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ABSTRACT. With large-scale increasing of software, locating software faults effectively is
significant to improve software stability and robustness, and important for software debug-
ging. This paper uses a selective hierarchical instrumentation method based on the gran-
ularity of functions and basic blocks to obtain software call traces. A software execution
process is mapped as a directed graph. In this paper, a novel approach to mine mazximal
frequent subgraphs (MFSH-TreeMiner) from software dynamic call graphs is proposed.
In the MFSH-TreeMiner, a mazimal frequent subgraph hierarchical tree (MFSH-Tree)
structure is constructed by accessing graph database only once. Combining executions set
and executions complementary set, a novel metric is proposed for measuring the suspi-
cious value of feature nodes in the passing and failing call graphs. Then feature nodes are
sorted according to the descending order of the suspicious value to locate faults. Siemens
benchmark test suite is used as the experimental subject to evaluate the performance of
our approach; experimental results demonstrate that our approach is both efficient and
effective for software fault localization.

Keywords: Fault localization, Software dynamic call graph, Maximal frequent sub-
graph, Feature node

1. Introduction. With the prosperous development of software industry, software be-
comes more sophisticated. In order to guarantee software quality, a lot of effort resources
are invested. Software testing accounts for 50%-75% of software development and mainte-
nance [1]. Especially, fault localization is the most time-consuming and difficult process in
software testing. Some software faults are non-crashing and difficult to be detected manu-
ally. Effective fault localization can significantly reduce manpower and time consumption
during software debugging, and improve software quality.

Researchers have obtained a lot of achievements in software debugging and fault lo-
calization recently. J. Jones and M. Harrold [2] concluded that if a statement is more
frequent in the failing executions than the passing executions, the probability of the
statement leading to faults is larger. Based on the dynamic spectrum-based approach,
R. Abreu et al. [3] presented a multiple-fault localization technique called BARINEL. A
maximum likelihood estimation approach is introduced to measure the bug-relevance of
predicates in BARINEL. These spectrum calculation methods mainly consider faults from
statements and predicates, ignoring faults that may appear at definitions. Moreover, these
methods may cause the statements having a higher ranking in many test cases. In order to
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narrow down the search scope, G. Neelam et al. [4] developed a program slicing approach
to locate software faults by combining delta debugging [5] with the forward and backward
dynamic program slicing. However, since program slicing considers all statements affect-
ing the output, there are a lot of redundant codes which do not need to be detected. With
the purpose of solving some disadvantages of program slicing and spectrum calculation
method, B. Hofer and F. Wotawa [6] combined program slicing technology and spectrum
calculation method to propose SENDYS method. The SENDYS method improves the
accuracy of fault localization. As coverage information cannot identify statements whose
executions affect the output, Y. Lei et al. [7] presented a statistical fault localization ap-
proach to address the issue. This approach uses an approximate dynamic backward slicing
approach to take into account static slices and dynamic slices. Their experiment results
show that the proposed approach is better than SFL. M. Renieris and S. Reiss [8] drew
the conclusion that the successful path which is the most similar to the failing path is
more beneficial for fault localization than the successful path chosen randomly. Hence, the
neighbor model calculating the similarity of execution traces is proposed to locate faults.
Nevertheless, it does not distinguish the executions whose statements are same but being
executed in different order. Therefore, L. Guo et al. [9] introduced a control flow method
by measuring the difference between execution runs. This method is more effective than
the nearest neighbor model [8] on the detection of branch faults, but the results are still
insufficient in the detection of statement faults. C. Sun and S. C. Khoo [10] presented
a predicated bug signature method and a discriminative itemsets generator to discover
succinct predicated bug signatures on data predicates and control flow information. To
improve the predictive ability of bug signatures, Z. Zuo et al. [11] applied a hierarchical
instrumentation technique to predicate bug signatures and proposed HIMPS algorithm to
find top-k bug signatures significantly. The HIMPS algorithm behaves well on large-scale
programs especially.

