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Abstract. In order to deal with constrained multi-objective optimization problems (CM-
OPs), a novel constrained multi-objective particle swarm optimization (CMOPSO) algo-
rithm is proposed based on an adaptive penalty technique and a normalized non-dominated
sorting technique. The former technique is utilized to optimize constrained individuals
in each generation to obtain new objective functions, while the latter technique ranks
individuals along with the new objective functions obtained from the adaptive penalty
technique. Additionally, the external archive maintenance has been improved by external
population size decrease, and selection of individuals with better ranks which are oper-
ated by Pareto constrained-dominance. Based on the concept of crowding distance, the
global best solution is obtained and the individuals of the next generation are provided
by the basic PSO algorithm. The results of the simulation tests indicate precise conver-
gence and diverse distribution of the non-dominant solutions on true Pareto front, which
demonstrates that the proposed algorithm possesses outstanding performance metrics for
generational distance and spacing. Finally, the trajectory optimization problem for hy-
personic reentry glide vehicles (HRGVs) applied further verifies the effectiveness and
efficiency of the proposed CMOPSO algorithm, which shows a good application prospect
of the proposed algorithm as well.
Keywords: CMOPs, CMOPSO, Adaptive penalty, Normalized non-dominated sorting,
External archive, Pareto constrained-dominance, Crowding distance

1. Introduction. A large amount of real-life and engineering problems belong to multi-
objective optimization problems (MOPs), which have multiple conflicting performance in-
dexes or objectives to be optimized simultaneously to achieve a tradeoff, such as aerospace
systems, electrical systems, biological sciences and data mining [1]. Thus, the problem
of multi-objective optimization arises. Furthermore, if decision variables need to meet
certain constraints, new optimization challenge appears, thus forming the so called con-
strained multi-objective optimization problems (CMOPs). In fact, the research of these
MOPs, including CMOPs, has become a common concern in academics and engineering
applications, and possesses an important practical significance.

For solving CMOPs, traditional gradient-based search methods, such as the projected
gradient method and quadratic programming method [2], are difficult to extend to the
multi-objective case because their basic design precludes the consideration of multiple
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solutions. What is more, the requirements of sufficient gradient information and appro-
priate initialization make them powerless for cases with non-differentiable, discontinuous,
and implicit functions.

As population-based metaheuristic methods such as EAs, GA and PSO are well-suited
for handling such issues, they have been applied into the studies of MOPs and got many
progresses in recent decades. Particularly, the PSO has attracted much attention in theory
and applications since first proposed in [3]. Coello et al. in [4,5] applied an elite set to
store the found optimal solutions, and used these solutions to guide other flying particles.
Meanwhile, the search space is divided by grids to improve diversity. Parsopoulos and
Michael present the weights polymerization method in [6]. Hu et al. proposed that they
utilize a dynamic neighbor PSO algorithm to approach various optimization objectives in
[7,8]. Ray and Liew combined the Pareto ranking mechanism and PSO algorithm together
in [9], and it produced the non-dominated set through Pareto sorting and chose the best
global particle by roulette. Pang et al. [10] solved the premature convergence problem by
introducing a new density assessment scheme on particles’ entropy information, and by
adopting adaptive chaotic mutation operator, the MOPSO solutions emerge with good
diversity and distribution. Chen et al. [11] proposed MOPSOEO algorithm based on PSO
and external optimization (EO), which takes full advantage of the exploration ability of
PSO and EO that overcome the problem of premature convergence for PSO when applied
to MOPs.

In application areas, many single and multiple objective engineering problems have been
solved by using PSO [1]. Roberge et al. [12] used PSO and genetic algorithm (GA) to cope
with the complex computation of feasible and quasi-optimal trajectories for fixed wing
UAVs in 3D environment. Xue et al. [13] present the first study on MOPSO for feature
selection, and by introducing nondominated sorting, crowding, mutation, and dominance
into PSO, the feature selection problems and Pareto front solutions are addressed. Zheng
et al. [14] proposed an effective MOPSO method for population classification in fire
evacuation operations, which simultaneously optimizes the precision and recall measures
of the classification rules. Izzo et al. [15] adopted the constraint handling technique
and multi-objective methods for PSO into the optimization problem of interplanetary
trajectory.

