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Abstract. This paper develops a novel method to deal with the stability problem of
sampled-data systems. The multiple Lyapunov function method used in switched sys-
tems is extended to sampled-data systems and a multiple Lyapunov functional method
is developed for nonlinear sampled-data systems. An application is presented where two
different Lyapunov functionals are constructed in order to determine the stability of a lin-
ear sampled-data system for variable sampling frequency. The method in this paper needs
neither the restriction of connecting adjacent Lyapunov functions at switching point nor
the condition pertaining to dwell time, and thus the results provide an effective example
of an application of multiple Lyapunov function technique. If more Lypunov functionals
are employed, much less conservative results may be obtained.
Keywords: Multiple Lyapunov functions, Switched systems, Sampled-data systems,
Stability analysis, Maximum allowable transfer interval (MATI)

1. Introduction. Sampled-data systems have been extensively studied during the past
decades, where for problems of stability analysis and controller synthesis, there are mainly
fourth approaches developed. The first one is based on lifting technique [1, 2], in which
the problem is transformed to an equivalent finite-dimensional discrete problem. This
approach may not well work in the case of uncertain sampling times or uncertain system
matrices. The second method is based on modeling the sampled-data system as a con-
tinuous system with delayed control input, where the derivative of the delay is equal to
one [3-5]. Then, methods used to study normal delay systems can be applied to study
sampled-data systems [6]. However, for this method, as Mirkin pointed out in [7], the
sawtooth structure of sampled-data system and all the available information about the
actual sampling pattern are neglected. The third method is based on the impulsive mod-
eling of sampled-data in which a time-varying periodic Lyapunov function is used [8]. In
[9, 10], based on the third method, a Lyapunov function with discontinuity is introduced
and a less conservative result is obtained. The fourth method is emulation method [11],
in which one first designs a continuous-time controller based on a continuous-time plant
model. At this step the sampling is completely ignored. Then, the obtained continuous-
time controller is discretized and implemented using a sampler and hold device.

Notice that sampled-data systems can be seen as a switched (or hybrid) system. For
switched systems, the single Lyapunov function and multiple Lyapunov function method
are two basic tools for stability analysis [12-15]. The multiple Lypunov function method

6345



6346 Q.-L. LIU, R. WANG AND D. WU

often leads to a less conservative result than the single Lyapunov function method. How-
ever, for those three main methods mentioned above for sampled-data systems, all of
them in fact belong to the category of the single Lyapunov function (functional) [16-18].
Therefore, it follows that if the multiple Lyapunov function method is applied to the
stability analysis of sampled-data systems, a less conservative result may be obtained.
Of course, it may be a hard problem to solve since when using this method, one needs
to know the values of suitable Lyapunov functions at switching times, which in general
requires knowledge of the state at these times. ([12], p.55). As a result, in order to apply
this method, connecting adjacent Lyapunov functions at switching points is a commonly
accepted strategy by using “min-switching” strategy of all Lyapunov functions [19]. Al-
though easy to design and realize, such a realization is a special case of normal multiple
Lyapunov function methods [14]. The average dwell time method [20] can be seen as an-
other application of multiple Lyapunov function and this method is often used for stability
analysis of switched systems or switched delay systems [20-25]. Applying this method has
the restriction of dwell time of the switched system and also normally the change rate
of the activated Lyapunov function values. Therefore, it is a challenge problem to avoid
such restrictions when multiple Lyapunov functional method is applied.
In this paper, the multiple Lyapunov functional method is presented to study the

stability of sampled-data systems. Neither the connecting adjacent Lyapunov functionals
at switching points nor dwell time condition is necessary. In the case of the longer sample
interval which is divided into two intervals, the sampled-data system can be regarded as a
hybrid system with two subsystems. Two Lyapunov functionals are then used. In keeping
with the characteristics of sampled-data systems, the multiple Lyapunov functionals are
well constructed such that at each switching point, the values of activated Lyapunov
functional decrease without the restriction of dwell time. Based on the method in this
paper, the maximum sample interval, named maximum allowable transfer interval (MATI)
in the networked control systems, can be easily obtained for linear sampled-data systems
based on linear matrix inequalities (LMIs). It is shown that the results in this paper
contain the existing one as a special case and a numerical example is also given to show the
effectiveness of the proposed method. Results obtained in this paper show the effectiveness
of using multiple Lyapunov function methods for switched system.
This paper is organized as follows. In Section 2, two theorems are given such that the