A software execution process can be mapped as a directed graph. Analyzing software
execution graph can find faults early and reduce software maintenance cost. C. Liu et al.
[12] constructed a classification framework by using closeGraph [13]. The classification
framework can find non-crashing bugs efficiently. However, the closeGraph is not suitable
for large-scale software. Thus, F. Eichinger et al. [14, 15] applied reduction techniques to
reduce software call graphs and proposed a software fault localization framework based on
closeGraph. Then they combine information entropy and structure score to improve bug
localization accurately. Since some frequent subgraphs may be irrelevant to bugs, H. Cheng
et al. [16] put forward a top-k discriminative graph mining algorithm (Top-K LEAP)
by extending LEAP algorithm [17] to generate candidate discriminative graphs. These
candidate discriminative graphs are used to identify bugs. However, the Top-K LEAP does
not consider weight; S. Parsa et al. [18] presented a discriminative graph mining algorithm
among edge-weighted graphs. In addition, they optimize the reduction strategy to find the
potential fault characteristics subgraphs. Despite all this, some less frequent subgraphs
may be obtained by mining discriminative subgraph. In order to locate complex faults,
X. Wang and Y. Liu [19] put forward a hierarchical multiple predicate switching (HMPS)
method by identifying critical predicates. The method contributes to the search for critical
predicate by using instrumentation method and switching combination strategies.

Function call executions or statement call executions are used in previous work. How-
ever, if execution traces are only function call executions, all statements in functions
need to be checked artificially for finding faults. If execution traces are only statement
call executions, graph size will be large. To address this issue, we present a hierarchical
instrumentation method to obtain function call traces and basic block call traces. R. Vi-
jayalakshmi et al. [20] put forward the FP-GraphMiner algorithm to find frequent graphs
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in network graphs. By constructing an FP-Graph which stores structural information of
edges in all graphs, the FP-GraphMiner can obtain frequent graphs. Since some condi-
tions are not considered in FP-GraphMiner, some frequent graphs cannot be obtained.
Therefore, we propose an MFSH-TreeMiner algorithm based on FP-GraphMiner to find
all maximal frequent graphs. Then feature nodes are found as fault signatures by using
MFSH-TreeMiner in basic block call executions. Pinpoint [21] calculated the suspicious
value of program entity by Jaccard which only considers faults occurring in the failing
executions. However, faults may not appear in the passing executions. For purpose of
locating faults accurately and quickly, we define a measure to calculate the suspicious
value of feature nodes based on these two cases.
In summary the following contributions have been made in this paper:

e In order to obtain call traces on the granularity of functions or basic blocks, we
propose a hierarchical instrumentation method. As graph is more compact and scal-
able than trace, call traces are reduced to form software dynamic call graphs for
identifying faults easily.

e We construct a maximal frequent subgraph hierarchical tree (MFSH-Tree) structure
by visiting software dynamic call graphs only once. An efficient maximal frequent
subgraph mining (MFSH-TreeMiner) algorithm is presented to find all maximal fre-
quent, graphs by traversing MFSH-Tree from a leaf node to the root node.

e Since Jaccard which is used to calculate the suspicious value of program entity only
considers the executions set, we designed a measure to calculate the suspicious value
of feature nodes. This measure takes account of the executions set and the comple-
mentary executions set.

The remaining of the paper is organized as follows. Some definitions are given in Section
2. Section 3 introduces a framework of fault localization with maximal frequent subgraph
mining and a measure for calculating the suspicious value. Experiments and analysis in
Section 4 show the performance of our approach. Section 5 summarizes the paper.

2. Preliminary Concepts. A software dynamic call graph s related to a call trace, is a
2-tuple s = (V, E), where V is a set of vertices and F C V' x V is a set of directed edges.
Figure 1 is a sample of graph database consisting of four simple graphs.

The vertices and edges represent basic blocks or functions and call relationships among
them respectively in a software dynamic call graph.
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FIGURE 1. A sample of graph database

Given a graph database S = {s1, s2," -, $,} and a user-specified minimum support o,
a subgraph is frequent if its support is no less than o. |S| is the number of graphs in S.
For a given support, let F' = {f, fo,---} be a set of all frequent subgraphs in S. If a
subgraph f; € F'is a maximal frequent subgraph, there is no subgraph f; € F' to satisfy

fi € fj.
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The EdgeCode of an edge e denoted as EC/(e) is a |S| length string. Each character
corresponds to a graph in S. If the character is 1, e exists in the corresponding graph.
On the contrary, e does not exist in the corresponding graph. As shown in Figure 1,
EC/(ab) = 1111, EC(bd) = 1011.

The frequency of an edge e denoted as fre(e) or fre(EC(e)) is the number of 1 in
EC/(e), also is the number of graph that contains e in S. As shown in Figure 1, fre(ab) =
4, fre(bd) =3, fre(1011) = 3.

