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ABSTRACT. Numerous 8D textures have been synthesized from 2D textures by image-
based approaches. However, the quality problems still exist for 3D texture synthesis.
Further improvements are required to extract more reliable texture features. A well-known
texture feature extraction approach is the grey level co-occurrence probability (GLCP) ap-
proach. In this paper, a feature-based approach incorporating GLCP features from a 2D
texture is presented for 3D texture synthesis. For color feature extraction, appearance
vectors are used to replace RGB color values. For GLCP feature extraction, the statis-
tical features including entropy, contrast, and correlation are extracted to exploit spatial
relationships. Moreover, a weighting scheme is introduced to obtain weighted color and
GLCP features for meighborhood matching in the synthesis process. The experimental
results show that the proposed approach performs well in terms of the synthesis quality.
Keywords: 3D texture, Texture analysis, Texture synthesis, Grey level co-occurrence
probabilities

1. Introduction. Textures can be used to describe a wide range of surface properties.
Texture analysis and synthesis is essential to computer vision, image processing and com-
puter graphics [3,5,14,15,17]. Texture mapping [5,11] has been applied widely in computer
graphics. It is the first method used for 3D surface texturing and an effective technique
of simulating surface detail at relatively low cost. This technique can easily add the ap-
pearance of detail to a large variety of object surfaces. Without increasing 3D model
complexity, it enhances the visual realism of 3D objects by adding fine texture details.
However, it suffers problems such as distortion and discontinuity.

3D textures can be used to solve the above problems. A 3D texture is defined as
colored points in 3D to represent a real-world material. Users do not need to find a
parameterization for the surface of the object to be textured. Furthermore, 3D textures
provide texture information inside the entire volume. Procedural approaches have been
proposed to synthesize 3D textures. However, it is difficult to express procedurally a
desired texture for users. It only can be defined for a limited set of textures. To address
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these problems, numerous 3D textures have been synthesized from 2D textures by image-
based approaches [2,4,8,10,13,16,20]. Several methods [2,4,10,16,20] used three orthogonal
slices based on neighborhood matching to synthesize 3D textures. They are applicable to a
wide variety of textures. However, the quality problems still exist for 3D texture synthesis.
Further improvements are often required to extract more reliable texture features.

The grey level co-occurrence probability (GLCP) approach [3,6] is an important texture
feature extraction method. It is a second-order approach for extracting texture features.
Given an image window, the GLCPs characterize the probability of any grey level occur-
ring spatially relative to any other grey level. From this distribution, several parameters
are used for generating features. Most investigations do not consider the use of the GLCP
texture features for 3D texture synthesis. In this paper, a feature-based approach incor-
porating GLCP features from a 2D texture is proposed to improve the quality of 3D
texture synthesis. For color feature extraction, appearance vectors are used to replace
RGB color values. For GLCP feature extraction, the statistical features including en-
tropy, contrast, and correlation are extracted to exploit spatial relationships. Moreover,
a weighting scheme is introduced for computing weighted color and GLCP features for
neighborhood matching in the synthesis process. The proposed approach can synthesize
desired 3D textures.

The rest of this paper is organized as follows: in Section 2, related works are reviewed.
In Section 3, a feature-based approach for synthesizing 3D textures from a 2D texture is
presented. Section 4 shows the results. Finally, conclusions are discussed in Section 5.

2. Related Works. Several approaches have been proposed for synthesizing 2D textures.
The approach developed by Ashikhmin [1] applied a texture synthesis algorithm to natural
textures. This simple and efficient implementation allowed users to input interactive
deformations during the synthesis process using a painting-like interface. Lefebvre and
Hoppe [12] developed a texture synthesis algorithm based on neighborhood matching
to achieve parallelism when deforming synthesis textures. Their approach included a
coordinate up-sampling step and a correction approach. They also introduced a method
of enhancing the resolution of coarse synthesized results. Turk [19] presented another
method of synthesizing surface textures. In their approach, a hierarchy of points from low
to high density is created over a given surface. The points are then connected to form a
hierarchy of meshes. The user then specifies a vector field over the surface that indicates
texture deformation.