considered nonlinear sampled-data systems are globally uniformly asymptotically stable
(GUAS). Then, in Section 3, LMI conditions guaranteeing GUAS for linear sampled-data
system with variable sampling are proposed. Section 4 gives an example to show the
effectiveness of the method. Section 5 concludes the paper.
For consistency, we try to adopt the same notations as in [10]. Let N = {0, 1, 2, . . .}.

Given an interval I ⊂ R, B(I, Rn) denotes the space of real functions from I to Rn

with norm ||φ|| := supt∈I |φ(t)|, for all φ ∈ B(I, Rn), where | · | denotes any one of the
equivalent norms in Rn. For a given signal x(·), xt denotes the function xt : [−r, 0] → Rn

defined by xt(θ) = x(t + θ), ∀θ ∈ [−r, 0] for some positive constant r. A function
α ∈ [0,+∞) → [0,+∞) is of class K, and we write α ∈ K when α is continuous,
strictly increasing, and α(0) = 0. If α is also unbounded, then we say it is of class K∞.
λmax(·)(λmin) denotes the maximum (minimum) eigenvalue of a symmetric matrix.

2. Stability of Nonlinear Sampled-data Systems. Consider the following sampled-
data system,

ẋ = f(x(t), t) + g1(x(t), t)g2(x(sk), sk), t ∈ [sk, sk+1), k ∈ N, (1)
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where x(t) and g2(x(sk), sk) denote the state and control input, respectively; f , g1 and
g2 are globally Lipschitz functions from Rn × R to Rn such that f(0, t) = 0, gi(0, t) = 0
(i = 1, 2), ∀t ∈ R[0,+∞). The sampled-data sequence {sk} forms a strictly increasing
sequence in [s0,∞) for some initial time s0. Suppose that 0 < hmin ≤ sk+1 − sk ≤ ρ1m,
∀k ∈ N for constants hmin and ρ1m. ρ1m denotes the maximum sampling interval, and
is also called MATI. Let ρ12 = ρ1m − ρ2m, where 0 ≤ ρ2m ≤ ρ1m. Notice that the
sequence {sk} is a variable sampling one, thus for some interval [sk, sk+1) with properties
sk+1 − sk ≥ ρ12, we can introduce another sequence gk defined as

gk =

{
sk + ρ12, if sk+1 − sk > ρ12,
sk+1, if sk+1 − sk ≤ ρ12.

Define I1[0,∞) =
∪∞

k=0[sk, gk) and I2[0,∞) =
∪∞

k=0[gk, sk+1). We call time points sk
and gk switching points and introduce the switching signal σ(t)

σ(t) =

{
1, t ∈ I1[0,∞),
2, t ∈ I2[0,∞).

Then, sign Vσ(t)(xt, t) is defined as

Vσ(t)(xt, t) =

{
V1(xt, t), t ∈ I1[0,∞),
V2(xt, t), t ∈ I2[0,∞).

Theorem 2.1. Suppose that there exist ψi ∈ K∞ (i = 1, 2, 3, 4), ψj ∈ K (j = 5, 6), and the
functionals V1(φ, t) : B([−ρ12, 0], Rn) × I1[0,+∞) → R[0,∞), and V2(φ, t) : B([−ρ1m, 0],
Rn)× I2[0,+∞) → R[0,∞), which are continuously differentiable in I1[0,∞) and I2[0,∞)
respectively, such that

