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ABSTRACT. Multiplicative noise is usually assumed to be a scalar in ezisting literature
works. Motivated by recent applications of communication technology, we consider multi-
channel multiplicative noise represented by a diagonal matriz. Firstly we consider the es-
timation problem for multi-channel multiplicative noise systems, where the multiplicative
noise appears both in state equation and measurement equation respectively. Based on
the projection theory, the estimator is derived in terms of a difference Riccati equation
with Hadamard product and a difference Lyapunov equation. Then as an extension, we
consider the estimation problem for multi-channel multiplicative noise systems with time
delay. The solution to the estimator can be obtained by calculating a partial difference
Riccati equation and a Lyapunov equation. Compared with the conventional augmenta-
tion approach, the presented approach lessens the computational demand when the delay
is large. Finally we present a numerical example to demonstrate the efficiency of the
proposed method in this paper.

Keywords: Multi-channel, Riccati equation, Estimation, Multiplicative noise, Projec-
tion

1. Introduction. Recently multiplicative noise has been a mainstream research topic,
due to the fact that the signals contaminated by multiplicative noise are common in engi-
neering and society. Such examples can be found in image processing [1], communication
systems [2], etc. Different from the additive noise, the second order statistics of the mul-
tiplicative noise is usually unknown as it depends on the control solution, which leads
to additional difficulties. Hence, the control and estimation problems for systems with
multiplicative noise have received much attention [3-8].

The early work [9] considered the linear minimum mean squared error (LMMSE) es-
timation. By modeling the uncertainty via a sequence of i.i.d. binary random variables,
the author derived a recursion similar to the Kalman filter by utilizing the statistics of
the unobserved binary uncertainty sequence. [10] gave conditions for obtaining recursive
filtering when the uncertainty sequence was not necessarily i.i.d. In [11], Tugnait defined
the observability and controllability of the discrete system with multiplicative noise and
introduced the classical equivalent filter system in a sense of linear minimum mean squared
error. Apart from the above work, the author also discussed the stability of Rajasekaran’s
state filter algorithm. In [12], the authors proposed the block component search algorithm
based on the principle of maximum likelihood. The advantages of this algorithm are that
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statistical parameters of multiplicative noise need not to be known in advance; more-
over, the optimal estimation of state and multiplicative noise sequence are still able to
be obtained at the same time. With the development of system with multiplicative noise
rapidly, [13] proposed the optimal estimation algorithm based on the idea of Kalman
filter, giving the recursive optimal filtering algorithm of system which contained entries
and non-entries respectively. [14] investigated the robust state estimation problem with
missing measurements. Though introducing a monotonic function and using the so-called
squeeze rule, the new robust estimator is proved to converge to a stable system. [15]
presented the mean-square optimal data-based quadratic-Gaussian controller for stochas-
tic nonlinear polynomial systems with a polynomial multiplicative noise, a linear control
input, and a quadratic criterion over linear observations. [16] discussed the problem of
estimation of the remote signal generated by a class of discrete dynamical systems with
periodic coefficients subject to multiplicative noise and additive noise. It should be noted
that all the multiplicative noises in [3-16] are in scalar form. In other words, the multi-
plicative noise of each channel is assumed to be same, which is restricted and unrealistic.
In [17], the authors studied the optimal fixed domain smoothing algorithm of systems
with multi-channel multiplicative noise. However, the multiplicative noise only occurs in
measurement equation.

State estimation problems for stochastic systems with time delay have caused the ex-
tensive concern in the past decades [18-23]. Generally speaking, for the discrete-time
systems with time delay, the LMMSE problem is firstly considered to be dealt with by
using the state augmentation method of [25] and standard Kalman filtering formula of
[26]. However, the state augmentation may bring higher state dimension and higher com-
putational cost. To prevent the high computational cost, [18] proposed a new method
which was called reorganized innovation analysis. This new approach is effective to solve
the state estimation problems for a class of discrete-time systems with measurement delay.
Furthermore, [19] discussed the problems of filtering and fixed-lag smoothing for linear
multiplicative noise systems with single delayed measurement and derived the estimator
by using the reorganized innovation approach. It is, however, noted that the LMMSE es-
timator problem for systems with single measurement channel but multiple measurement
delays which contain the systems studied in [18, 19] as a special case is much more challeng-
ing and cannot be directly dealt with by using the reorganized innovation approach. [20]
considered the problem of optimal linear estimation for multiplicative noise systems with
time delay, where the delay appeared both in state equation and measurement equation.
The estimator was obtained in terms of a forward partial difference Riccati equation and a
forward Lyapunov equation. The LMMSE filtering problem was investigated for uncertain
stochastic systems with time-invariant state delay dy, bounded random observation delays
and missing measurements in [21]. In addition, for discrete-time stochastic linear systems
with random measurement delays and packet dropouts, [22] got the optimal estimators
including filter, predictor and smoother in a sense of linear minimum variance. The au-
thors in [23] considered the optimal linear estimation problem for networked stochastic
uncertain systems with multiple packet dropouts and delays. The random uncertainties of
system parameters were described by white multiplicative noise. [24] concerned with the
Kalman filtering for discrete stochastic systems with multiplicative noises and random
two-step sensor delays.