A group denoted as g = {(EC(e1), < ey, ea,-++ >)|EC(e;) = EC(eg) = ---} contains
all edges with the same EdgeCode. The EdgeCode of ¢ is denoted as EC(g) = EC(ey).
The frequency of g is denoted as fre(g) = fre(e).

A cluster denoted as ¢ = {(fre(c), < g1,92,--- >)|fre(g1) = fre(g2) = ---} contains
all groups with the same frequency. The frequency of ¢ is denoted as fre(c) = fre(g).

A level [ includes clusters, [={(Level, <cy, ¢, -->)}. Level is the position of the level.

Maximal Frequent Subgraph Hierarchical Tree for short MFSH-Tree, is constructed by
linking groups in different levels. Nodes are groups in levels. Let [;, [; be two levels
with Level(l;) > Level(l;), where [; is the higher level of I;. If g1 N g2(4,c1y, gyer,) = 91 18
satisfied, g9 is the parent group of g, g; is the child group of ¢g;. Any group has at most
one parent group. If a group has a parent group but does not have a child group, it is a
leaf node.

3. A Framework of Software Fault Localization. This framework includes three
critical phases, transforming software call traces to software dynamic call graphs, mining
maximal frequent subgraphs as faulty regions, and calculating suspicious value. Software
dynamic call graphs are built on the granularity of function and basic block respectively.

The framework of software fault localization is described in detail as follows.

Step 1: Software function call traces are collected during software executing. Every
function call trace is assigned a label (passing, failing), which is determined by comparing
and analyzing trace structure similarity. These function call traces are reduced to construct
software dynamic call graphs.

Step 2: For a given support, the maximal frequent subgraph mining algorithm is used
to find frequent called functions.

Step 3: Basic block call traces are acquired. These basic blocks appear in frequent called
functions. And a label (passing, failing) is assigned to each call trace. These call traces
are used to build dynamic call graphs.

Step 4: For a given support, frequent executed feature nodes are found with the maximal
frequent subgraph mining algorithm in these dynamic call graphs.

Step 5: A measure to calculate the suspicious value of feature nodes is proposed to help
developers locate faults quickly.

In Step 1, to collect software function call traces, some codes need to be added to the
beginning of each function to form instrumented software. And the software execution
results are not affected. In Step 4, in order to acquire basic block call traces, some codes
are added to the basic blocks of frequent call functions to form instrumented software.

If the scale of software is small, some codes are directly inserted into the basic block of
all functions to form an instrumented software in Step 3, skipping Steps 1 and 2.

3.1. Building software dynamic call graphs. In order to build software dynamic call
graphs, software call traces need to be obtained during software executing. We instrument
functions or basic blocks of software artificially and run the instrumented software to
collect software call traces. Every software call trace is assigned a label (passing, failing).
Algorithm 1 presents the process of building software dynamic call graphs.
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Algorithm 1 Building Software Dynamic Call Graphs

Input: a software, test cases

Output: dynamic call graphs S
1: instrument functions or basic blocks of the software;
2: Run the software to collect software call traces T
3: S=10; //a collection of software dynamic call graphs
4: for each trace t € T' do
5: assign a label (passing, failing) to t;
6 transform ¢ to a software dynamic call graph s;
7 S=SUs;
8: end for
9: return S,

3.2. Mining maximal frequent subgraph. As accessing disk needs abundant time,
scanning the graph database repeatedly increases the time complexity of the algorithm.
Many proposed frequent subgraph mining algorithms scan the graph database more than
once. Our algorithm aims to mine all maximal frequent subgraphs with a given support
by scanning the graph database just only once.

Since each edge is distinct for a software dynamic call graph, an edge list representation
is more efficient than a vertex adjacency matrix representation for the graph. Each edge
in a graph is regarded as the 2-tuple < B, E >, where B is the beginning node, and FE is
the end node. As shown in Figure 1, s; = {ab, ac, bd, be, cd, cg, df, dg, ef, eh, fh, gh}.

A graph database is represented as a distinct edge list £ L. Each edge is expressed as
a two-tuple < e, EC'(e) > in the list, where e represents the distinct edge, and EC/(e)
represents the EdgeCode of e. The list is sorted in descending order according to the
EdgeCode of edge. In the following details, edges that satisfy fre(edge) > o-|S| are
selected from the sorted list.