ψ1(|φ(0)|) ≤ V1(φ, t) ≤ ψ2(||φ||), ∀φ ∈ B([−ρ12, 0], Rn), t ∈ I1[0,∞),

ψ3(|φ(0)|) ≤ V2(φ, t) ≤ ψ4(||φ||), ∀φ ∈ B([−ρ1m, 0], Rn), t ∈ I2[0,∞), (2)

and for every {sk, gk}, any solution to system (1) is globally defined and satisfies

dV1(xt, t)

dt
≤ −ψ5(|x(t)|), sk ≤ t ≤ gk, k ∈ N,

dV2(xt, t)

dt
≤ −ψ6(|x(t)|), gk ≤ t ≤ sk+1, k ∈ N, (3)

and for any switching point tk (including sk and gk), it holds that

Vσ(t)(xtk , tk) ≤ lim
t→t−k

Vσ(t)(xt, t). (4)

Then, system (1) is GUAS under the MATI ρ1m.

Proof: When ρ2m = 0, that is ρ12 = ρ1m, this theorem reduces to Theorem 1 in [9].
For ρ2m 6= 0, the following gives the stability proof. For every sk, gk, k ∈ N, it yields

from (3)

V1(xt, t) ≤ V1(xsk , sk), ∀t ∈ [sk, gk),

V2(xt, t) ≤ V2(xgk , gk), ∀t ∈ [gk, sk+1). (5)

Let ψ̄1(·) = min{ψ1(·), ψ3(·)} and ψ̄2(·) = max{ψ2(·), ψ4(·)}. It is easy to verify that
they are still of class K∞. Suppose that t ∈ [gl, sl+1), l ∈ N then it follows that from (4)
and (5)

ψ̄1(|x(t)|) ≤ V2(xt, t) ≤ V2(xgl , gl) ≤ V1(xg−l
, g−l )

≤ V1(xsl , sl) ≤ . . . ≤ V1(xt0 , t0) ≤ ψ̄2(||xt0 ||). (6)
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Thus, it is obtained that |x(t)| ≤ ψ̄−1
1 ψ̄2(||xt0 ||). For ∀t ∈ [sl, gl), a similar proof can be

obtained. Thus, |x(t)| ≤ α(||xt0 ||), ∀t ≥ t0 for α(·) = ψ̄−1
1 ψ̄2(·) ∈ K, and the stability

proof follows from the definition of globally uniformly stability in [9].
The proof of GUAS, for every ε, let δ1 > 0, be such that ψ̄2(δ1) ≤ ψ̄1(ε). Then from

(6), ||xt0 || < δ1 implies that |x(t)| < ε, t ≥ t0. For this δ1 and any η > 0, we show that
there exists a T = T (δ1, η) such that |x(t)| < η for ∀t ≥ t0 + T . Given δ2 > 0 such that
ψ̄2(δ2) ≤ ψ̄1(η) for t ≥ t0 + T . Then, it suffices to show that ||xt0+T || < δ2 which implies
|x(t)| < η, ∀t ≥ 0. By using contradiction method, we assume that such a T does not
exist and therefore we can construct a sequence ck = sk+min{ρ12

2
, hmin

2
}, k ∈ N such that

||xck || ≥ δ2. Thus, in [sk, ck] ⊂ [sk, gk), we can define intervals Ik = [ck − δ2
2L1

, ck], where

L1 > max

(
L, δ2

min
{

ρ12
2

,
hmin

2

}
)

and |f(x, t) + g1(x, t)g2(xk)| < L, ∀k ∈ N (since f , g1, g2

are Lipshitz, there exists L > 0 such that |f(x, t)+ g1(x, t)g2(xk)| < L). It follows for this
that, x(t) is continuous for any t ∈ Ik and we can use the Mean Value Theorem, so for
any t ∈ Ik, there exists a θ ∈ [0, 1] such that

|x(t)| = |x(ck) + ẋ(ck + θ(t− ck))(t− ck)|
≥ |x(ck)| − |ẋ(ck + θ(t− ck))||t− ck|

≥ δ2 − L
δ2
2L1

≥ δ2
2
. (7)

Thus, dV1(xt,t)
dt

≤ −ψ3(
δ2
2
) for any t ∈ Ik, and otherwise dV1(xt,t)

dt
≤ 0 for t ∈ I1[0,∞)/Ik

and dV2(xt,t)
dt

≤ 0 for t ∈ I2[0,∞). Therefore, it follows that∫ ck

t0

V̇σ(t)(xt, t)dt =

∫ ck

sk

V̇1(xt, t)dt+

∫ sk

gk−1

V̇2(xt, t)dt

+

∫ gk−1

ck−1

V̇1(xt, t)dt+

∫ ck−1

sk−1

V̇1(xt, t)dt+ . . .