However, for constrained multi-objective PSO (CMOPSO) algorithms, there is much
less research especially compared with other algorithms such as EAs and GAs. This is
partly due to the earlier establishment and more popularity for EAs and GAs than other
optimization algorithms. On the other hand, it is partly because the optimization prob-
lems show to be more time complexity and algorithm complexity for constrained multi-
objective situations, which cause unusual study difficulties. Ji introduced a symbiotic
mechanism in [16] where the feasible particles evolve towards the front, and the infea-
sible particles evolve toward the feasible direction based on a feasible function. Reddy
and Kumar proposed an EM-MOPSO algorithm that combined the PSO algorithm and
Pareto dominance in [17]. Li et al. put forward an improved constrained multi-objective
PSO algorithm based on the concept of constrained dominance, and disturb particles
with small probability to enhance the diversity in papers [18,19]. Another constrained
PSO algorithm, proposed by Worasucheep in [20], kept a stagnation detection mechanism
that can automatically detect evolutionary a standstill state, and improve the dispersion of
particles by the corresponding mechanism. Yen and Leong [21] proposed RCVMOPSO al-
gorithm that utilized information of particles’ infeasibility and feasibility status to search
for feasible solutions, and constraints are converted into unconstrained objectives and
handled by Pareto dominance relation.
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The key procedures, for CMOPSO algorithms designing, are handling constraints and
multi-objective functions. Fortunately, for these years the MOEAs have witnessed a large
number of paper published on constraint handling techniques and multi-objective han-
dling techniques which can be considered reasonably referenced for CMOPSO algorithms
studies. Given this justification, the other population-based methods in MOEAs will be
surveyed to review the developments of the MOPs.

MOEAs solving for MOPs have been evolved for decades, experiencing the traditional
weight-sum aggregation approach, elitist Pareto-based approach and indicator-based al-
gorithms, respectively [22,23]. In the early period, the weight-sum aggregation approach
gets widely applications because of its simplicity. However, if objectives are conflicting
with each other, it will cause solutions biasing towards one of the objectives [24,25]. For
this consideration, in the late 1990s, Pareto based techniques are attracting much atten-
tion, and by using Pareto dominance relation and Pareto ranks for fitness assignment
instead of fitness score, the improved solutions are achieved more than that of weighted
sum approaches. The most representative elitist MOEAs include PAES [26], PESA [27]
and PESA- [28,29], SPEA2 [30], NPGA2 [31], and NSGA-II [32], MOEA/D [33]. More
recently, the indicator-based algorithm [34], such as the S metric selection evolutionary
multi-objective optimization algorithm (SMS-EMOA) [35], caught a new trend which
performs better in the presence of many objectives.

On the other hand, various constraints handling techniques targeted at EAs have been
developed to solve CMOPs [36]. Coello and Christiansen [37] proposed two new MOEAs
based on the concept of min-max optimum, but they only optimize feasible solutions
since only feasible solutions can survive to the next generation. Deb [31] introduced a
constrained domination principle to handle constraint in NSGA-II. By this principle, all
individuals can be ranked through Pareto dominance relationship and constraint viola-
tions. Due to this advantage, this technique later is widely used in microgenetic algorithm
(micro GA) and MOPSOs [38,39]. Ray and Won [40] also employ standard min-max for-
mulation for constraint handling and divide the objective space into a predefined number
of radial slots where the solutions will compete with members in the same slot for ex-
istence. Geng et al. [41] introduced the strategy of infeasible elitists to act as a bridge
connecting any isolated feasible regions during the evolution process, which appears sig-
nificant improvement in distributions and quality of the Pareto fronts. Harada et al.
[42] proposed Pareto descent repair (PDR) operator to repair the infeasible solution that
aims to reduce all violated constraints simultaneously. To overcome the parameter tuning
problem for single constraint handling technique, Qu and Suganthan [43] proposed an
ensemble of constraint handling methods (ECHM) to tackle constrained multi-objective
optimization problems.

Motivated by this research background, in this paper, we proposed a hybrid constrained
MOPSO algorithm based on adaptive penalty approach and normalized non-dominated
sorting approach to solve the CMOPs. The organization of this paper is as follows. In
the second section of this paper, we describe the constrained multi-objective optimization
problem in general form, basic principle of the PSO algorithm and necessary concepts. In
Section 3, algorithm design key issues are elaborated including constraint handling tech-
nique, multi-objective handling technique, and external population update mechanism.
In Section 4, the simulation results of the proposed algorithm are provided with respect
to four typical test problems. In Section 5, an application example of hypersonic reen-
try trajectory optimization problem has been solved by the proposed algorithm. Finally,
Section 6 is a summary of the full article.
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2. View of Constrained MOP and PSO Algorithm.