Recently developed 3D texture synthesis approaches include Jagnow et al. [8], who used
a stereological approach to synthesizing 3D textures from 2D textures. Their approach
first analyzes the materials of spherical particles and then applies it to arbitrarily-shaped
particles. This approach also provides a systematic method of predicting material struc-
tures. Wei [20] first adapted 2D neighborhood matching synthesis schemes to 3D textures.
The key idea is to consider three 2D exemplars for each direction from an input 2D tex-
ture. In each voxel of the output 3D texture, three interleaved 2D neighborhoods are
extracted. The best matches are found independently in each of the three 2D exemplars.
Qin and Yang [16] presented a method for generating 3D textures from input examples.
They used gray-level aura matrices for neighborhood matching. Their method charac-
terizes each input example as a set of aura matrices and generates a 3D texture from
multiple view directions. For each voxel of the output 3D texture, they only considered
the pixels on the three orthogonal slices for neighborhood matching.

Kopf et al. [10] introduced a 3D texture synthesis method from 2D exemplars. They
extended 2D texture optimization techniques to synthesize 3D textures. For each voxel,
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they only considered the neighborhood coherence in three orthogonal slices, and itera-
tively increased the similarity between the output 3D texture and the input exemplar.
Dong et al. [4] introduced a method to restrict synthesis to a subset of the voxels for 3D
texture synthesis. They synthesized a volume from a set of pre-computed 3D-candidates.
Their pre-computed 3D-candidates improve synthesis efficiency and reduce the depen-
dency chain required to compute voxel colors. Chen and Wang [2] presented a method for
synthesizing 3D textures from 2D exemplars. They adopted an optimization framework
with the k-coherence search and the discrete solver for 3D texture synthesis. They inte-
grated with two kinds of histogram matching methods called position and index histogram
matching. Their approach can generate desired results. Jiang et al. [9] proposed a 3D
texture synthesis approach using 2D exemplar and procedural noise. Their approach first
uses procedural noise to design the movement path for exemplar in 3D space. Then, their
approach uses the pixels of exemplar to color the 3D space through their trajectory for
3D texture synthesis.

From the above approaches, new advances in 3D texture synthesis approaches can
synthesize 3D textures based on an input exemplar. Unfortunately, the quality problems
still exist for 3D texture synthesis. Further improvements are often required to extract
more reliable texture features.

3. The Proposed Approach. The flowchart of the proposed approach is shown in
Figure 1. First, input a 2D texture and repeat the texture thrice as three directional
exemplars T,, T, and T,. Without loss of generality, exemplar 7T}, is only considered
Then, in feature vector generation, weighted color and GLCP features are extracted from
exemplar T,. Third, for similarity set construction and 3D-candidates generation, it finds
the three pixels most similar to each pixel and pre-computes a set of 3D-candidates for
each pixel of exemplars 7}, to build the relationship between the three exemplars. Finally,
in synthesis process, the 3D pyramid synthesis method [4,7] is applied to obtain synthesis
results.
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FI1GURE 1. Flowchart of the proposed approach
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3.1. Feature vector generation.

3.1.1. Color features. Traditionally, 3D texture synthesis using RGB colors for neigh-
borhood matching needs larger neighborhood size and numerous data. If RGB colors are
replaced by appearance vectors [12], quality of synthesis results is improved. Additionally,
appearance vectors are continuous and low-dimensional than RGB colors for neighbor-
hood matching. Therefore, the texture data values in color space are transformed into
feature vectors in appearance space.

Hence, in the proposed approach, RGB colors in a w, X w. window of each pixel of
exemplar T}, are used to construct color feature vectors. In the experiments, w, is set as
5. Then, the principal component analysis (PCA) is performed to reduce the dimensions
of the color feature vectors to form a transformed exemplar 7,’ in appearance space since
PCA is commonly-used technique reducing the number of dimensions without much loss
of information. In the experiments, color feature vectors are reduced to 8-dimensional
feature vectors by PCA. Hence, a color feature vector with 8 dimensions is extracted for
each pixel in T}

3.1.2. Grey level co-occurrence probability features. Haralick et al. [6] introduced a GLCP
method to extract texture features. Given a spatial window within a grey level image,
the GLCP method computes the conditional joint probabilities, Cy;, of all pairwise com-
binations of grey levels ¢ and j, given the inter-pixel displacement vector (4,6), which
represents the relationship of the pixel pairs, where ¢ is the inter-pixel distance, and 6 is
the orientation.