Motivated by the work mentioned above, we consider the optimal estimation prob-
lem for discrete-time systems with multiplicative noise represented by a diagonal matrix,
where the multiplicative noise of one channel is allowed to be different from another chan-
nel. To the best of our knowledge, there is no other work dealing with this problem in
the literature. The main contributions of this paper are highlighted as follows: (1) We
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extend the scalar multiplicative case to the diagonal matrix multiplicative case. The mul-
tiplicative noise represented by a diagonal matrix makes the problem more challenging.
In order to overcome this difficulty, we introduce the Hadamard product, which makes
the results simple and beautiful; (2) We extend the optimal estimation problem to the
systems with time delay. Considering the disadvantages of traditional approach of state
augmentation, we adopt the method of calculating a partial difference Riccati equation
which has the same dimension as the original system. When the delay is very large, the
proposed approach is efficient to solve optimal estimation problem for systems with time
delay; (3) [17] investigated the estimation problem for multi-channel multiplicative noise
systems; however, the multiplicative noise only appeared in measurement equation. [20]
considered the estimation problem for time-delay systems with multiplicative noise, but
the multiplicative noises are in scalar form; moreover, the multiplicative noises in state
equation and the noises in measurement equation are assumed to be uncorrelated. How-
ever, the multiplicative noises that appeared in our paper are assumed to be diagonal
matrix case. Also, the multiplicative noises in state equation and the noises in measure-
ment equation are assumed to be correlated. Hence, compared with the existing works
[17, 20], our work is more general.

The arrangement of this paper is as follows. Section 2 gives problem statement and
proposes the assumption system model. Section 3 derives the main results on estimator for
multi-channel multiplicative noise systems. In Section 4, we extend the estimation problem
in Section 3 to time-delay case. A numerical example is showed in Section 5 to demonstrate
the efficiency of the proposed approach. Section 6 is the conclusion, containing the main
work and significance of this paper.

Notation: Throughout this paper, a real symmetric matrix P > 0 (> 0) denotes P
being a positive definite (or positive semi-definite) matrix. I denotes an identity matrix of
appropriate dimension. The superscripts “—1”7 and “T” represent the inverse and trans-
pose of a matrix. R" stands for the n-dimensional Euclidean space. R"*™ is the set of
all n x m real matrices. ¢;; = 0 for ¢ # j and 6;; = 1. The Hadamard product by ©.
diag{\i, Ao, - -+, A\, } stand for the diagonal matrix having Aj, A9, -, A, as its diagonal
elements. Furthermore, the mathematical expectation operator is denoted by E. We can
define (z,y)=FE {zy"} =R,, and (z,z) = E {zz”} = R,. Matrices, if the dimensions are
not explicitly stated, are assumed to have compatible dimensions for algebraic operations.

2. Problems Statement. Consider the following discrete-time systems with multi-chan-
nel multiplicative noise

z(k+1) = [A+&(k)Ao)z (k) + n(k), (1)

y(k) = [B +n(k)Bolx(k) + v(k), (2)

where z(k) € R™, and y(k) € R™ are respectively the system state and measurement.
n(k) and v(k) are white noises with zero mean and covariances E {n(k)n”(j)} = Qdx;,
E {v(k)vT(j)} = Rox; respectively. Here &(k)=diag{&i(k), ..., & (k)}, whose elements are
random processes with mean E{&;(k)} =0 and covariances E {& (k)] (s) } =040k, n(k) =
diag{m (k), -+ ,nm(k)}, whose elements are random processes with mean E{n;(k)} =0
and covariances F {nl(k)n]T(s)} =, j0s. Also, for Vi, j, E {{Z(k)n]T(s)} =1,j0ks. For conve-
nience, we further denote II; = [O’ij]i,j:172,___7n, o =1[pijlij=1.2,..m» D3=[Yijli=1,2,...nj=1,2...m-
The initial state 2(0) is a random vector with mean p and covariance matrix D(0). The

random processes n(k), v(k), £(k) and n(k) for all £ and the initial state 2(0) are mutually
independent.
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Problem I: Based on systems (1) and (2), our aim is to find the LMMSE esti-
mate Z(k|k — 1) of the system state x(k) based on the measurements sequence {y(k —
1),---,y(0)}, i.e., minimize the Euclidean 2-norm