≤ −ψ3

(
δ2
2

)
k
δ2
2L1

. (8)

On the other hand, noting from (4) it is obtained that∫ ck

t0

V̇σ(t)(xt, t)dt

= V1(xck , ck)− V1(xsk , sk) + V2(xsk , sk)− V2(xgk−1
, gk−1)

+ . . .+ V1(xc1 , c1)− V1(xt0 , t0)

≥ V1(xck , ck)− V1(xt0 , t0). (9)

Thus, it follows from (8) and (9) that

V1(xck , ck)− V1(xt0 , t0) ≤ −ψ3

(
δ2
2

)
k
δ2
2L1

. (10)

This would imply V1(xck , ck) < 0 for a sufficiently large k. By using the contradiction
method, we conclude that the system is GUAS. The proof is completed.

Remark 2.1. In Theorem 2.1, at each switching point, the Lyapunov functionals jump de-
creasingly but need not continuous restriction. Between two consecutive switching points,
the corresponding activated Lyapunov functional also needs decrease, but the other Lya-
punov functional in the same interval is not required, which may increase or even have a
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Figure 1. Two Lyapunov functionals (solid graphs correspond to V1(t),
dashed graphs correspond to V2(t)), dash-dotted graphs denote other inac-
tivated functionals

point of discontinuity; see Figure 1. Theorem 2.1 can be seen as an extension of multiple
Lyapunov functions method used in the switched systems [12, 13].

Remark 2.2. If ρ2m = 0, then ρ12 = ρ1m and only switching sequence {sk} and V1(xt, t)
is maintained. Hence, two Lyapunov functionals reduce to a single Lyapunov functional.
For this case, Theorem 2.1 above reduces to Theorem 1 in [9].

For system (1), replace (2) with the following condition

ψ1(|φ(0)|) ≤ V1(φ, t) ≤ ψ2(||φ||),
∀φ ∈ B([−ρ12, 0], Rn), t ∈ {sk, gk}, k ∈ N,

ψ3(|φ(0)|) ≤ V2(φ, t) ≤ ψ4(||φ||),
∀φ ∈ B([−ρ1m, 0], Rn), t ∈ {gk, sk+1}, k ∈ N (11)

Then, the following theorem can be obtained.

Theorem 2.2. For system (1), suppose conditions (3), (4) and (11) hold, then system
(1) is GUAS under the MATI ρ1m.

Proof: First proof stability for ρ12 > 0. Let ψ̄1(·) = min{ψ1(·), ψ3(·)} and ψ̄2(·) =
max{ψ2(·), ψ4(·)}. For every sk, k ∈ N, similar to the proof of Theorem 2.1, it yields

ψ̄1(|x(sk)|) ≤ V1(xsk , sk) ≤ V2(xs−k
, s−k )

≤ V2(xgk−1
, gk−1) ≤ . . .

≤ V1(xt0 , t0) ≤ ψ̄2(||xt0||). (12)

Thus, for ∀k ∈ N, |x(sk)| ≤ ψ̄−1
1 ψ̄2(||xt0 ||).