The set of GLCPs is defined as

P;;
ij:lo Pij
where P;; is the frequency of occurrence between two grey levels, 7 and j, for the given
displacement vector (d,0) and the given window size; G is the number of quantized grey
levels. The probabilities are stored in a grey level co-occurrence matrix (GLCM) of size
G x G, where index (7,7) in the matrix is probability C;;. Then, statistics are applied
to the GLCM to generate texture features which are assigned to the center pixel of the
spatial window.

In the proposed approach, exemplar T, is first converted to a grey texture and then
GLCP features from the grey image are extracted for each pixel in 7. Extracting GLCP
features from the grey texture requires the parameters as follows: window size (n,,n,)
image quantization (G), displacement vector (4,6) and statistic selection.

For window size (n,,n,), large window sizes are necessary to gather sufficient data to
characterize local texture regions and small window sizes will result in poor co-occurrence
probabilities. In the proposed approach, a spatial window of size 15 x 15 is used to
compute GLCP features, as shown in Figure 2. For image quantization (G), larger values
of G (G = 64) are excessive. Therefore, G is set as 32 in the experiment. The selection
of displacement vector (6, ) depends on the characteristics of the grey texture for each
direction and the influence of the distance of pixel pairs. In the proposed approach, the
interpixel distance is set as 1 and four common orientations (0°, 45°, 90°, and 135°) are
used by heuristics.

For statistic selection, many of the statistics suggested by Haralick et al. [6] produce
highly correlated texture features which are not desirable. Clausi [3] studied the relation-
ship of the statistical parameters and concluded that entropy, contrast and correlation
are a preferred set of statistical parameters for extracting texture features Entropy means
the level of spatial disorder of gray levels in the GLCM. Contrast indicates the contrast of

Oij =

)
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FIGURE 2. (a) Window of size 15x15 for each pixel, (b) grey texture con-
verted from the input 2D texture, and (¢) GLCP features computed from
the window for each pixel

spatial disorder of gray levels in the GLCM. Correlation indicates the linear dependency
of gray levels on those of neighboring pixels in the GLCM. Therefore, the three statistics
are used in the proposed approach as follows:

G-1

Entropy : — Z Ci;log Cyj,

1,j=0

a-1
Contrast : Z Cij (i — )%,

i,j=0
G-1 ,. )
_ _ C..
Correlation : Z(Z Ha) My) ”a
i,j=0 T2Ty

where 1, and ji, are the means in the 2- and y-directions, respectively; o, and o, are the
standard derivations in the x- and y-directions, respectively.

Hence, a GLCP feature vector with 12 dimensions (4 orientations for each statistic
parameter) is extracted for each pixel in T,’.

3.1.3. Weighted color and GLCP features. After color and GLCP features are extracted,
weighted color and GLCP features are proposed for 3D texture synthesis. Different weights
are assigned to color and GLCP features. The weighted color and GLCP feature vector
for each pixel in 7T}, is defined as

WEF = (weightCF : CF, weightGchF : GLOPF) s

where CF and GLCPF are the color feature vector and GLCP feature vector, respec-
tively; weightcr and weightgropr are the weights for color features and GLCP features,
respectively. In the experiments, weightcr and weightgrcpr are set as 0.6 and 0.4 for
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color textures, respectively; weightcr and weightgrcpr are set as 0.4 and 0.6 for grey
textures, respectively.

3.2. Similarity set construction and 3D-candidate generation. For similarity set
construction, a similarity set for each pixel in T} is constructed to increase the effectiveness
of neighborhood matching in the synthesis process. Based on the k-coherence search
method [18], the k& most similar pixels in T, for each pixel p are searched. Moreover,
based on the principle of coherence synthesis [1], searching candidates from the n x n
neighborhoods of pixel p in 7 can accelerate the synthesis process, where n is a user-
defined parameter. Therefore, in the proposed approach, the £ most similar pixels from the
n X n neighborhoods of pixel p in T, are searched to construct a similarity set C! , (p) =
{CL(p),CS(p),...,CL(p)}, where [ is a pyramid level, C{(p) = p and k is a user-defined
parameter. This technique can accelerate neighborhood matching because it does not
need to search each pixel in T, for neighborhood matching during synthesis process. In
the experiments, k£ is set as 3 and n is set as 7.