J = E{[a(k) — @(k|k — 1)]"[2(k) — 2(k|k — 1)]}
= E{i"(k|k — 1)z(k|k — 1)}
at every time moment k.

Based on the above research, we will consider the linear system with multi-channel

multiplicative noise and time delay
r(k+1) = Azx(k) + Age(k — d) + £(k) Acx (k) + n(k), (3)
y(k) = Bx(k) + Byz(k — d) + n(k)B,z(k) + v(k), (4)
where z(k), y(k), £(k), n(k), n(k) and v(k) have the same properties with the above
problem; we do not go into details here. The initial states satisfy E{x(—i)} = p,; (i =
0,...,d), E{z(=i)z"(—j)} = Po(—i,—j). It is assumed that n(k), v(k), &(k), n(k) for
all k and the initial states z(—i) are mutually independent. For convenience, we suppose
that A, Ay, A¢, B, By, B, are the constant and the compatible dimension matrices. Also,

Ag=[AL - AL By=[BL o Bl ]
Problem II: Based on systems (3) and (4), the aim is to find the LMMSE estimate
z(k —I|k) (I = —1,0,---,d) of the system state x(k — [) based on the measurements
sequence {y(k),---,y(0)}, i.e., minimize the Euclidean 2-norm

J=F {[x(k — ) — 2k =1k [a(k — 1) — &(k — l|k)]}
= E{i"(k — l|k)Z(k —l|k)}
at every time moment k.

Remark 2.1. Most studies on multiplicative noise systems focus on the scalar multiplica-
tive noise case [3-16, 19-23|. [17] considered the optimal estimation problem for multi-
channel multiplicative noise systems, but the multiplicative noise only occurs in measure-
ment equation. In order to get more general and more accurate result, the multi-channel
multiplicative noise occurs both in state equation and measurement equation in this paper.
Also, we will consider the estimation problem for multiplicative noise systems with time
delay. Hence the model considered in our paper is more general compared with [17, 20].

3. Estimator Design. In this section we will deduce the LMMSE estimator for multi-
channel multiplicative noise systems.
For convenience, we define

Av=[ AL - AL ], Bo=[ B Wl
Inxn:[el 6n];[m><m:[ am]a
P = B {364k~ D (HE = 1)} a(h1E 1) = o(0) = 3(0lk 1),

D(k) = E {z(k)z" (k)} .
Theorem 3.1. Consider systems (1) and (2). The LMMSE predictor is computed by
z(k+1|k) = Az(k|k — 1) + Ky(k)e(k), (5)
e(k) = Ba(k|k — 1) + n(k)Box(k) + v(k), (6)
where K,(k) is given by
Ky(k) = [AP(k)B" +1I3 © (AyD(k) By )| B2, (7)



OPTIMAL ESTIMATION PROBLEM 1885

R.xy = BP(k)B" + 11, ® (ByD(k)B{ ) + R, (8)
while D(k) and P(k) can be calculated by
D(k+1) = AD(k)A" +1I; ® (4 D(k) A7) + Q, (9)
P(k+1) = AP(k)A" + 11, ® (AgD(k) A7) + Q — K, (k) Ry K (k), (10)
P(0) = D(0).

Proof: According to the definition of innovation, we can get
(k) = y(k) — §(klk — 1)
= y(k) — Bz (k|k — 1)
= Bz(k|k — 1) + n(k)Box (k) + v(k). (11)
Further, the covariance of innovation is obtained as follows
R.qy = E{e(k)"(k)}
= E{[B(klk — 1) + (k) Box(k) + v(k)] [BE (k[ — 1) + (k) Boa(k) + v(k)]" }

;Bp Bw{(zm ) (zBM )}

L i=1 j=1
= BP(k)B" + 11, ® (ByD(k)By) + R.