Noting that since f , g1, g2 are globally Lipschitz with Lipschitz constant L, it is obtained
that

|f1(x(t), t)| ≤ L|x(t)|, (13)

|g1(x(t), t)| ≤ L|x(t)|, (14)

|g2(x(sk), sk)| ≤ L|x(sk)|, (15)
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Noting also that |x(sk)| ≤ ψ̄−1
1 ψ̄2(||xt0 ||), we obtain that

|ẋ(t)| ≤ |f1(x(t), t)|+ |g1(x(t), t)||g2(x(sk), sk)| ≤ L̄|x(t)|

for some positive constant L̄. Then, by the equation x(t) = x(sk) +
∫ t

sk
ẋ(s)ds, ∀t ∈

[sk, sk+1), it follows that

|x(t)| ≤ |x(sk)|+ L̄

∫ t

sk

|x(s)|ds, ∀t ∈ [sk, sk+1). (16)

From Bellman-Gronwall Lemma ([26], p.101), we have

|x(t)| ≤ |x(sk)|eL̄(t−sk) ≤ |x(sk)|eL̄ρ1m , ∀t ∈ [sk, sk+1). (17)

Therefore, for ∀t ∈ [sk, sk+1), ∀k ∈ N, it follows that

|x(t)| ≤ eL̄ρ1mψ̄−1
1 ψ̄2(||xt0 ||).

The stability proof is completed since eL̄ρ1mψ̄−1
1 ψ̄2 ∈ K.

The proof of GUAS is the same as Theorem 2.1 and omitted in this paper.
For ρ2m = 0, then only a sequence of {sk} is maintained, which can be seen as a special

case of ρ2m > 0. The proof is similar to the case of ρ2m > 0 and is omitted here. The
proof is completed.

Remark 2.3. Theorem 2.2 only requires that the condition (2) holds at the switching
point. The relaxation will be useful for stability analysis of sampled-data systems with
constant sampling, as will be seen in the following section.

3. Stability of Linear Sampled-data Systems with Variable Sampling. As an
application of the proposed multiple Lyapunov functional method, we will give a stability
criterion for linear sampled-data system with variable sampling in terms of LMIs in this
section. Consider the following linear system with variable sampling{

ẋ = Ax(t) + Buu(t),
u(t) = Kx(sk), t ∈ [sk, sk+1), k ∈ {1, 2, . . .}, (18)

where A and Bu are constant matrices. Suppose that the controller gain K is a known
matrix in this paper and denote B = Bu ∗K.
Introduce the notations z1 = z1(t) = x(sk) and z2 = z2(t) = x(gk), ∀t ∈ [gk, sk+1),

∀k ∈ N. During the interval [sk, gk) and [gk, sk+1), we introduce the following two different
Lyapunov functionals

V1(t) = x(t)TPx(t) +

∫ t

t−ρ1

(ρ1m − t+ s)ẋT (s)Rẋ(s)ds (19)

+(ρ1m − ρ1)(x(t)− z1)
TX(x(t)− z1), ∀t ∈ [sk, gk),

V2(t) = x(t)TPx(t) +

∫ t

t−ρ2

(ρ2m − t+ s)ẋT (s)R̄1ẋ(s)ds

+

∫ t−ρ2

t−ρ1

(ρ1m − t+ s)ẋT (s)R̄2ẋ(s)ds

+(ρ1m − ρ1)(x(t)− z1)
T X̄1(x(t)− z1)

+(ρ2m − ρ2)(x(t)− z2)
T X̄2(x(t)− z2), ∀t ∈ [gk, sk+1), (20)

where matrices P > 0, R > 0, X > 0, R̄1 > 0, R̄2 > 0, X̄1 > 0, X̄2 > 0 are matrices to be
determined.
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Construct two Lyapunov functionals

V (t) =

{
V1(t), t ∈ [sk, gk),
V2(t), t ∈ [gk, sk+1), ∀k ∈ N.

(21)

Now, we are in the position to give the main result.

Theorem 3.1. System (18) is GUAS under the MATI of ρ1m, if there exist matrices
P > 0, R > 0, X > 0, R̄1 > 0, R̄2 > 0 and X̄1 > 0, X̄2 > 0 and matrices N , L1, L2 as
well as constants ρ2m > 0 such that the following LMIs hold,

M1 + ρ12M2 < 0, (22)[
M1 ρ12N
∗ −ρ12R

]
< 0, (23)

[
Π1 + ρ2mΠ2 ρ12L2

∗ −ρ12R̄2

]
< 0, (24)