2.1. General constrained multi-objective optimization problem (CMOP). With-
out loss of generality, only the minimization problems will be assumed, and the constrained
multi-objective optimization problem can be described as follows:

Minimize : f(x) = (f1(x), f2(x), . . . , fl(x))
s.t. gj(x) ≤ 0, j = 1, 2, . . . , q

hj(x) = 0, j = q + 1, q + 2, . . . , m
x = (x1, x2, . . . , xn),
xmin

i ≤ xi ≤ xmax
i , i = 1, 2, . . . , n

(1)

where l is the number of objective functions, x is decision variable, xmin
i and xmax

i are
upper and lower bounds of each dimension of the decision variables, i = 1, 2, . . . , n, gj(x)
and hj(x) are both n-ary functions on Rn, f(x) = (f1(x), f2(x), . . . , fl(x)) is the objective
function, gj(x) is the j-th inequality constraints, and hj(x) is the j-th equality constraints.

2.2. Particle swarm optimization. Particle swarm optimization (PSO) [3], proposed
by Kennedy and Eberhart in 1995, has been successfully applied in many optimization
problems because of its simple principle and easy implementation. So far, it has achieved
profound development, and gradually becomes more significant in research for solving
CMOPs.

In standard PSO, the velocity and position of particle i in the search space are calculated
based on the following equation:

{

vi(t + 1) = ωvi(t) + c1r1()[Pbesti − xi(t)] + c2r2()[Gbest − xi(t)]
xi(t + 1) = xi(t) + vi(t + 1)

(2)

where, vi(t + 1) is the velocity of particle i in generation t + 1, xi(t + 1) is the position
of particle i in generation t + 1, Pbesti is the current optimal position of particle i, and
Gbest is current global optimal position. ω is the inertia coefficient, r1() and r2() are
two random numbers with uniform distribution on the interval [0, 1], and c1 and c2 are
acceleration factors, which represent the weights of each particle being pushed towards
the statistical Pbest and Gbest position, respectively.

2.3. Related definitions.

2.3.1. Pareto dominance. A solution u = (u1, u2, . . . , un) is said to Pareto-dominate so-
lution v = (v1, v2, . . . , vn), if and only if fi(u) ≤ fi(v) (i = 1, 2, . . . , l), and there exists at
least one j ∈ {1, 2, . . . , l} that satisfies fj(u) < fj(v), which are denoted by u ≺ v, and
referred to as u dominate v.

2.3.2. Pareto-optimal solution. A solution is said to be a Pareto-optimal solution if and
only if there exists no v and the feasible region allows that v ≺ u.

2.3.3. Constrained-domination. A solution i is said to constrained-dominate a solution
j, if any of the following conditions is true [32]: 1) Solutions i and j are both feasible
solutions, and solution i dominates solution j. 2) Solution i is feasible and solution j

is not. 3) Solutions i and j are both infeasible, but solution i has a smaller constraint
violation. 4) Solutions i and j are both infeasible, constraint violation of solution i equals
that of solution j, and solution i dominates solution j.



CMOPSO ALGORITHM 1839

2.3.4. Crowding distance. The crowding distance, first proposed in [32], is the sum of the
average distance of two points on either side of this point along each of the objective’s
dimension.

Figure 1 shows that the crowding distance of point i can be calculated by

|f1(xi+1) − f1(xi−1)|
f1max − f1min

+
|f2(xi+1) − f2(xi−1)|

f2max − f2min
(3)

Figure 1. The crowding distance calculation

2.3.5. Generational distance (GD). Generational distance (see [44]) is the distance be-
tween non-dominated solutions and the Pareto-optimal solutions. The calculation equa-
tion is as follows:

GD =

√

n
∑

i=1

d2
i

n
(4)

where, n is the number of non-dominated solutions, di is the minimum distance between
the i-th solution to the Pareto optimal solution set. Especially, a value of 0 indicates
that all the individuals generated are in the Pareto optimal set. This metric reflects the
approaching level of the non-dominated solutions to the Pareto optimum set.

2.3.6. Spacing (SP). Spacing [45] is the metric desiring to measure the spread (distri-
bution) of vectors throughout the non-dominated vectors found so far, and the metric
reflects the diversity of the resulting front. The calculation equation is as follows:

SP =

√

√

√

√

1

n − 1

n
∑

i=1

(

d̄ − di

)2
(5)

where, di = min
j=1,2,...,n

j 6=i

(

l
∑

k=1

|fk(xi) − fk(xj)|
)

, i = 1, 2, . . . , n, denotes the distance between

the objective vector of the non-dominated solution xi and its nearest objective vector. d̄ is
the average of di. SP = 0 means the corresponding front of the non-dominated solutions
complete diverse distribution.

