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Abstract. Optimal switching time control is the study that investigates how best to

switch between different modes. In this paper, we present an approach for solving the

optimal switching time control problem of discrete-time switched linear systems, where

the objective is to minimize a cost functional defined on the state. In particular, we

assume that the sequence of active subsystems is pre-specified and the switching times

are the only control variables. Firstly, using calculus of variations, for one switching

time case, the difference of the cost with respect to the switching time is derived. Then,

a method is provided to deal with the switched systems with multiple switching times. It

is worth mentioning that the differences of the cost functional have an especially simple

form and can be easily used to locate the optimal switching instants. Finally, a numerical

example shows the viability of the proposed method.
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1. Introduction. Many practical systems are best described by dynamics that comprise
continuous state evolution within a mode of operation and discrete transitions from one
mode to another, which are called switched systems. These systems differ from the con-
ventional dynamical systems in that they have both continuous dynamics and discrete
event dynamics. Such systems arise in a variety of applications, including power systems,
industrial process control, automotive systems, and networked control systems [1-7], etc.

Recently, optimal control of switched systems has attracted wide attention, and many
results have been obtained, due to the problems significant in theory and application [3,
8-21]. Many of them concern the problems whose control variables consist of a proper
switching law and the input u(t) [3, 14, 15]. However, a more special class considers au-
tonomous systems, where the term u(t) is absent, the modes sequence is fixed and the
switching times are the sole control variables [16-20]. These problems are referred in the
literature as optimal switching time control problem or time optimization problem. In
particular, [16] considers general nonlinear continuous-time systems, derives the deriva-
tives of the cost with respect to the switching instants and uses constrained nonlinear
optimization techniques to locate the optimal switching instants. [19] considers the sim-
ilar problem, and develops an especially simpler formula than the one in [16] for the
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gradient of the cost functional, which leads itself to be directly used in gradient descent
algorithms.

The above existing results about the optimal switching time control problem focused on
continuous-time systems. However, discrete-time switched systems also appear frequently
in real applications [22-24]. For the optimal control of discrete-time switched systems,
there is extensive literature in recent years [25-30]. Yet, these researches are basically
based on the principle of dynamic programming, or the problems are first transformed
into equivalent optimization problems. Meanwhile, the switching times are not regarded
as control variables among the results in the present. Therefore, there is improving room
for the issue.

In this paper, we extend the results of [19] to discrete-time systems. Considering some
inherent characteristics of discrete-time systems, such as the unavoidable “dimension
curse” problem, the recursive characteristic of their solutions and so on, it is certain
that the direct extension faces the significant challenge of calculating the performance
difference. Thus, from the convenience of visual analysis, we consider the discrete-time
linear systems. The main contribution is that, using calculus of variations, we first derive
a simple formula for the difference of the cost with respect to the switching time for the
one switching time systems. Then, we propose a method to handle systems with multiple
switching times. Finally, we verify the feasibility of the proposed method on a numerical
example.

The remainder of this paper is organized as follows. Section 2 presents the discrete-time
switched linear system model and formulates the optimal switching time control problem.
The formulae for the difference of the cost functional and the method of handling the
multiple switching times case are given in Section 3, followed by an illustrative example
in Section 4. Finally, the conclusions and discussions are stated in Section 5.

2. Problem Formulation. Consider the discrete-time switched linear autonomous sys-
tem described by:

x(k + 1) = Aix(k), k = Ti, · · · , Ti+1 − 1 (1)

where x(k) ∈ Rn is the system state, and i ∈ {0, 1, · · · , M} is the discrete control or

switching strategy. {Ai}
M

i=0
are a finite sequence of constant matrices of appropriate di-

mension and initial condition is x(0) = x0. {Ti}
M

i=1
is the sequence of switching times, and

defining T0 = 0, TM+1 = N . We assume that there is no internal forced switching, i.e.,
the system can stay at or switch to any mode at any time instant.

