
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 3, March 2013 pp. 1045–1063

HYBRID TAGUCHI-BASED GENETIC ALGORITHM
FOR FLOWSHOP SCHEDULING PROBLEM

Ching-I Yang1, Jyh-Horng Chou1,2,∗ and Ching-Kao Chang1

1Institute of Engineering Science and Technology
National Kaohsiung First University of Science and Technology
No. 2, Jhuoyue Road, Nanzih District, Kaohsiung 811, Taiwan

{u9315908; cyrus }@nkfust.edu.tw; ∗Corresponding author: choujh@nkfust.edu.tw

2Department of Electrical Engineering
National Kaohsiung University of Applied Sciences
No. 415, Chien Kung Road, Kaohsiung 807, Taiwan

choujh@cc.kuas.edu.tw

Received January 2012; revised May 2012

Abstract. A hybrid Taguchi-based genetic algorithm (HTGA) is developed for solving
multi-objective flowshop scheduling problems (FSPs). Search performance is improved
by using Taguchi-based crossover to avoid scheduling conflicts, and dynamic weights are
randomly selected by a fuzzy inference system. The conventional approach to selecting
dynamic weights randomly ignores small value for the objective when the weight value
is very small. A numerical example is given to demonstrate the application of the pro-
posed hybrid method and its good performance. The numerical results show that the
hybrid method effectively enhances the genetic algorithm. The improvement achieved
by the HTGA also exceeds that obtained by existing methods reported in the literature
for finding Pareto optimum solutions for FSPs. Therefore, the HTGA effectively solves
multi-objective flowshop scheduling problems.
Keywords: Flowshop scheduling problem, Dynamic weight, Taguchi-based crossover,
Fuzzy inference system

1. Introduction. Although genetic algorithms have proven effective for solving single-
objective optimization problems [1-3], obtaining effective solutions for real world problems
often requires simultaneous consideration of multiple objective functions. Another prac-
tical problem is that conflicts in the considered objectives often make achieving a perfect
multi-objective solution that simultaneously optimizes each objective function almost im-
possible. Therefore, when solving multi-objective problems, the ultimate goal is finding
the best solution set, i.e., the Pareto optimum solutions. After considering tradeoffs, the
decision maker can then choose the preferred solution.

In the industrialized world, resource scarcity is becoming a critical problem. Scheduling
optimizes the use of available resources and satisfies performance measurement criteria.
Multi-objective flowshop scheduling is one of the most well known flowshop scheduling
problems (FSPs). Finding the optimal solutions to scheduling problems is usually very
difficult for production plant engineers. Therefore, the motivation of this paper is to
construct a novel algorithm for finding Pareto optimal solutions, which are better than
existing solutions for the above reasons. To increase machine availability, completion
time (makespan) must be minimized. The widespread adoption of just in time (JIT)
manufacturing, in which jobs are processed only as needed, has expanded the role of
tardy production in process planning. To improve completion time and to minimize the

1045

1046 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

tardiness problem, effective solutions are needed for the FSP with the two objectives of
minimizing makespan and maximum tardiness.
The GA optimization is applied to solve the FSP, which can be defined as the problem

of dealing with n jobs on m machines or work centers in a facility in which all jobs are
processed on all machines in the same sequence. The scheduling procedure known as
the Johnson rule is used to solve the two-machine problem [4]. Problems involving more
than two machines or jobs are called NP-complete or NP-hard problems [5]. Some of the
studies investigating the use of genetic algorithms (GAs) to solve this problem [6-23] have
combined the objective functions into a scalar fitness function so that the multi-objective
optimization problem can be solved by a single objective genetic algorithm. Assigning a
constant to each weight of the scalar fitness function obtains a constant search direction.
Ishibuchi et al. [10,13] first proposed the use of dynamic weights to find the best feasible
solutions by increasing the number of search directions. Nevertheless, the conventional
approach of randomly selecting dynamic weights may ignore a small value objective with
a very small dynamic weight value. To solve this problem, we propose the use of dynamic
weights controlled by a fuzzy inference system (FIS) to enhance search ability instead of
using randomly selected dynamic weights. Additionally, instead of using a two-point cut
for the crossover operation based on a random process, e.g., Ishibuchi et al. [10,13], this
study proposes a more systematic reasoning way of Taguchi-based crossover operation to
generate improved offspring. Moreover, the Pareto optimum solutions found so far are
generated by using a new population consisting of the Pareto optimum solutions for pre-
vious generations and for the current population after local search. Thus, in addition to
weight selection and crossover operations, updating the Pareto optimum solutions found
so far is also essential for solving multi-objective optimization problems. Therefore, the
objective of this study was to develop an improved GA approach with three features: (I)
enhancement of search capability by the use of dynamic weights selected by FIS instead
of dynamic weights selected randomly [10,13]; (II) a systematic reasoning approach to
performing a Taguchi crossover operation that avoids the scheduling conflicting problem
and finds an optimal solution instead of performing crossover operation based on a ran-
dom process [10,13]. The two major tools in the Taguchi crossover operation are (1)
the signal-to-noise ratio (SNR) used to measure quality and (2) the orthogonal arrays
used for simultaneously studying multiple parameters; (III) an easy way to generate the
Pareto optimum solutions found so far so that the best offspring (solutions) can be re-
tained. This proposed hybrid Taguchi-based genetic algorithm (HTGA) provides dynamic
weight selection by FIS and a new way of using systematic reasoning in the Taguchi-based
crossover operation to generate an optimal individual. The best Pareto optimum solu-
tions found so far are always kept in the next generation. Because of the combined use of
Taguchi-based crossover operation and GA, the proposed HTGA is robust and achieves
quick convergence.
A review of the GA literature [6-23] shows that the algorithms [10,13] proposed by