Mining maximal frequent subgraph includes two major phases, constructing MFSH-
Tree and mining maximal frequent subgraph in MFSH-Tree.

3.2.1. Constructing MFSH-Tree. This process has two stages, forming different hierarchi-
cal levels and linking groups in different hierarchical levels to construct MEFSH-Tree.
Forming different hierarchical levels. First, the edges with the same EdgeCode are
combined into a group. These groups with the same frequency are grouped into a cluster.
Each cluster constitutes a level. All levels form initial hierarchical levels. Second, groups
in the same cluster are going to do AND operation according to the EdgeCode of group.
Third, all new groups of the level with the same EdgeCode are formed into a group. These
groups with the same frequency are grouped into a cluster. These clusters and the initial
cluster of the level constitute a new level. Finally, all new levels form different hierarchical
levels. The procedure of forming different hierarchical levels is performed in Algorithm 2.
Algorithm 2 maps graph database into Edge List EL in line 1 to line 4. In line 5, FL
is sorted in descending order according to the EdgeCode of edge. The process of forming
initial hierarchical levels is described in line 6 to line 13. In line 15 to line 17, groups in
the same cluster do AND operation. The number of groups which are chosen to do AND
operation is from C? to C}, where k represents the number of the groups in the cluster,
j satisfies that the frequency of all new groups that CJ*' forms is less than o - S|, j < k.
Finally, forming different hierarchical levels is shown in line 18 to line 24. In order to link
groups in different hierarchical levels conveniently, these clusters of each level in different
hierarchical levels are ranked by the frequency of clusters in ascending order.
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Algorithm 2 Forming Different Hierarchical Levels

Input: graph database S, support o
Output: different hierarchical levels
EL=10; //Edge List
for each distinct edge e; € S do

insert < e;, EC(e;) > into EL;
end for
descending sort EL by EdgeCode;
for each g; do

g; = {(EC’(el), < €e1,€9, - >)|EC(61) = EC(62) =--- },
end for
I ={(0, < root >)|Level = 0};
for each ¢; do

¢; ={(fre(c), <gi,g2,- - >)|fre(g) = fre(g2) =+ };

l; = {(Level, < ¢; >)|Level = i};
: end for
: for each [; do

for each ¢; in [; && fre(c;) > o -|S| do

Groups in ¢; do AND operation according to the EdgeCode of group. The

number of groups which are chosen to do AND operation in ¢; is from C? to C’,Z, k
represents the number of the groups in ¢;, j satisfies that the frequency of all new
groups that C’,ZH forms is less than o - |S|, j < k;
17: end for
18: for each ¢, do

o T e S e G e G S
AR ol S el

19: gnew = {(EC(91), < 91,92, - >)|EC(g1) = EC(ga) = -+ };
20: end for

21: for each ¢, do

22: Cnew = {(fre(cnew); < 91,92, - >)|f7"6(g1) = fre(QZ) = }a
23: insert e into [;;

24: end for

25: end for

26: return different hierarchical levels;

Example 3.1. Initial hierarchical levels with o = 50% is shown in Figure 2. Groups
in Level = 3 does not need to do AND operation. Groups (1110,< dg >), (1101, <
be,cd >), (1011, < bd,df >) of ¢; in Level = 2 must do AND operation to generate
groups (1100, < dg, be,cd >), (1010, < dg,bd,df >), (1001, < be, cd, bd,df >). Groups
(1100, < dg,be,cd >), (1010, < dg,bd,df >), (1001, < be,cd,bd,df >) are formed into
a cluster ¢y, fre(cs) = 2. ¢ and ¢y constitute a new level, | = {2, (¢y, ¢)|Level = 2}.
Figure 8 shows different hierarchical levels with o = 50%.

Linking groups in different hierarchical levels. Groups are linked by starting from
the highest level. If a group is the parent group of another group, all edges in the group
are marked as visited and stored in a visited edge collection called V EC'. If all edges in a
group are visited, we need to find the parent group of the group. These groups in different
hierarchical levels are linked to form MFSH-Tree. All maximal frequent subgraphs can be
mined in MFSH-Tree. Algorithm 3 represents the process of constructing MFSH-Tree.