By employing the projection theory, we have

z(k + 11k) = proj{x(k + 1)|(0),--- ,e(k)}

= proj{[A+£(k )Ao]x(k) + n(k)le( )i--e(k)}
= proj{[A + (k) Ao]z(k)[2(0), - (k —1)}
+E{[A+¢&(k)A ]x(k)eTk}R (k)
= Az(k|k — 1) + K, (k)z(k), (12)

where K, (k) is calculated by
Ky(k) = E{[A+ (k) AoJz (k)" (k) } R,
= E{[A+ (k) AoJa(k)[Bi (k|k — 1) +n(k) Box (k) + v(k)]" } RZ,
= [AP(k)B" + E {¢(k) Aoz (k)" (k) By n(k) }] Ry,

= |AP(k)B" + E { ( 6i§i(/f)A0i> x (Xm: By (k ) }

= BT + Z Z ’71]611401

[AP(k)BT + 110 (Ao D(k)By)] Ry (13)
Thus, (5)-(8) is proved. Meanwhile, it follows from (1) one has
D(k+1)=E{z(k+1)2"(k+1)}
= E{([A +&(k) AoJx (k) + n(k))([A + £ (k) Aol (k) +n (k)" }

3

~1
i | Beey
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n

= [AD(k)A" + E { (Z €ifi(k)z40i> x(k)z" (k) (i AOTjng(k)e;') } +Q

=1

= |AD(K)A" + )Y " oie;AuD (k) Agie] +Q

0j~7

i=1 j=1

= f_lD(k)AT +11 © (AoD(k)AF) + @,
hence (9) is obtained. After straightforward calculation based on (1) and (12) yield
#(k + k) = [A = Ky (k) Blz(k|k — 1) + n(k) + [£(k) Ao — I, (K)n (k) Bola (k)
— Ky (k)u(k), (14)
thus
P(k+1) = E{&(k+1]|k)z" (k + 1|k)}
= [A = K, (k) BIP(k)[A — K, (k)B]" + Q + K, (k) R, (k)
+E {[¢(k) Ao — Kp(k)n(k) Bolw (k)" (k)[€ (k) Ao — I (k)n(k) Bo]" }
= [A = K, (k) BIP(k)[A — K, (k)B]" + Q + K, (k)R (k)
+E {Z > eili(k) Az (k)a" (k) Agie] (e }

i=1 j=1

—E {Z Z eigi(k)AUix(k)xT(k)Bg;'n]T(k)a?} KpT(k)

i=1 j=1

- Ky(k)E {Z Z a;n; (k) Boiz (k)™ (k) Ag;&] (k)ef

S

= [A — K,(k)B]P(k)[A — K,(k)B]" + Q + K,(k)RK] (k) + TI; ® (4, D(k)A})

p (
+ K, (k) [T ® (BoD(k)Bg )] K (k) — K,(k) 15 © (ByD(k)A{)]
— [,© (AD(k)By )] K, (k)
= AP(K)AT + 11, © (AoD(k)AY) + Q — Kp(k)Regny K[ (k). (15)

p

Therefore, (10) is obtained. The proof is ended here. \Y

Remark 3.1. By employing the projection theory, we have derived the LMMSE predictor
for multi-channel multiplicative noise systems. The multiplicative noise represented by a
diagonal matriz makes the problem more challenging. In order to overcome this difficulty,
we introduce the Hadamard product, which renders it possible to obtain a similar result to
the scalar multiplicative noise case. It will play an important role for us to deal with the
estimation problem for multi-channel multiplicative noise systems with time delay, which
will be presented later.

4. Extension to Time-Delay Systems. This problem can be settled directly by em-
ploying the augmentation approach; here we give a simple explanation.
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Define
(k) A 0 0 Ay n(k)
_ sk=1) | _ 0 0 0 0
=] ", A= D0 U =
z(k — d) 0 0o I 0 0
k) 0 - 00 Ac 0 -+ 0 0
0 0 - 00 0 0 - 0 0
Eky=| 0 0 - 00| A=| 0 0 00],
o --- 0 00 0O 0 --- 00
B=[B 0 --- 0 By], By=[B, 0 --- 0], q(k) = diag{n(k), 0, ---, 0},
thus systems (3) and (4) can be changed as an equivalent system:
X(k+1) = [A+&(k)A) X (k) +n(k), (16)
y(k) = [B +7(k)B,] X (k) + v(k). (17)

Hence the estimator can be designed directly for time-delay system by employing the result
of Theorem 3.1. Apart from the augmentation approach, we consider another method by
calculating a partial difference Riccati equation and a Lyapunov equation, which has the
same dimension as the original system (3). Before solving the optimal estimator (k — j|k)
of systems (3) and (4), we introduce an important lemma as follows.