For 3D-candidate generation, based on Dong et al. [4], a set of 3D-candidates for each
pixel of transformed exemplars is pre-computed to build the relationship between the
three exemplars.

3.3. Synthesis process. In the proposed approach, the 3D pyramid texture synthesis
approach is applied to synthesize 3D textures. It is divided into three steps: the upsam-
pling step, the jitter step, and the correction step.

For the upsampling step, the proposed approach synthesizes one voxel to an m xm xm
3D texture, Sy — Sr, where L = logy’, where m is the size of the target 3D texture. A
3D texture S is synthesized from a voxel. Each voxel stores a triple of 2D coordinates of
voxel v. A voxel is first constructed and the values of a triple of 2D coordinates (1, 1),
(1,1), (1,1) are assigned as its coordinates. The coordinates of parent voxels for the next
level are then upsampled. FEach of the 8 children is assigned parent coordinates plus a
child-dependent offset.

For the jitter step, after upsampling the coordinates, the upsampled coordinates are
jittered to achieve deterministic randomness. The upsampled coordinates at each level
are added a jitter function value to perturb them:.

The correction step uses the jittered coordinates and modifies them to recreate neigh-
borhoods similar to those in transformed exemplars. For each voxel v, the feature vectors
of warped neighborhoods are collected to obtain neighborhood vectors. Then, the voxel u
most similar to voxel v from the transformed exemplars is searched based on neighboring
matching by comparing the neighborhood vectors. The triple of voxel 7| is replaced with
the triple of voxel u.

4. Results. Several experiments are conducted to evaluate the effectiveness of the pro-
posed approach. The proposed algorithm is implemented in MATLAB running on a
PC with 3.00GHz and 3.00GHz Core2 Extreme CPU and 8.0GB of system memory. In
the experiments, input 2D textures are all 128 x128 and the output 3D textures are all
128 x128x128. In the experiments, it is not easy to adequately determine the parameters
to obtain the optimal synthesis results for the proposed algorithm. The parameters are
set to obtain the desired results by heuristics.

The input 2D texture in Figure 3(a) is a stochastic and marble-like texture and the
input 2D texture in Figure 4(a) is a kind of stochastic textures. In Figure 3(c), the result
synthesized by the proposed approach preserves more white features in whole area. But
in Figure 3(b), it preserves less white features. Moreover, the result of the proposed
approach is more colorful than that of the method using color features. In Figure 4(c),
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the result of the proposed approach preserves complete features in whole area. But in
Figure 4(b), it does not preserve features. From Figures 3 and 4, the proposed approach
can preserve more features than the method using color features.

FIGURE 3. (a) Input 2D texture, (b) 3D texture synthesized by the method
using color features, and (c¢) 3D texture synthesized by the proposed ap-
proach

FIGURE 4. (a) Input 2D texture, (b) 3D texture synthesized by the method
using color features, and (c¢) 3D texture synthesized by the proposed ap-
proach
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FIGURE 5. (a) Input 2D texture, (b) 3D texture synthesized by the method
using color features, and (c¢) 3D texture synthesized by the proposed ap-
proach

FIGURE 6. (a) Input 2D texture, (b) 3D texture synthesized by the method
using color features, and (c¢) 3D texture synthesized by the proposed ap-
proach

The input 2D textures in Figure 5(a) and Figure 6(a) are grey level textures. They
are stochastic patterns. As shown in Figure 5(c), the result of the proposed approach
preserves more black features in whole area. However, in Figure 5(b), it preserves less
black features. As shown in Figure 6(c), the result of the proposed approach preserves



3D TEXTURE SYNTHESIS APPROACH 1209

white features in whole area. However, in Figure 6(b), it preserves less white features.
From Figures 5 and 6, the quality of the proposed approach is better than that of the
method using color features.

5. Conclusions. A feature-based 3D texture synthesis approach from a 2D texture has
been proposed. The weighted color and GLCP features are introduced for more accurate
neighborhood matching in the synthesis process. Different weights are assigned for color
and GLCP features according to the characteristics of the input 2D texture. The proposed
approach can synthesize desired 3D textures for a wide range of textures.

In the future, the proposed approach will be applied to synthesize textures changing
with time in the 3D space. Moreover, an adaptive window of each pixel will be applied
to extract more accurate GLCP features.
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