3. Description of the Proposed Approach. The main principle for solving CMOPs
is to convert the constraints into unconstrained multi-objective problems, so an effective
constraint handling mechanism design is considered as the key. Recently, the penalty
function method is widely applied for constraint handling, in order to avoid dealing with
too many penalty parameters. In this section, a typical adaptive constraint handling
method is described, combined to a fast normalized non-dominated sorting technique and
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the improved external non-dominated population maintenance according to the elitist
strategy and constrained dominance.

3.1. A constraint handling technique: adaptive penalty method. Woldesenbet,
Tessema and Yen in [46] provide a method for handling constraints in MOPs called adap-
tive penalty, which possesses good versatility. This approach makes the combination of
objective function value and individual constraint violation, and defines distance measure-
ment and adaptive penalty functions, whose values are calculated by individual feasibility
and constraint violations, and thus by using this method the new objective function is
constructed.

The new objective function Fi(x) is represented according to the following equation

Fi(x) = di(x) + pi(x) i = 1, 2, . . . , l (6)

Equation (6) is comprised of the distance function di(x) and the penalty function pi(x),
i = 1, 2, . . . , l, where the distance function di(x) is defined as follows,

di(x) =

{

v(x) if γf = 0
√

f̃i(x)2 + v(x)2 otherwise
i = 1, 2, . . . , l (7)

In Equation (7), normalized objective functions f̃i(x) are defined as follows:

f̃i(x) =
fi(x) − f i

min

f i
max − f i

min

i = 1, 2, . . . , l (8)

where f i
max = max

x
fi(x) and f i

min = min
x

fi(x) indicate the maximum value and the mini-

mum value of the objective function in the i-th dimension of the objective space, respec-
tively. In Equation (7), individual constraint violation v(x) is defined as follows:

v(x) =
1

m

m
∑

j=1

cj(x)

cmax
j

(9)

where,

cj(x) =

{

max(0, gj(x)) if j = 1, 2, . . . , q
max(0, |hj(x)| − δ) if j = q + 1, q + 2, . . . , m

(10)

δ is a small positive number (usually 0.001 or 0.0001), that denotes the tolerance value
for equality constraints, and constraint violation v(x) is zero when x is a feasible solution.
In Equation (7), the proportion of feasible solutions in population γf is

γf =
the number of feasible individuals in current population

population size
(11)

In Equation (6), penalty function pi(x) is defined as follows:

pi(x) = (1 − γf)X(x) + γfYi(x) (12)

where, X(x) =

{

0 if γf = 0
v(x) otherwise

, Yi(x) =

{

0 if x is feasible

f̃i(x) otherwise
.

It can be observed that new objective function value of each individual can be calcu-
lated by Equations (6)-(12). This approach automatically adjusts individuals’ penalties
with the proportion of feasible solutions in the population and the individual constraint
violation, which ensures only infeasible solutions can be punished. The greater infeasible
individual violations constrain, the greater penalty it will be affected. Furthermore, this
technique avoids the introduction of penalty parameters, and the new objective function
provides outstanding adaptability for all feasible and infeasible solutions. Therefore, the
algorithm analytical and calculation complexity are effectively reduced. Additionally, the



CMOPSO ALGORITHM 1841

objective functions with form (6) can be directly used for multi-objective particle swarm
optimization operations which will be described in Section 3.2.

3.2. Normalized non-dominated sorting. Bao and Zhu proposed a normalized sort-
ing method [47] that ranks the non-dominated individuals as a sequence in a set. Its
run-time complexity is demonstrated to be not more than O(n log n) + O(lnm) (n is the
population size, m is the number of non-dominant solutions, and l is the number of ob-
jects), which is less than that of the classical approach NSGA-II O(ln2). This advantage
provides a new application prospect for this approach. The basic steps are as follows.