Lemma 4.1. For system (3), let D; j(k)=E {x(k — i)2" (k — j)}, and then we can obtain
the correlated functions as follows

mﬁszﬂmz{?f““?*?>% (18)
0j-ilk —1i), 1<,
where
Doo(k) = ADgo(k — 1)AT + AyDog(k — 1 — d)A] + 11, © (A¢Doo(k — 1) Af)
+ ADqga(k — 1) A} + AqDg 4(k — 1) A" + @, (19)
Dos(k) = ADgs_1(k — 1) + AgDg 4,y (k — ), (20)

D; ;(0) = Py(—i,—7).

Proof: According to the definition of D; ;(k), it is obvious that (18) holds. It follows
from (18), and one has

Doo(k) = E{z(k —0)z" (k—0)}

= B{[Ax(k — 1)+ Agz(k —d — 1) + £(k — 1) Agx(k — 1) + n(k — 1)][Az(k — 1)
+Agr(k —d—1)+ &k — 1) Agx(k — 1) + n(k — 1)]" }

= AE{x(k— 12" (k- 1)} AT+ AyE {x(k —d—1)a" (k—d— 1)} AT
+E { (Z eibi(k — 1)A§i) w(k —1)zT (k —1) (Z ALEN (k- 1)4) }
+AE{z(k—1)a"(k—1—-d)} A] + AyE {z(k — 1 —d)2" (k — 1)} AT
+E{n(k—1)n"(k—-1)}

= ADyo(k — 1)AT + AygDgo(k — 1 — d) A
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+11 ® [AeDoo(k — 1)A{] + ADga(k — 1) A7 + AaDg 4(k — 1)A" + Q,
which is (19). Following the same line we can derive
Dos(k) = E{z(k — 0)z"(k — s)}
= E{[Az(k — 1) + Agz(k —d — 1) + £(k — D) Aex(k — 1) + n(k — 1)]2" (k — 5)}
= AE{z(k — )" (k — s)} + AyE {x(k — 1 — d)z" (k — s)}
= AE{z(k—1)a"(k—1—(s— 1)} + A44E{x(k—s—(d—s+1))a" (k—s)}
= ADgs_1(k — 1)+ AgDg—s1,0(k — s)
= ADgs_1(k — 1) + AgDg g o1 (k = s),

thus (20) is proved. The proof of this lemma is completed here. \Y
Under the condition of the standard Kalman filtering, based on systems (3) and (4),
we define the innovation sequence £(k) as follows:

e(k) = y(k) — y(k[k — 1)
= Bi(klk — 1) + Baii(k — dlk — 1) + n(k) Byz (k) + v(k). (21)

Meanwhile, we let

Pli,j, k) = B {[2(i) - a(ilk)] [2(7) = 2GI)]" } (22)

We are devoted to deriving the LMMSE filter and smoother by innovation analysis method
in next step.

Theorem 4.1. For systems (3) and (4), the LMMSE filter and smoother are given as
follows

z(k + 1lk) = Az(k|k) + Agz(k — d|k) + No(k)e(k), (23)
z(k —jlk) = #(k — jlk — 1) + K;(k)e(k), j=0,1,...,d, (24)
2(=k[0) = p,
where No(k) and K;(k) can be calculated by
No(k) = T3 © (AeDoo(k) By ) R4, (25)
Kj(k) = [P(k =4, k,k = 1)B" + P(k — j, k — d,k — 1) By | RZ;, (26)

