima.
Besides, the function has four local maximum points which makes it very difficult to find
the global maximum point of this function. To search the global maximum point is like
to find a needle in a haystack, which is extremely difficult. The global maximum value is
£(0,0) = 3600. The 3-D plot of function 2 is shown in Figure 3(b).

Test function 3:

2
)] + (2?2 +y*)?, =512 < 2,y < 5.12. (19)

3600 (sin2 1y 0.5) 5 >
max f3(x,y) = + (27 + ;
fs(z,y) 1+ 0.001 (2 + 1) [0‘1 ¥ (22 +y2)} ( y*) (20)

This function has unique global maximum point of which value is 2700. However, the
global maximum point is surrounded by infinite number of local maximum points whose
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values are all 2698.6. These points constitute a ring shape of peaks which looks like a
crater. Besides, the function also has four local maximum points, which is shown in Figure
3(c). As a result, the searching of global maximum point of the function is liable to be
trapped in the local maximum points.

Test function 4:

min fy(z,y) = {;zcos 1+ 1 :c+z}{z$cos i+1 y—l—z]} (21)

+0.5 [(z +1.42513)* + (y + 0.80032)*], —10 < z,y < 10.

This function has seven hundred and sixty local minima of which only one global
minimum is f(—1.42513, —0.80032) = —186.7309. The 3-D plot is shown in Figure 3(d).

In order to ensure the validity of testing, in the testing procedure, both MCGA and
traditional GA adopt the binary coding strategy. The initial population of size 100 is
selected at random, but any number of populations can be elected based on the require-
ment and application. The precision of coding of every decision variable is set to be 10~5;
the crossover rate is p, = 100%; the mutation rate is p,, = 10%; the number of elite indi-
viduals is m = 10. In MCGA, the value of parameter X is set to be 2. The terminating
conditions of these two GAs are all

|fzz_fz*| < &, (i:1727374)7 (22)
where f* is used to represent the theoretical global optimal solution of the test function

i; f7 is used to represent the global optimal solution of the test function ¢ searched by
algorithms; ¢; is used to represent the given searching accuracy. The ranges of decision
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variables in four test functions have been given in Equations (18)-(21). The searching
accuracies of these functions are all 107*. The testing of searching algorithm for each
function with the two GAs is carried out in the same computer for 1000 times.

6.2. Testing result and analysis. The testing result of the four test functions is shown
in Table 1. From Table 1, it can be seen that not only the average computational time
but also the average number of iteration steps of the MCGA is obviously superior to the
traditional GA.

TABLE 1. Testing result of multi-child genetic algorithm (MCGA) and tra-
ditional genetic algorithm (GA)

Maximum

. Average Longest Shortest Average Minimum
. Searching R . . Number of
Function . Computational Computational Computational Number of . Number of
Algorithm . . . . Iteration .
Time/s Time/s Time/s Iteration Steps Steps Iteration Steps

f Traditional GA 2.9527 7.9301 0.7767 349.42 656 85
! MCGA 1.1109 4.3764 0.1556 150.93 464 16
f Traditional GA 1.8043 4.6677 0.7423 230.79 531 123
2 MCGA 0.7804 2.0489 0.1645 104.68 324 21
f Traditional GA 1.0592 3.9836 0.4208 139.77 502 84
3 MCGA 0.5824 1.1223 0.1109 63.31 146 11
f Traditional GA 9.7398 37.3043 1.5632 943.80 4376 102
4 MCGA 1.8966 10.8650 0.1221 232.20 2310 17

Notes: 1. The testing environment: Intel Core i5 M340 @2.27GHz, 2GB RAM, Microsoft Win7 OS;
2. Compiling environment: MatLab7.11.0 (R2010b).

The average computational time for finding the minimum point of test function f; is
1.1109s for MCGA which is 2.66 times faster than 2.9527s for the traditional GA. For the
MCGA, the average number of iteration steps for searching convergence of test function
f11s 150.93, which is 43.2% of the number 349.42 for the traditional GA. For test function
f2, the average computational time for MCGA is 0.7804s which is 2.3 times faster than
1.8043s for the traditional GA. For the MCGA, the average number of iteration steps for
searching convergence of test function fy is 104.68, which is 45.4% of the number 230.79
for the traditional GA. The average computational time for test function f3 is 0.5824s and
1.0592s; the MCGA has a 1.82 times faster computational speed. The average number of
iteration steps is respectively 63.31 and 139.77 for the two GAs; the MCGA has 2.21 times
less iteration steps. The average computational time for test function f; is 1.8966s and
9.7398s; the MCGA has a 5.14 times faster computational speed. The average number of
iteration steps is respectively 232.2 and 943.8 for the two GAs; the MCGA has 4.06 times
less iteration steps. As a result, it can be concluded that the MCGA has much faster
computational speed and higher convergence rate than the traditional GA. Consequently,
it is shown that the MCGA is better than the traditional GA.

7. Conclusions. The MCGA has been presented in this paper based on the theory of
biological evolution to enhance the solution searching abilities and increase the computa-
tional speed of genetic algorithms. Through analysis of MCGA based on schema theorem,
the number of new born chromosomes in MCGA is obviously more than in traditional
GA, which not only preserves current chromosomes which are excellent but improves the
chance of generating superior chromosomes to assist the solution exploration. The pro-
posed method for producing multi-child offspring of MCGA can effectively increase the
number of new born chromosomes. The proposed operating method of population evo-
lution solved the problem that in traditional genetic algorithm excellent individuals in
the offspring made in crossover operation may be damaged and unable to survive in the
process of mutation. Four typical test functions were experimented. The experiments
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show that the average computational time for MCGA is 1.8 to 5.1 times faster than the
traditional GA and the average number of iteration steps for MCGA is 24% to 45% of the
traditional GA, when the population entirely converges toward global optimal solutions
under the given condition. Thus, the proposed MCGA is more efficient to close to optimal
solutions than the traditional GA.
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