Normalizing the objective function Fi(x) is obtained from constraints handling in Sec-
tion 3.1, by the following equation:

F i(x) =
Fi max(x) − Fi(x)

Fi max(x) − Fi min(x)
(13)

Sum all the normalized functions on various dimensions of objective space, so the
normalized mixed function is obtained:

G(xj) =
r

∑

i=1

F i(xj), i = 1, 2, . . . , l, j = 1, 2, . . . , N (14)

where, l is the number of objective functions, and N is population size.
Sort the normalized mixed function in descending order,

G(u1) ≥ G(u2) ≥ · · ·G(uN) (15)

All individuals are stored into an array S[N ], that is S[1] = u1, S[2] = u2, . . . , S[N ] =
uN , and u1 ≺= u2 ≺= · · · ≺= uN is the result of the non-dominated sorting of all the
individuals in the population, where ≺= denotes a dominate position.

In sense of this sorting, it can be proved that the individual in front will (at least) not
be dominated by the following individual, while the following individual will also possibly
not be dominated by the previous one. Therefore, under normal circumstances, we can
consider that the individuals in front sequence with better ranks are superiorly dominant
individuals.

3.3. External archive maintenance. Individuals and their new objective function (6),
after being handled by adaptive penalty technique, rank according to the normalized
non-dominated sorting technique, which implies individuals with better dominance have
higher priorities over those with poor dominance. Each new individual generated by
PSO algorithm produces the N individuals sequence after operations of the constraints
handling and summation of the normalized functions. Then the chosen non-dominated
solutions are used for updating the external archive (an external non-dominated elite
population).

All the sorted individuals have been compared with individuals in external elite popu-
lation in paper [47], and the one not dominated by the external individuals will be chosen
into the external elite population for updating. In fact, since the size of the external pop-
ulation is often far less than that of internal population, it seems unnecessary to compare
all the internal population individuals with elite individuals for external population up-
dating. Furthermore, individuals with better rank can be considered as individuals with
the better dominance in the internal population, because the worse ranking individuals
certainly could not dominate their previous individuals. Therefore, in this paper, we use
the first M better order individuals (M is the external population size) to update the
external population, and the specified update mechanism is as follows.
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If the external population is not full, copy the individuals directly into external pop-
ulation; if the external population is full, compare the new individuals i with each of
the external individuals j, 1) if individual j dominates individual i, do not copy in; 2) if
individual i dominates only one external individual j, replace individual j with individual
i; if individual i dominates more than one external individual, eliminate all these external
individuals, and copy individual i in; 3) if individual i does not dominate any external
individual, and is not dominated by any external individual, then add individual i into
the external population, and calculate the crowding distance (see Section 2.3.4) of M +
1 individuals. Then remove the individual with the smallest crowding distance from the
external population.

It must be noted that, individuals are compared with each other by the relationship
of Pareto constrained-dominance. Furthermore, although sometimes the better ranking
individuals cannot dominate the worse ranking individuals, this operation would still
greatly improve the speed and efficiency of the proposed algorithm, as it is unnecessary to
compare every individual with external individuals. In Section 4, simulations will prove
this approach optimization results are good.

3.4. Global best update. For PSO algorithm, it is clear that the global optimal particle
should be selected from the external archive. In this paper, the following operation is taken
to obtain it.

For a certain generation, calculate the crowding distance of each individual in external
population. 1) If the crowding distances of individuals are all infinite, select one individual
randomly as Gbest; 2) if there is a finite number, choose the individual that possesses the
largest crowding distance as Gbest.

3.5. Program flowchart of the proposed algorithm. From the aforementioned anal-
ysis, the process of the PSO algorithm for solving CMOPs problems is executed as Figure
2.

4. Simulation Results. In this section, the newly proposed algorithm is tested on four
different test problems with performance metrics for convergence (Generational distance,
GD), distribution (Spacing, SP) and algorithm running time (Elapsed time).

Four typical test problems (see Table 1) are chosen for performance tests, and then
performance results are compared between the newly proposed CMOPSO and the classical
algorithm in [46].

Table 1. Constrained test problems used in this study

Problem n Variable bounds Objective functions Constraints

CONSTER 2
x1 ∈ [0.1, 1]
x2 ∈ [0, 5]

f1(~x) = x1

f2(~x) = (1 + x2)/x1

g1(~x) = −9x1 − x2 + 6 ≤ 0
g2(~x) = −9x1 + x2 + 1 ≤ 0

SRN 2
xi ∈ [−20, 20]
i = 1, 2

f1(~x) = (x1 − 2)2

+(x2 − 1)2 + 2
f2(~x) = 9x1 − (x2 − 1)2

g1(~x) = x2

1
+ x2

2
− 225 ≤ 0

g2(~x) = x1 − 3x2 + 10 ≤ 0

TNK 2
xi ∈ [0, π]
i = 1, 2

f1(~x) = x1

f2(~x) = x2

g1(~x) = −x2

1
− x2

2
+ 1

+0.1 cos(16 arctan(x1/x2)) ≤ 0
g2(~x) = (x1 − 0.5)2 + (x2 − 0.5)2

−0.5 ≤ 0

BINH4 2
xi ∈ [−10, 10]
i = 1, 2

f1(~x) = 1.5 − x1(1 − x2)
f2(~x) = 2.25 − x1(1 − x2

2
)