If i = 1, the groups in Level = 1 can be linked to the root in line 5 of Algorithm 3.
The process of finding the parent group of ¢; is shown in line 9 to line 22. The group
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FIGURE 3. Different hierarchical levels with o = 50%

g2 is selected from a cluster that has minimum frequency in Level [; (j = i — 1) until
910 92(g,¢l;, gety) = 91 18 satisfied. If g; N 92(g1 €ls, go€l;) # ¢ for all groups in [;, the groups
in the next higher level are examined to find the parent group of ¢g;. In line 11, if j =1
and the parent group of ¢, is not found, ¢g; should be linked to the root.

Example 3.2. Different hierarchical levels with o = 50% is presented in Figure 3. First
we search the parent group of the group g1 = {(1100,< cg,ef >)} in Level =3 and the
cluster c3 that satisfies fre(cs)=2. Since we find that go={(1100, < dg, be, cd >)} is the
parent group of g1, where go is in Level =2 and the cluster ¢, that satisfies fre(cs) =2, g1
is linked to go. All edges of gy are inserted into VEC. Because all edges of g3 = {(1110, <
dg >)} have ezisted in VEC, where g3 is in Level = 2 and the cluster cs that satisfies
fre(cs) = 3, we do not need to find the parent group of gs. MFSH-Tree with o = 50% is
shown in Figure 4.

'root i
- l»-—~LeveI =0
'_L """""""
;o]
o (at,) )_.J 100 A) Level=1
,,,,,, Y A—
I'Iio'o_‘“.' 1010 | | 1001 i fu0 711017 710111
50% | (dgbecd) | { (dgbddh) I | (ecdbdd | | (dg) | | (becd) ! ! oadh) | 750 Level=2
== D D= 1;:;,:9r0up
i 1100 | 11010 1 11001 i ____ cluster
gD ] L ) L oen) 1 50% Level- L L level

FIGURE 4. MFSH-Tree with 0 = 50%
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Algorithm 3 Constructing MFSH-Tree

Input: different hierarchical levels, support o
Output: MFSH-Tree

1: X = Maxinum Level;

2: VEC =0; //visited edge collection

3: for each ¢; in Level =1, X > i >1do

4: for each g; in ¢; && Veee,, € VEC do

5: if i =1 then

6: g1.parent = root;

7: break;

8: else

9: for each ¢y in Level =j,1—1>7>1do
10: if 7 =1 then

11: g1.parent = root;

12: break;

13: else

14: for each ¢, in ¢y do

15: if [ 092 =01 then
16: gi.parent = go;
17: insert, all edges of g, into VEC;
18: break;

19: end if

20: end for

21: end if

22: end for

23: end if

24: end for

25: end for

26: return MFSH-Tree;

3.2.2. MFSH-TreeMiner: Mazimal frequent subgraph mining in MFSH-Tree. Since MFSH-
Tree is constructed by the given support, all maximal frequent subgraphs are traversed
from a leaf node to the root node in MFSH-Tree via finding the parent group of a group.
A maximal frequent subgraph can be obtained from the collection that contains all edges
of the groups in a traversal path. And the number of traversal paths is the number of
maximal frequent subgraphs. MFSH-TreeMiner is presented in Algorithm 4.

Example 3.3. As an ezample is in Figure 4, all mazimal frequent subgraphs with o = 50%
are shown in Figure 5.

@ @ ©
® © ® © ® ©
© @1 @ © @
® © ® © ® (D

f, 0 f, fy

FIGURE 5. All maximal frequent subgraphs with o = 50%
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Algorithm 4 MFSH-TreeMiner

Input: MFSH-Tree, support o
Output: all maximal frequent subgraphs F'

1. N ={ny,ng,---}; //leaf nodes set

2: F'=(); //all maximal frequent subgraphs set
3: for each n; in N do

4: f=10; //amaximal frequent subgraph
5: insert all edges of n; into f;

6: while n; = root do

7 g = n;.parent;

8: n; =g,

9: insert all edges of n; into f;

10: end while

11: insert f into F

12: end for

13: return F;

In fact, for software fault localization in the passing and failing executions, the support
is at most the percentage of fail executions and all executions. Obviously, when the support
is lower, the number of feature nodes is more.