 Π1 ρ2L1 ρ12L2

∗ −ρ2R̄1 0
∗ ∗ −ρ12R̄2

 < 0, (25)

and

X ≥ X̄1, R ≥ R̄2, (26)

where ρ12 = ρ1m − ρ2m,

F̄ =
[
A B

]
,

M1 =

[
P
0

]
F̄ + F̄ T

[
P 0

]
−
[
I
−I

]
X

[
I −I

]
−N

[
I −I

]
−

[
I
−I

]
NT

+ρ1mF̄
TRF̄ + ρ2mM2,

M2 =

[
I
−I

]
XF̄ + F̄ TXT

[
I
−I

]
,

Π1 =


I
0
0
0

P [
0 0 I 0

]
+


0
0
I
0

P [
I 0 0 0

]
− L1

[
I −I 0 0

]

−


I
−I
0
0

LT
1 − L2

[
0 I 0 − I

]
−


0
I
0
−I

LT
2 +


0
0
I
0

 ρ2mR̄1

[
0 0 I 0

]

−


I
0
0
−I

 X̄1

[
I 0 0 − I

]
+ L3

[
−A 0 I −B

]
+


−AT

0
I

−BT

LT
3

−


I
−I
0
0

 X̄2

[
I −I 0 0

]
,
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Π2 =


I
0
0
−I

 X̄1

[
0 0 I 0

]
+


0
0
I
0

 X̄1

[
I 0 0 − I

]

+


I
−I
0
0

 X̄2

[
0 0 I 0

]
+


0
0
I
0

 X̄2

[
I −I 0 0

]
.

Proof: For the constructed Lyapunov functional (21), it is easy to find at each switch-

ing point sk,
∫ t

t−ρ1
(ρ1m − t + s)ẋT (s)Rẋ(s)ds = 0 and x(t) − z1 = 0, and thus V1(sk) ≤

limt→s−k
V2(t). On the other hand, at each switching point gk, in interval [gk, sk+1),∫ t

t−ρ2
(ρ2m−t+s)ẋT (s)R̄1ẋ(s)ds = 0 and x(t)−z2 = 0, it follows that V2(gk) ≤ limt→g−k

V1(t)

under the restriction of (26). Thus, under the condition of (26), it always holds that
V (tk) ≤ limt→t−k

V (t). Hence, condition (4) in Theorem 2.1 is satisfied.

In the time interval [sk, gk), for Lyapunov functional V1(t), along the trajectory of
system (18), similarly to the proof of Theorem 2 in [10], it can be readily shown that
V̇1(t) ≤ −ψ5(x(t)) < 0 holds under the LMI conditions (22) and (23), where ψ5(x(t)) =
α|x(t)|2 for some positive constant α.
In time interval [gk, sk+1), for Lyapunov functional V2(t), along the trajectory of system

(18), it follows that

V̇2(t) = 2xTPẋ−
∫ t

t−ρ2

ẋT (s)R̄1ẋ(s)ds+ ρ2mẋ
T (t)R̄1ẋ(t)−

∫ t−ρ2

t−ρ1

ẋT (s)R̄2ẋ(s)ds

+2(ρ1m − ρ1)(x(t)− z1))
T X̄1ẋ− (x(t)− z1)

T X̄1(x(t)− z1)

+2(ρ2m − ρ2)(x(t)− z2))
T X̄2ẋ− (x(t)− z2)

T X̄2(x(t)− z2). (27)

Noting that in interval [gk, sk+1), it is true that ρ1m − ρ1 = ρ2m − ρ2.

Let ζ =
[
x(t) z2 ẋ(t) z1

]T
. It can be shown that

2ζTL1(x− z2) = 2ζTL1

∫ t

t−ρ2

ẋ(s)ds

≤ ρ2ζ
TL1R̄

−1
1 LT

1 ζ +

∫ t

t−ρ2

ẋT (s)R̄1ẋ(s)ds,

2ζTL2(z2 − z1) = 2ζTL2

∫ t−ρ2

t−ρ1

ẋ(s)ds

≤ ρ12ζ
TL2R̄

−1
2 LT

2 ζ +

∫ t−ρ2

t−ρ1

ẋT (s)R̄2ẋ(s)ds,

2ζTL3(ẋ(t)− Ax(t)−Bz1) = 0. (28)

Thus, it yields from (27) and (28) that

V̇2(t) ≤ ζT (Π̄1 + (ρ2m − ρ2)Π2 + ρ2Π3)ζ,

where

Π3 = L1R̄
−1
1 LT

1 ,

Π̄1 = Π1 + ρ12L2R̄
−1
2 LT

2 .