f3(~x) = 2.625 − x1(1 − x3

2
)

g1(~x) = −x2

1
− (x2 − 0.5)2 + 9 ≤ 0

g2(~x) = (x1 − 1)2 + (x2 − 0.5)2

−6.25 ≤ 0
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Figure 2. Program flowchart of the proposed algorithm

Table 2. GD metric of the proposed algorithm on CONSTER, SRN and TNK

CONSTER SRN TNK
Algorithm compared 0.0191 0.0168 0.0099
Proposed algorithm 0.0025 0.0012 0.0023

In this test, we set population size for 100 (200 for problem BINH4), external population
size of 30 (50 for BINH4), and a maximum generation number of 300.

The CONSTER test problem was proposed in [53]. As shown in Figure 3, it can be
seen that 30 non-dominated points are evenly distributed on the true Pareto front. From
Table 2, the convergence metric GD of the Pareto front is 0.0025 which is significantly
smaller than that of the algorithm compared. Moreover, the metric of SP (equal to 0.1165)
is also better than the algorithm compared. For this function, the average time of the
proposed algorithm independently running 30 times is 5.7851 seconds. The SRN test
problem is tested with the population of 100, generation of 100, and 30 non-dominant
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Figure 3. Pareto front obtained with the proposed algorithm on problem CONSTER

Figure 4. Pareto front obtained with the proposed algorithm on problem SRN

individuals. As can be compared, diversified non-dominant individuals of the proposed
algorithm distributed on the Pareto front, whose excellent convergence and distribution
performance can also been reflected by GD metric (0.0012) and SP metric (0.074) hold on
the true Pareto front. The average time of the proposed algorithm independently running
30 times is 7.1198s. The TNK function [54] results are shown in Figure 5, and the proposed
algorithm provides feasible optimal solutions that are diversely distributed on true Pareto
front. The non-dominated solutions converge uniformly towards the discontinuous Pareto
front and cover the whole extent of the Pareto front. From Tables 2 and 3, GD (0.0023)
and SP (0.0125) of the proposed algorithm show superiority to the algorithm compared.
This test used the population size 100, with 30 external non-dominated solutions, and 300
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Table 3. SP metric of the proposed algorithm on CONSTER, SRN and TNK

CONSTER SRN TNK
Algorithm compared 0.3210 0.385 0.4660
Proposed algorithm 0.1165 0.074 0.0125

Figure 5. Pareto front obtained with the proposed algorithm on problem TNK

generations. Generations are improved because the noncontiguous front requires bigger
iterations to reach the global optimum. The average time of the proposed algorithm
independently running 30 times is 7.3302 seconds.

The BINH4 test adopted population size 300, 50 external non-dominated solutions, and
300 generations. The final Pareto front optimized by the proposed algorithm is drawn
in Figure 6. On the single value segment, non-dominated solutions accurately converge
to the Pareto front, while on the multi-value segment, non-dominated solutions converge
to the Pareto front as a whole. Running independently 30 times the average of GD, SP
indicators and the running time are 0.0151, 0.1612, and 30.9691 seconds, respectively.

From the above simulation, the proposed CMOPSO algorithm shows precise conver-
gence and diverse distribution on the Pareto front. Compared with the data in article
[46], the algorithm we propose possesses better characteristics of GD and SP than the
former, which shows the advantages of this algorithm.

5. Application on Hypersonic Reentry Glide Vehicles (HRGVs) Trajectory
Optimization.

5.1. Description for HRGVs trajectory optimization problem. To further verify
the CMOPSO algorithm proposed in previous sections, a trajectory optimization problem
for Hypersonic Reentry Glide Vehicles (HRGVs) will be applied in this section. The hy-
personic reentry glide vehicle belongs to a complex system with characteristics of highly
nonlinear, strong coupling and fast time-varying, whose reentry trajectory optimization
project can be constructed as an optimization problem with multiple constraints and mul-
tiple objects. The trajectory optimization problem aims to seek optimal flight trajectory
(or trajectories) that guarantee specified performance as well as satisfying the constraints
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Figure 6. Pareto front obtained with the proposed algorithm on problem
BINH4 (top: top view, down: 3D view)

such as heat peak, dynamic pressure and aerodynamic load factor for appointed vehicle
flight missions.