R.xy = BP(k,k,k —1)B" + ByP(k — d,k — d, k — 1) B}
+BP(k,k —d,k — 1)BY + ByP(k —d, k., k —1)B"
+1, ® (B, Doo(k)B)) + R, (27)
while Dy (k) is calculated from Lemma 4.1, and P(-,-,-) can be calculated as follows
P(k—ik—j.k) = P(k—ik—j,k—1)— Ki(k)Ry K] (k), 0<i <j<d, (28)
Pk+1,k—7j.k) = AP(k,k — j k) + AgP(k —d,k — j, k)
— No(k)[BP(k,k — j, k — 1)
+ByP(k—d, k—j,k—1)], 0<j <d, (29)
Plk4+1,k4+1,k) = AP(k,k,k)AT + AyP(k — d, k — d, k)AL
+ AP(k, k —d, k)AL + AgP(k — d, k, k) AT
+ 10, © (AeDoy(k) A7) +Q
— No(k) Rex) [K()T(k)AT + KdT(k)Ag]
— [No(k) + AKo(k) + AaK 4(k)]Rey Ny (F), (30)
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Pk —ik—j k) =Pl (k—jk—ik), (31)
P(=i,—j,0) = Py(—i,—j), 0<i<j, 0<j<d
Proof: By employing the projection theory, we have
2(k + 1|k) = proj{xz(k + 1)|e(0), -+ ,e(k)}
= proj{[Az(k) + Agz(k — d) + §(k) Aex (k) + n(k)][e(0),- - ,e(k)}
= Az(k|k) + Agz(k — d|k) + F {5(k)A§x(k)eT(k)} R;(z)s(k)
= Az(k|k) + Agz(k — d|k) + No(k)e(k), (32)
where Ny(k) is calculated by
No(k) = E {€(k) A (k)" (k)} R,
= E{&(k) Az (k)[BE(k[k — 1) + By (k — d|k — 1) + (k) Byz (k) +v(k)]"} R 4
= B {&(k)Aeu(k)a" (k) Byn" (k) } Ry

=FE {ZZ%&(‘C)AM( (k)BanJ (k)onT} R;(z)

i=1 j=1

= 13 © (A¢Dyo (k) BY) R,

hence (23) and (25) are proved. On the other hand, based on the projection theory one
has

(33)

(k= jlk) = proj{az(k —
= proj{z(k — j)[e(0), - ,e(k = 1)} + proj{w(k — jle(k)}
{x(k = )" (k)} R_jye (k)

where K (k) can be calculated by
Kj(k) = E {x(k— )" (k)} RZ},
= E{[z(k —j|k—1)+~( —jlk = 1)e" (k) } Ry,
= E{#(k—jlk —1)" (k) } Ry,
= E{@(k — jlk — 1)[BE(k|k — 1) + Byi(k — d|k — 1)
+n(k) By (k) + v(k)]" } R,
= [P(k —j,k,k = 1)B" + P(k — j,k —d,k —1)Bi] Ry,

therefore (24) and (26) are obtained. Next, we will derive the covariance matrices of the
innovation £(k).

R.4) = E{[B&(k|k — 1) + Bs@(k — d|k — 1) + n(k) B,z (k) + v(k)|[Bi(k|k — 1)
+ Byz(k — d|k — 1) + n(k) B,z (k) + v(k)]"}
= BP(k,k,k —1)B" + ByP(k —d,k —d,k — 1)B} + BP(k,k —d,k — 1)B}
+ ByP(k —d, k,k — 1)B" + 11, ® (B,Dyo(k)B]) + R,
thus (27) is proved. Meanwhile, it follows from (24) that
ik —ilk) = z(k —ilk — 1) — K;(k)e(k),
T(k —jlk) = 2(k — jlk — 1) — K;(k)e(k),
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Based on (34) and (35), we can derive the estimation error covariance matrices as follows
Pk —ik—j,k) = E{[&(k—ilk)z" (k — j|k)] }

= E{[a(k —ilk —1) — Ki(k)e(k)][z(k — j[k — 1) - (B)]"}
= E{i(k—ilk—1)z"(k—jlk—1)} — E{i(k —z|k—1 (k)} K (k)
—Ki(k)E {e(k)z" (k — jlk — 1)} + Ki(k)E {(k) }KT

= P(k—i,k—j,k —1) = K;(k) R K (k),
(28). Combining (3) and (32), we will obtain
z(k +1lk) = z(k+ 1) — 2(k + 1]k)
= Az(k|k) + AqZ(k — d|k) + £(k)Aex (k) + n(k) — No(k)e(k), (36)
then making use of the results of (35) and (36), one can show that
P(k+1,k—j k) = E{i(k+1|k)z" (k- jlk)}
= E{[Az(k|k) + Agz(k — d|k) + £(k)Aex (k) + n(k)
— No(k)e(R)JZ" (k — jlk) }
= AP(k,k — j, k) + AgP(k —d,k — j, k) — No(k)E {6(k)5cT(k — ]|k)}
+ B {&(k) Acx (k)T (k — jIk) }
= AP(k,k — j, k) + AgP(k — d, k — j, k) — No(k)E {e(k)z" (k — j|k)}

—E{ZZef )Agiz(k)x" (k) BEnT (k)ajT}KjT(k)