Notice that
Π̄1 + (ρ2m − ρ2)Π2 + ρ2Π3 < 0
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is equivalent to

Π̄1 + ρ2mΠ2 < 0,

Π̄1 + ρ2Π3 < 0,

(The proof can be seen in [10]), which are equivalent to LMIs (24) and (25), respectively.
Hence, V̇2(t) ≤ −ψ6(x(t)), where ψ6(x(t)) = −λmax(Π̄1 + (ρ2m − ρ2)Π2 + ρ2Π3)|x(t)|2.
Thus, the proof follows from Theorem 2.1.

Remark 3.1. If ρ2m = 0, similar to the analysis of Remark 2.2, the LMI conditions (22)
and (23) reduce to the LMI conditions in Theorem 2 in [10]. Thus, Theorem 3.1 in this
paper contains Theorem 2 in [10] as a special case.

Remark 3.2. Just as pointed out in [10], if system matrices satisfy the polytopic condi-
tion, then the stability of the system can be checked for each of the individual vertices by
solving the LMIs in Theorem 3.1 with the same matrix variables P > 0, R > 0, X > 0,
R̄1 > 0, R̄2 > 0 X̄1 > 0, X̄2 > 0.

Remark 3.3. The results in this paper provide a good example for the application of
multiple Lyapunov function. In the main theorems of this paper, we are not faced with the
restriction of the dwell time method or the restriction of “connecting adjacent Lyapunov
functions at switching point” [12]. Based on the inherent characteristics of sampled-data
systems, we construct multiple Lyapunov functionals such that at each switching point the
values of activated Lyapunov functional decrease.

Remark 3.4. Noting in this paper, we only divide the sampled-data system into two
subsystem and use two Lyapunov functionals. If more subsystems are obtained and more
Lyapunov functionals are used, a much less conservative result will be obtained in the cost
of calculation.

4. Example.

Example 4.1. Consider the process model from [4] with

A =

[
1 0.5
g1 −1

]
, Bu =

[
1 + g2
−1

]
,

where |g1| ≤ 0.1 and |g2| ≤ 0.3.

The state-feed back gain is given the same as in [4], K = −
[
2.6884 0.6649

]
. According

to Remark 3.2, for each combination of Aj and Bj, 1 ≤ j ≤ 2 defined by

A1 =

[
1 0.5

−0.1 −1

]
, A2 =

[
1 0.5
0.1 −1

]
, B1 =

[
0.7
−1

]
, B2 =

[
1.3
−1

]
,

solving LMIs defined in Theorem 3.1, we find that MATI for variable sample case is up
to 0.5176, when we choose ρ2m = 0.3676 and ρ12 = 0.15. MATI for different methods can
be seen in Table 1. However, we must notice that the result may be more conservative
than some newest results in the literature, for example, [5, 27]. However, as pointed out
in Remark 3.4 above, the less conservative result should be obtained if more Lyapunov
functionals are employed in the cost of calculations.

Table 1. The MATI for different methods in Example 4.1

[4] [10] theorem of this paper

Variable sampling 0.35 0.4476 0.5176 (Theorem 3.1)
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5. Conclusions. This paper has dealt with the stability problem of sampled-data sys-
tems. For nonlinear sampled-data systems, two stability theorems were firstly developed.
And then, based on the inherent characteristics of sampled-data systems, two special Lya-
punov functionals are constructed for linear sampled-data systems with variable sampling.
This paper provides a good application example of multiple Lyapunov function method
used in hybrid system field. It is noted that if more Lyapunov functions are employed,
the less conservative results will be obtained in the cost of calculations, which may be a
further research topic in the future.
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