In this paper, the cost function L(x) : Rn → R is assumed to be taken as the quadratic
form:

L(x(k)) =
1

2
xT (k)Qx(k)

where Q = QT > 0 is the weight for the state. The overall objective functional to be
minimized can be defined by:

J =

N−1
∑

k=0

L(x(k)) =
1

2

N−1
∑

k=0

xT (k)Qx(k) (2)

The goal of this paper is to solve the following discrete-time optimal switching time control
problem for the switched linear autonomous system (1).
Problem (Optimal Control Problem)

Consider a discrete-time switched linear autonomous system (1). Assume that a pre-
specified sequence of active subsystems (0, 1, · · · , M) is given. Find optimal switching

instants {Ti}
M

i=1
such that the corresponding cost (2) is minimized.



OPTIMAL SWITCHING TIME CONTROL 2045

3. Difference of the Cost Function. We consider the control parameter to con-
sist of the switching times {Ti}

M

i=1
and denote it by the N -dimensional variable τ =

(T1, · · · , TM)T . Note that J is a function of τ via (2). Thus, the above problem is ac-
tually a multivariable parameter optimization problem. However, solving it requires the
explicit solution of the state equations, which are dependent on the switching times. We
therefore solve the problem by classical variational methods.

In this section, for simplicity, we first consider one-dimension switched systems, and
then extend the results to the multi-dimension systems. We shall leave the full generality
of the problem behind and first consider only systems with one switching time case (M =
1). In the following, we derive a formula for the difference ∆J .

3.1. One-dimension case. From (1), one-dimension switched systems are defined by:

x(k + 1) = aix(k), k = Ti, · · · , Ti+1 − 1 (3)

where x(k) ∈ R is the system state. {ai}
M

i=0
are a finite sequence of constants and initial

condition is x(0) = x0 ∈ R.
From (2), the corresponding overall cost becomes:

J =

N−1
∑

k=0

L(x(k)) =
1

2

N−1
∑

k=0

qx2(k) (4)

For one-dimension case, we have the following conclusion.

Theorem 3.1. Consider the discrete-time switched linear system defined over {0, 1, · · · ,

N − 1}, with initial condition x(0) = x0 ∈ R, and the signal switching time is τ ∈
{1, · · · , N − 1}:

x(k + 1) =

{

a1x(k), k = 1, · · · , τ − 1

a2x(k), k = τ, · · · , N − 1
(5)

Given the quadratic cost functional J =
∑N−1

k=0
L(x(k)) = 1

2

∑N−1

k=0
qx2(k). We denote

the cost with the switching time at τ − 1, τ and τ + 1 by Jτ−1, Jτ and Jτ+1, respectively.
Consider J as a function of the switching time τ , and denote its difference by ∆J . Define
the costate λ̄(k), λ(k) ∈ R by the (backwards) difference equation:

λ(k) = qx(k) + a2λ(k + 1), k = τ, · · · , N − 2

λ̄(k) = qx̄(k) + a2λ̄(k + 1), k = τ − 1, · · · , N − 2

λ(N − 1) = λ̄(N − 1) = 0

(6)

where x̄(k) are the solutions of switched systems with switching time τ −1. Then, ∆J has
the following form

∆Jforward = Jτ−1 − Jτ =
1

2

(

a2

2 − a2

1

)

x (τ − 1) λ̄ (τ − 1) (7)

∆Jbackward = Jτ+1 − Jτ =
1

2

(

a2

1 − a2

2

)

x (τ) λ (τ) (8)

Proof: Combined with the optimal control theory, it follows immediately from varia-
tional principles.

3.2. Multi-dimension case. We now turn our attention to the multi-dimension case.
Consider the discrete-time switched linear autonomous system (1) and the cost functional
(2). Then, we have the following conclusion.
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Theorem 3.2. Consider the discrete-time switched linear system defined over {0, 1, · · · ,

N − 1}, with initial condition x(0) = x0 ∈ R, and the signal switching time is τ ∈
{1, · · · , N − 1}:

x(k + 1) =

{

A1x(k), k = 1, · · · , τ − 1

A2x(k), k = τ, · · · , N − 1
(9)

Given a quadratic cost functional J =
∑N−1

k=0
L(x(k)) = 1

2

∑N−1

k=0
xT (k)Qx(k). We de-

note the cost with the switching time at τ−1, τ and τ+1 by Jτ−1, Jτ and Jτ+1, respectively.
Consider J as a function of the switching time τ , and denote its difference by ∆J . Define
the costate λ(k) ∈ Rn by the (backwards) difference equation:

{

λ(k) = Qy(k) + AT
2 λ(k + 1),

y(k + 1) = A2y(k),
k = τ, · · · , N − 1

λ (T ) = 0

(10)

where y(k) ∈ Rn has the same dimensional vector with x(k). Then, ∆J has the following
form

∆Jforward = Jτ−1 − Jτ =
1

2
xT (τ − 1)

(

AT
2 λ̄(τ) − AT

1 λ(τ)
)

(11)

∆Jbackward = Jτ+1 − Jτ =
1

2
xT (τ)

(

AT
1 λ̃1(τ + 1) − AT

2 λ1(τ + 1)
)

(12)

where λ1(k) satisfies (10) with k = τ + 1, · · · , N − 1. λ̄(k), λ̃1(k) are the corresponding
solution of (10) with x̄(k) and x̃(k) instead of y(k), respectively. x̄(k), x̃(k) are corre-
sponding solutions of switched systems with switching time τ − 1, τ + 1, respectively.

Proof: By classical variational methods, we first analyze the cost variation between
two systems: an unperturbed system and a perturbed system. Specifically, we denote the
unperturbed system by x, with the nominal switching time τ . Consider now a perturbed
system, for discrete systems, it has two cases, one is with switching time τ − 1, denote
system x̄, and the other is with switching time τ + 1, denote system x̃.

Now, we analyze the induced variation in the performance index. Note that due to the
difference of the switching time, the discrepancy between x and x̄ (also between x and
x̃) yields to a discrepancy in cost J . For simplicity, we denote the discrepancy in cost as
∆Jforward = Jτ−1 − Jτ and ∆Jbackward = Jτ+1 − Jτ , respectively (where Jτ−1, Jτ and Jτ+1

denote the corresponding cost with the switching time at τ −1, τ and τ +1, respectively).
For ∆Jforward, by a series of calculations and rearrangements, we have:

∆Jforward = Jτ−1 − Jτ

=
N−1
∑

k=0

L(x̄(k)) −
N−1
∑

k=0

L(x(k))

=
1

2

N−1
∑

k=0

[

x̄T (k)Qx̄(k) − xT (k)Qx(k)
]

=
1

2
xT (τ − 1)

{

AT
2

[

N−τ−1
∑

i=0

(

Ai
2

)T
QAi

2

]

x̄(τ) − AT
1

[

N−τ−1
∑

i=0

(

Ai
2

)T
QAi

2

]

x(τ)

}

(13)
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By calculating (10) backwards in time, we can obtain:

λ(τ) =

[

N−τ−1
∑

i=0

(

Ai
2

)T
QAi

2

]

y(τ) (14)

Choosing y(k) = x̄(k), we obtain that (11) holds. Similarly, we can prove (12) holds.
Thus, Theorem 3.2 is proved.

Remark 3.1. In the above theorem, the obtained difference formula can be used to find
the optimal switching time for discrete-time switched systems; however, as [16-20] con-
sider continuous-time systems, the methods are invalid. Moreover, although [25-30] study
the discrete-time switched systems, they are merely concentrated on the case where the
switching time is fixed and not the control variable.

Now, we transfer our attention to multiple switching times case, for the general switched
systems with multiple switching times (N > 1), defined by:

x(k + 1) = Aix(k), k = Ti, · · · , Ti+1 − 1, i ∈ {0, 1, · · · , M}

x(0) = x0

(15)

In the research of discrete systems, it cannot avoid the inherent “dimension curse”
problem. Meanwhile, for switched systems (15) with M switching points {Ti}

M

i=1
, it will

have 2M possibilities disturbance cases according to whether left shift or right shift, so
in this optimal control problem, for the given initial series of switching points, we need
to repeat comparing at least 2M performance index to determine next series of switching
points until finding the optimal or sub-optimal solution. This is impossible.

Therefore, the above method becomes invalid and we cannot obtain the perfect results.
However, we can use the following method. As the finite mode sequence is fixed, we firstly
find the optimal switching time T̂1 in 1, · · · , N −1 by Theorem 3.2 for mode 1 and 2, and
then obtain the optimal switching time T̂2 in T̂1, · · · , N −1 for mode 2 and 3 by adopting
the same method, and so on. The following simulation example verifies the feasibility and
effectiveness of the proposed method.