Chen et al. [55] introduced the NSGA-II algorithm into the design of RLV multi-
objective reentry optimization with minimum heat and maximum maneuverable range.
Xie et al. [56] presented a Migrant PSO algorithm to solve the trajectory optimization
which proves to be able to generate an optimal 3DOF reentry trajectory rapidly. Jiao
and Jiang [57] proposed the colony algorithm method for multi-objective optimization of
reentry trajectory planning for hypersonic aircraft. Zhao and Zhou [58] studied the end-to-
end trajectory optimization problem by single objective function and multiple constraints
based on constrained PSO for hypersonic reentry vehicles.
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As the reentry trajectory optimization problem for HRGVs presents to be an essentially
constrained multi-objects issue, traditional gradient-based methods have much difficulty
in solving the multi-objectives. Therefore, the application of CMOPSO shows high practi-
cal significance. According to these motivations, in this section, the CMOPSO framework
will be considered into the problem solving. The 3DOF point-mass dynamics of the vehicle
are described by the following dimensionless equations of motion:
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Ṽ D̃ − Ṽ ϕṼ 3
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ϕγ4
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(16)

where, R̃ = R
R0

, Ṽ = V√
g0R0

, ω̃e = ωe√
g0/R0

, D̃ = D
Mg0

, L̃ = L
Mg0

, τ = t√
R0/g0

, and R, V ,

ωe, D, L, t are the radial distance from the center of the Earth to CAV, Earth-relative
velocity, Earth self-rotation rate, drag force, lift force and entry time respectively. And
R̃, Ṽ , ω̃e, D̃, L̃, τ are the corresponding dimensionless forms of R, V , ωe, D, L and t.
ϕ denotes the latitude and λ the longitude. The flight path angle is γ and µ the bank
angle. The velocity azimuth angle χ is measured from the North in a clockwise direction.
Energy-like variable e is defined as e = 1

R̃
− 1

2
Ṽ 2.

Typical reentry trajectory inequality path constraints include path constraints, Termi-
nal Constraints and Control Constraints shown as follows

Q̇ =
C1√
Rd

√
ρV 3.15 ≤ Q̇max (17)

n =

√
L2 + D2

Mg0
≤ nmax (18)

q =
1

2
ρV 2 ≤ qmax (19)

R(tf) ∈ [Rf − ∆Rdown, Rf + ∆Rup] (20)

V (tf ) ∈ [Vf − ∆Vdown, Vf + ∆Vup] (21)

γ(tf) ∈ [γf − ∆γdown, γf + ∆γup] (22)

α ∈ [αmin, αmax] (23)

where Equation (17) is a constraint on the heating rate at a specified point on the surface
of the hypersonic vehicle, with the constant C1 = 11093 and curvature radius of the
stagnation point Rd = 0.01m. Equation (18) is a constraint on the total aerodynamic
load factor on the body of the hypersonic vehicle (nmax is in the unit of g0). The constraint
Equation (19) is on the dynamic pressure (qmax is in the unit of N/m2).
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The control variables of the longitudinal entry motion are angle of attack α, which lies
in lift L and drag D through the lift and drag coefficient CL and CD. In this paper, we
set the longitudinal average margin value of the bank angle to π/6.

Since the main trajectory control variable is angle of attack α, the optimization problem
purpose is to achieve the optimal angle of attack. In reentry engineering, the angle of
attack is generally adopted to be a parametric form as shown in Formula (24), so, decision
variables of this problem are transformed to be angle of attack parameters V1, V2.

α =







αmax V ∈ (V1, V0]
αmax L/D−αmax

V2−V1
(V − V1) + αmax V ∈ (V2, V1]

αmax L/D V ∈ (Vf , V2]

(24)

The objective functions of the reentry trajectory optimization problem vary with the
missions and reference indicators, and usually not single and changeless. Some typical
objective functions are shown as follows:

f1 = S(ef) = Re · cos−1[cos ϕ0 cos ϕ cos(λ0 − λ) + sin ϕ0 sin ϕ] (25)

f2 =

∫ ef

e0

|γ̇| de (26)

where, S(ef) in Formula (25) denotes maximizing gliding range, defined as the circle
distance on the surface of spherical Earth from the vehicle position (λ0, ϕ0) to the terminal
position (λ, ϕ). Formula (26) denotes minimizing total ballistic oscillation.