3.3. Calculating suspicious value for fault localization. Intuitively, a fault appears
frequently in the failing executions but rarely in the passing executions. To help devel-
opers to locate faults effectively, a measure is proposed to compute the suspicious value
of feature nodes. For software dynamic call graph sets, totalpassed and total failed are
defined, corresponding to the passing and failing executions, whose correctness is deter-
mined by comparing and analyzing trace structure similarity. Given a feature node n in
the software, passed(n) represents the number of n existing in the passing executions;
failed(n) represents the number of n existing in the failing executions; un_passed(n) rep-
resents the number of n not existing in the passing executions; un_failed(n) represents
the number of n not existing in the failing executions.
Pinpoint [21] uses Jaccard coefficient to calculate the suspicious value of program entity,
given in Equation (1).
failed(n)

Jaccard(n) = failed(n) + un_failed(n) + passed(n)’ (1)

If a feature node contains faults, its suspicious value is related to the complementary
set of executions. Based on complementary set of executions, a coefficient is defined, given
in Equation (2).

1 un_failed(n) = 0,
Un_Jaccard(n) = un_passed(n)
un_passed(n) + un_failed(n) + passed(n)

(2)

other.

Combining executions set and complementary set of executions, a measure called Sus-
picious is designed to calculate the suspicious value of each feature node according to the
execution results, given in Equation (3). Feature nodes are sorted in descending order ac-
cording to the suspicious value. Then programmers can find the faults by combining with
code. The process of finding feature node that contains faults is presented in Algorithm
5.
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Suspicious(n) = Jaccard(n) + ;fn_Jaccard(n)‘ 3)

Algorithm 5 Finding Feature Node that Contains Faults

Input: all maximal frequent subgraphs F
Output: feature node n that contains faults
: N =(); //feature nodes set
: for each f; in F' do

if nper, € N then

insert ng,cy into NV

end if
end for
for each n; in N do

Suspicious(n);
end for
descending sort N by Suspicious(n);
: find n that contains faults;
: return n;

— =
N = O

4. Experiment. In this section, since Jaccard, Tarantula and Ochiai are efficient sta-
tistical measures to statistical fault localization, we compare the performance of the pro-

posed Suspicious with them. These algorithms are implemented in Java. Experiments
are conducted on 64 bit Windows 7 system, Xeon CPU E5-2603 @1.80GHz, 8G Memory.

4.1. Experimental data sets and parameter setting. We use Siemens benchmark
test suite as our experimental data set, which is widely used as the experimental subject
in the field of software research. Siemens contains seven programs and each program has
some bug versions which are seeded artificially. Siemens are described in detail, shown in
Table 1. Because faults in some versions appear in header file, we ignore them. Versions
4 and 6 of printtokens are not considered. Since total failed = 0, version 1, 5, 6, 9 of
schedule2 and version 32 of replace are ignored in our experiment. We use 125 versions in
our experiment finally. Since the scale of seven programs in Siemens is small, some codes
are directly added to all basic blocks to form instrumented software. The given support
is close to the percentage of failing executions and all executions in our experiments.

TABLE 1. Siemens benchmark test suite

Program  Faulty versions LOC Basic blocks Test cases Description
printtokens 7 565 107 4130 lexical analyzer
printtokens?2 10 510 106 4115 lexical analyzer

replace 32 563 124 5542 pattern recognition
schedule 9 412 55 2650 priority scheduler
schedule?2 10 307 60 2710 priority scheduler
tcas 41 173 21 1608 altitude separation

totinfo 23 406 45 1052 information measure
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4.2. Result and performance analysis. Three performance metrics are used. The first
metric is the ratio of codes which need not be examined until finding fault in the whole
executable codes. If the ratio is greater, the fault localization is more effective. The second
metric is the suspicious value index of feature node that contains faults. If the index is
smaller, it refers Suspicious is effective. The third metric is the average ratio of codes
which need not be examined in seven programs.
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Each figure in Figure 6 shows the ratio of codes which need not be examined respectively.
Since the number of versions in printtokens, printtokens2, schedule and schedule?2 is less,
the performance of first metric is displayed by recording the ratio of codes which need not
be examined in each version in Figures 6(a), 6(b), 6(c) and 6(d). While replace, tcas and
totinfo have more versions, we demonstrate the version number of subsection statistics
according to the ratio of codes which need not be examined in Figures 6(e), 6(f) and 6(g).
The purpose of subsection statistics is to facilitate the comparison. Every ten percentage
points form a subsection. [99%,100%] is the first section; it is impossible that the ratio
is 100%. However, if the ratio is larger than 99%, faults are found by checking the code
less than 1%. It has a good practical significance. In order to compare the efficiency, the
numbers of the front subsections are merged. Figure 6(h) implements the version number
of all the subsection statistics according to the ratio of codes which need not be examined
in seven programs.