4. Simulation Example. In order to verify the numerical feasibility of the proposed
method, we use the difference formulae in (11) and (12) on a numerical example. This
example has been adopted from [19], but here we use its discretization.

Example 4.1. Consider the discrete-time linear switched system:

x(k + 1) =

(

0.9 0
0.1 1.2

)

x(k) = A1x(k), k = 1, · · · , T1

x(k + 1) =

(

1 0.1
0.1 0.8

)

x(k) = A2x(k), k = T1 + 1, · · · , T2

x(k + 1) = A1x(k), k = T2 + 1, · · · , N − 1

where x(k) ∈ R2 is system state. Assume N = 10 and the system switches at T1 from
subsystem 1 to 2 and switches at T2 from subsystem 2 to 3. Find optimal switching times
T1, T2 such that cost J = 1

2

∑N−1

k=0
xT (k)x(k) is minimized. Here, the initial condition is

chosen as x(0) = x0 = [1 0]T .

Then, based on Theorem 3.2, we can obtain the following results. Firstly, for subsystem
1 and subsystem 2, the first switching time is initialized to T10 = 1, and the specific
data are listed in Table 1. From Table 1, it can be seen that the optimization algorithm
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Table 1. The switching times T1(k) and the cost J12(T1(k))

Iteration 0 1 2 3 4
T1(k) 1 2 3 4 5
J12(T1(k)) 5.3884 4.6387 4.1633 3.9182 3.8862

Table 2. The switching times T2(k) and the cost J23(T2(k))

Iteration 0 1 2 3 4
T2(k) 5 6 7 8 9
J23(T2(k)) 3.7651 2.6165 2.1431 1.9937 1.9781

terminates after 4 iterations. For subsystem 1 and subsystem 2, the first optimal switching
time is found to be T1opt = 5.

Then, for subsystem 2 and subsystem 3, the second switching time is initialized to
T20 = T1opt = 5, and the specific data are listed in Table 2. From Table 2, it can be
seen that the optimization algorithm terminates after 4 iterations. For subsystem 2 and
subsystem 3, the second optimal switching time is found to be T2opt = 9.

Finally, for this example, we obtain that the local optimal switching time vector is
τ̄ = [5, 9] and the corresponding local optimal performance is Jopt = 3.8862.

In addition, as value of M is small, by comparing all the possible value of the switching
instants {T1, T2} and calculating the corresponding performance cost, we can obtain that
the optimal switching times and performance in theory are as follows:

τopt,theory = [5, 9], Jopt,theory = 3.8862

From the above data, it can be seen that, for this example, we can achieve the optimal
values in theory using the proposed method.

To further verify the results obtained above, we give the performance cost associated
with the switching time variables for all their possible values in Figure 1.

1 2 3 4 5 6 7 8 9
3.5

4

4.5

5

5.5

6

J
1
2
(T

1
)

T1

5 5.5 6 6.5 7 7.5 8 8.5 9
1.5

2

2.5

3

3.5

4

J
2
3
(T

2
)

T2

Figure 1. The performance cost
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In Figure 1, the above curve is displayed as functions of T1, and it gives the performance
cost associated with all possible values of the first switching time of subsystems 1 and
subsystems 2. The bottom curve is displayed as functions of T2, and it gives that of the
second switching time of subsystems 2 and subsystems 3. The optimal values are presented
by triangular.

From Figure 1, we can see that the optimal values we obtained above are correct.

Remark 4.1. From the above example, we can see that the proposed method is feasible.

5. Conclusions. In this paper, the optimal switching time control problem for the
discrete-time linear switched systems has been studied. Based on the calculus of varia-
tions, we have obtained the difference of the cost functional with respect to the switching
time for signal switching time case. Then, we have provided a method to deal with the
multiple switching time systems. At last, a simulation example is given. Moreover, the
number of switching points can be viewed as a part of the control variable instead of being
only a given constant, which needs considering. Meanwhile, the optimal timing control
of the nonlinear discrete-time switched systems also needs considering further.
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