=1 j=1
— AP(k,k — j,k) + AgP(k — d,k — j, k)
— I3 © (A¢Doo(k)By) Kj (k) — No(k)E {e(k)z" (k — jlk)}
= AP(k,k — j,k) + AP(k — d.k — j, k) — No(k)Reqo KT (k)

which is

— No(k)E {e(k)z" (k — j|k)}, (37)
Furthermore,
E{e(k)i"(k —jlk)} = E{ Bi(klk —1) + de(k d|k — 1) + n(k) B,z (k)
+o(R)][z(k - gk —1) — (K1}

—BP(kk—jk—1)+BdP(k dk—]k—l)
— R K (k), (38)

by combining (37) and (38), the proof of (29) can be completed. Noting that
z(klk) = z(k|k — 1) — Ko(k)e(k), (39)
Tk —d|k) = &(k — d|k — 1) — K4(k)e(k), (40)

meanwhile, with the help of (21), one has
E{&(klk)e"(k)} = E{[#(k|k —1) Kg(k:) (k)" (k)}
= B {#(klk — D" (K)} — Ko(k) Regey
= P(k,k,k —1)B" + P(k,k — d,k — 1) B} — Ko(k)Re(ry, (41)
E{3(k = dk)e"(k)} = E{[#(k — dlk — 1) - Kd<k> ()" (k) )}
= E{#(k—dlk —1)e"(k)} — Kq(k) R
= P(k—d,k,k—1)B" + P(k—d,k —d,k—1)BY
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— Kq(k)R. (k).
Then according to (39) and (40), we have
E{AZ(k|k)[g(k) Aex (k)] } = B {A[Z(k|k — 1) = Ko(k)e ( € (k) Aex (k)] }
= —AKo(k) (T © (B, Doo(k)A7))
B {Adi(k — dRER) Aex(W)IT} = B { Auli(k — dlk = 1) — ( )= (B)E(k) Aex (k)
= AKy(k) (T © (B,Doo(k)AT))
Therefore, it follows from (41)-(44) that
Plk+1,k+1,k)
= E{&(k+1|k)z"(k + 1]k)}
= E{[Az(k|k) + Agz(k — d|k) + £(k) Az (k) + n(k) — No(k)e (k)] [Az(k|k)
+ Agi(k — dk) + £(k) Agx (k) + n(k) — No(k)e(k)]" }
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(42)

(43)
I}

(44)

= AP(k,k, k)AT + AdP(k —d,k —d, k)AL + AP(k k—d, k)AT + AgP(k —d, k, k) AT

— AE {#(k|k)e" (k) } Ny (k) AdE {x (k —d|k)e"(k)} Ny (k) + 11 @ (A¢Doo(k)A{)
— No(k)E {(k)z"( k|l<: } AT — E{e )i" (k — d|k)} A} + No(k) Ry Ny (k)
— E{&(k)Agu(k)e" (k) } Ny (k) = No(k)E {=(k)a" (k) A{ € (k) }

+ E {Az(k|k)[¢ ( )Agm(k)]T} +E{ k)Aex(k))z" (k|k) A"}
+ E{Agi(k — dk)[E(k)Aex ()]} + E {[€(k) Aex (k)" (k — d]k) A} } + Q

= AP(k,k,k)AT + AyP(k — d,k — d, k)AL + AP(k,k — d, k)AL + AgP(k — d, k, k) AT

— [AP(k,k,k —1)B" + AP(k,k — d,k — 1)B; — AKo(k)R.()] Ny (k)

— [44P(k — d, k,k — 1)BT + AyP(k —d,k —d, k — 1) By — Ade(k)RE(k)] N{ (k)

~ No(k) [AP(k, ko k — 1)BT + AP(k,k — d,k — 1) B} — AKo(k)Ro]”

— No(k) [AgP(k — d, k,k — 1)B" + AyP(k — d,k — d, k — 1) B} — A4K4(k)Re(1))
+ 10 © (A¢Doo(k)AL) + Q + No(k)ReryNg (k) — No(k)Reiy Ny (k)

— No(k) Re(oyNg (k) — AKo(k) (T3 © (ByDoo(k)A¢))

— (I3 © (A¢Doo(k)BY)) Ky (k)A™ — AgK (k) (II © (ByDoo(k)Af))

- (H3 © (AgDo,O(k)B;F)) K (k)Ag

= AP(k,k,k)AT + AyP(k — d,k — d, k)AL + AP(k,k — d, k)AL + AyP(k — d, k, k) AT

+11 © (AeDoo(k)AL) + Q — No(k) Rery [ Ko ()AT + K (k) A7 ]
— [No(k) + AKo(k) + AaK (k)| ReryNg ().

which is (30). At last (31) can be obtained by the definition of (22). So far, the proof is

completed.