5.2. Principle for HRGVs trajectory optimization. Based on the proposed CMO-
PSO algorithm, the trajectory optimization problem can be solved by the following steps.

As a detailed discussion for the proposed CMOPSO algorithm has been made in previ-
ous sections, in this application, this method will be directly embedded into the HRGVs
trajectory optimization principle shown in Figure 7, and complying with the principle,
the main steps are stated as follows:

Step 1: Initialize the first population;
Step 2: Calculate the reentry trajectories of the particle swarm with Equation (16). If

the constraints satisfy error tolerances, shift to Step 5. Otherwise, shift to Step 3;
Step 3: Optimize the particle swarm with the proposed CMOPSO algorithm, including

constraints handling, non-dominated sorting, and external archive population update and
particle swarm flight;

Step 4: Judge if the algorithm achieves the max iteration times T, if not, return to
Step 2. Otherwise, shift to Step 5;

Step 5: Output the external archive and multi-objective values.

5.3. Optimization simulation. In this simulation, the path constraints parameters are
Q̇max = 2000kW/m2, nmax = 2, qmax = 50kN/m2. Three sets of angle of parameters are
set in this problem, which means three trajectories will be achieved after optimization.
The algorithm iteration steps are set to 20, population size is 12, and non-dominant
population size is 3. The initial value of the numerical integration variable for the 3DOF
equations of motion is e0 = 0.567, and its terminal value is ef = 0.969.

Table 4 shows the initial values X(e0), desired terminal states values X(ef) for all the
state variables during reentry period. After optimization, the error values of the terminal
states should not exceed their tolerance ranges ∆X provided in Table 4.

Through the simulation, three groups of turning velocity have been optimized, they
are respectively, (6241.33, 3352.38), (5046.63, 3204.32), (5301.91, 3317.75) which construct
three different reentry angle of attack profiles, as shown in Figure 8. Based on these angles
of attack, three corresponding longitudinal reentry trajectories can be obtained, shown in
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Figure 7. Flowchart of trajectory optimization problem using PSO algorithm

Table 4. Reentry conditions

X(e0) X(ef) ∆X

H (km) 120 30 2
ϕ (deg) 0 – –
λ (deg) 0 – –
V (m/s) 7200 1800 10
γ (deg) 0 –7.5 1
χ (deg) 110 – –

Table 5. Results of the trajectory optimization

Trajectory 1 Trajectory 2 Trajectory 3
H(ef) (km) 28.783 29.887 29.418
V (ef) (m/s) 1806.56 1800.61 1803.14
γ(ef) (deg) –7.37 –6.91 –7.15
t(ef) (sec) 1557.53 1720.91 1681.34

S(ef) = 1/f2 (km) 9752.117 10425.856 10282.587
f4 11263.08 11273.54 11269.63
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Figure 8. Angle of attack profile under three optimized parameters

Figure 9. Three reentry trajectories under three angle of attack profiles

Figure 9. All the trajectory initial conditions and terminal conditions are listed in Table
4 and Table 5. And from Table 5 it can be seen that all the constrained terminal states
values strictly met the error tolerance ranges, the objective functions f1 and f2 form a set
of contradictions as any trajectory cannot be superior to any other trajectories based on
the evaluation of these two objective functions. Figure 10 illustrates the situation of the
three optimized trajectories satisfies the reentry constraints.

6. Conclusions. This article discusses the CMOPs solving with the frame of PSO. A
CMOPSO algorithm is proposed which combines two approaches in CMOPs together, the
constraint handling technique with adaptive penalty function, and the multi-objective
handling technique with normalized non-dominated sorting. Furthermore, the update
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Figure 10. Reentry constraints histories of the three trajectories

strategy of the external elite archive is improved based on a novel sorting operation. All
the above techniques are integrated with the basic PSO algorithm and construct a new
algorithm to solve CMOPs.

The constraints handling technique takes adaptive penalty function and distance mea-
surements into consideration which avoids introducing the penalty factor parameters while
enhancing the adaptability of punishment. The normalized non-dominated sorting tech-
nique ranks all the normalized objective functions to a sequence with a superiorly domi-
nated order. Experimental results including two pivotal performances show the efficiency
of this improvement.

Test functions and trajectory optimization of a hypersonic reentry glide vehicle are sim-
ulated to demonstrate the effectiveness and good performance of the proposed algorithm
and verify the application significance of the proposed CMOPSO algorithm.
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