From Figure 6(a) to Figure 6(d), it is clear that Suspicious in half versions is better
than Jaccard, Tarantula and Ochiai, while in other versions Suspicious is better than at
least one method of Jaccard, Tarantula and Ochiai. Most faults can be located. However,
because support is greater, faults in some versions may not be found, such as vI in
printtoken. To solve the problem, the support can be decreased. In Figure 6(e), if all
faults except that the ratio is 0% are checked out, Suspicious need not check the code
size of 80%), while Jaccard, Tarantula and Ochiai need not check 60% code size. Likewise,
Suspicious need not check the code size of 70%, while Jaccard, Tarantula and Ochiai
need not check 60% code size in Figure 6(g). In Figure 6(f), we can find that Suspicious is
slightly better than Jaccard, Tarantula and Ochiai. In Figure 6(h), when the ratio is 90%,
Suspicious can find 79 faults of the 125 ones, while Jaccard and Tarantula only 68 faults,
Ochiai only 72 faults. By observing the trend throughout the Figure 6(h), Suspicious is
better than Jaccard, Tarantula and Ochiai with the increasing ratio. So it proves that
Suspicious is better than Jaccard, Tarantula and Ochiai in locating software faults.

The number of versions is recorded which can be found faults in each index, and the
experimental results are shown in Figure 7. The abscissa is the sorted index number
of feature node, and the vertical axis is the number of versions. Since replace, tcas and
totinfo have more versions, they are not displayed in this paper. Figure 7(a) to Figure 7(d)
show the performance of Suspicious on printtokens, printtokens2, schedule and schedule2.
In addition, Figure 7(e) presents the version number of each index whose feature node
contains faults in seven programs. It is discovered that the index of half feature nodes is
smaller than Jaccard, Tarantula and Ochiai from Figure 7(a) to Figure 7(d) by Suspicious,
while Suspicious in other versions is better than at least one method of Jaccard, Tarantula
and Ochiai. In Figure 7(e), 37 faults are found when the index is 1. The size of faults found
is greater than 20 when the index is 2. When the index is 3, 5, 8 and 11, the average faults
found with Suspicious is 5. While the index is greater than 6 except 8 and 11, the faults
found are not more than 3. Because the given support is greater, 8 faults are not found.
If the index is less than 10, Suspicious can find 94 faults of the 125 ones. It indicates that
most faults can be located as early as possible using Suspicious to calculate the suspicious
value.

In Figure 8, it presents the average ratio of code which need not be examined in seven
programs. It displays that the average ratio of Suspicious is larger than Jaccard, Taran-
tula, Ochiai in printtoken2, replace, schedule2, tacs and totinfo obviously. Suspicious is
better than Jaccard, Tarantula, but equal to Ochiai in printtoken. Suspicious is better
than Jaccard, Ochiai, but worse than Tarantula in schedule. As a whole, it refers that code
which need not be examined is more to find faults using Suspicious. Therefore, Suspicious
can locate faults more effectively, and it can be applied to improve software quality.
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5. Conclusions. In this paper a simplified framework is proposed for fault localization.
This framework includes three major phases. (1) Software call traces are obtained on the
granularity of functions or basic blocks using a hierarchical instrumentation technique.
Then each software call trace is transformed to a dynamic call graph and classified the
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passing and failing call trace by analyzing trace structure similarity. The selective in-
strumentation can enhance the efficiency of software fault localization. (2) A maximal
frequent subgraph hierarchical tree (MFSH-Tree) structure is devised. MFSH-TreeMiner
algorithm is proposed to mine maximal frequent call subgraphs using MFSH-Tree. And
MFSH-TreeMiner algorithm can find frequently executed basic blocks as feature nodes.
(3) Taking account of both executions set and complementary set of executions, a mea-
sure based on Jaccard is designed to calculate the suspicious value of feature nodes. In
order to locate faults quickly, feature nodes are sorted in descending order according to
the suspicious value. In the end, experiments on Siemens benchmark test suite show that
our fault localization approach is efficient. Therefore, our approach can help developers
reduce time to locate faults efficiently for large-scale software.
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