\Y

Remark 4.1. From Theorem 4.1 one can see the estimator gain can be calculated by
solving a partial difference Riccati Equation (28)-(30) and a Lyapunov equation, where
the equations have the same dimension as the original system. Denote Cyyg and Che, the
numbers of system with multi-channel multiplicative noise and time delay for augmenta-
tion method and our proposed approach in one step, respectively. According to [27], one
can see that the order of d in Cgyy s 3, while the order of d in Chpey is 2. Therefore, if
d is large enough, Cguug > Cpew. Therefore, compared with the conventional augmented
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approach [25], the presented approach greatly lessens the computational demand when the
delay is very large.

Remark 4.2. When the delay is free, that is Ay = By = 0, the result of Theorem 4.1 can
be reduced to the result of Theorem 3.1. Here we only give a simple explanation on how
to deduce the Riccati Equation (10) from partial Riccati Equations (28)-(30).

It follows from (28)-(30) one has
P(k+1,k+1,k) = AP(k,k, k) AT + 11, © (A¢Doo(k) A7) + Q — No(k)Re( K § (k) A™
— ARy (k) Rey Ny (k) — No(k)Rery Ny (k)
= AP(k, k, k — 1) A" — AKo(k)Ro(oy K (k) AT + 11 © (A¢Doo(k)A{)
+@Q — No(k)Rey Ky (k) A" — AKo(k) Rei) Ny (k)
— No(k) Re(y Ny (k)
= AP(k,k,k —1)A" + I, © (A¢Doyo(k)A{) +Q
— Ky (k) Ry K- (k), (45)
where K- (k) is
Ky (k) = AKo(k) + No(k) = [AP(k, k,k — 1)B" + 113 © (A¢Doo (k) By )| Ry

From the definitions of P(k + 1,k + 1,k), P(k), Doo(k), D(k), one can see that P(k +
1,k+1,k) = P(k), Doo(k) = D(k). Hence we draw the conclusion that (45) is consistent
with (10).

5. Numerical Example. Here we consider the linear discrete-time systems with multi-
channel multiplicative noises

e = (155 01 | ew |57 (55 ]) e,
o) = (| %05 03 |+ | §8 5 |) =tk -+ i
=y ] s0-0= 3] Po=p0 =] § 7).

o[ 1] e8]

When the multiplicative noise £(k) and n(k) are correlated, we set I1; = [, = [I3 =

with

[ 0175 0.175 } On the contrary, when the multiplicative noise (k) and n(k) are uncor-
related, Ily, Ily, II3 are given as Il = 1l = 1I; = [1) (1) . Based on Theorem 3.1, we

obtain the result of one-step predictor Z(k + 1|k). When the multiplicative noise £(k) and
n(k) are correlated, the simulation results are given in Figures 1 and 2, respectively. At
the same time, when the multiplicative noises are uncorrelated, we also provide the sim-
ulation results in Figures 3 and 4. It can be seen from the Figures 1-4 that the predictor
Z(k|k — 1) can track the original state z(k), which implies the presented approach in this
paper is effective.
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FIGURE 1. The first state component (k) and the predictor Z;(k|k — 1)
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FIGURE 2. The second state component z,(k) and the predictor Zo(k|k — 1)
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FIGURE 3. The first state component z (k) and the predictor i (k|k — 1)
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FIGURE 4. The second state component z5(k) and the predictor Zo(k|k — 1)

6. Conclusions. In this paper, we have discussed the optimal estimation problem for
systems with diagonal multiplicative noise, where the multiplicative noise occurs both in
state equation and measurement equation respectively. By using projection theory and
introducing the Hadamard product, the estimator has been designed in terms of a differ-
ence Riccati equation and a difference Lyapunov equation. Moreover, we have extended
the estimation problem to the case of time delay. The solution to the estimator has been
given by calculating a partial difference Riccati equation which has the same dimension as
the original system and a difference Lyapunov equation. Hence the traditional approach of
the state augmentation has been abandoned and the computation demand will be lessened
when the delay is very large. The infinite horizon estimation problems for systems with
multi-channel multiplicative noise and the estimation problem for systems with packet
dropping merit further study.
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