Ishibuchi et al. for solving the FSP are structurally complete. Although the multi-
objective genetic local search (MOGLS) algorithm [10] and its modification [13] have
shown good potential, further improvement in solution performance is needed. The pro-
posed HTGA was compared not only with the MOGLS algorithm as reported by Ishibuchi
and Murata [10], but also with the modified MOGLS algorithm developed by Ishibuchi
et al. [13]. The comparison results show that HTGA is better than both the original
MOGLS algorithm and the modified MOGLS algorithm.
This paper is organized as follows. Section 2 introduces the FSP with two objective

functions. Section 3 describes the HTGA. A numerical example is discussed to illustrate
the proposed method in Section 4. Section 5 presents the conclusions.

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1047

2. Flowshop Scheduling Problem. The problem considered here was finding the job
schedule with the minimum weighted sum of completion time and maximum tardiness.
Because the feasible solutions are widely spread in the solution space, Ishibuchi et al.
[10,13] argued that unit searching directions can overlook some better solutions when
using fixed weight method. They proposed the use of dynamic weights to find better
feasible solutions by increasing the number of searching directions. Therefore, this study
evaluated the use of dynamic weights controlled by an FIS to improve search ability. The
proposed HTGA for solving the FSP has the following properties:

(1) All jobs are available at time zero.
(2) Physical buffer space between two successive machines is sufficient.
(3) Setup times for the operations are sequence independent and are included in the

processing times.
(4) All machines are continuously available.
(5) Individual operations are not preemptive.

The sequence of n jobs is denoted by an n dimensional vector (J1, J2, . . . , Jn). The n
jobs are processed on a series of machines (M1,M2, . . . ,Mm) in the same sequence. Where
Ji denotes the i-th processing job and Mj denotes the j-th machine, the processing time
of job i on machine j is Pi,j. The completion time of job i is defined as Ci,m, that is, the
completion time of job i on the last machine m, where

C1,1 = P1,1,
C1,j = C1,j−1 + P1,j, for j = 2, . . . ,m,
Ci,1 = Ci−1,1 + Pi,1, for i = 2, . . . , n,
Ci,j = max {Ci,j−1, Ci−1,j}+ Pi,j for i = 2, . . . , n, for j = 2, . . . ,m.

(1)

The makespan of the sequence of n jobs is defined as Cmax = Cn,m, that is, the maximum
completion time of the last job n on the last machinem. The tardiness Ti of job i is defined
as {

Ti = max {(Ci,m −Di), 0} ,
for i = 1, 2, . . . , n, and Di is the due date of job i.

(2)

The maximum tardiness Tmax of the scheduling is defined as

Tmax = max {T1, T2, . . . , Tn} . (3)

3. Hybrid Taguchi-Based Genetic Algorithm for FSP. This section introduces the
use of the proposed HTGA for solving FSPs. Its objectives are to minimize makespan
and to minimize maximum tardiness. The HTGA combines GA with local search and an
elitist preservation strategy. The steps of the HTGA approach are depicted in Figure 1
and are described as follows. The parameters used in the algorithm are set as shown in
Table 6.
(I) Encoding a schedule

A sequence of jobs S = (x1, x2, . . . , xn) is a chromosome representing the job processing
sequence. That is, the processing of job x1 is followed by the processing of job x2, and so
on.
(II) Initialization

Randomly generate an initial population in which population size (q) is equal to 2n,
where n is the number of jobs.
(III) Evaluation

For a solution x, a fitness function for the HTGA algorithm is defined by the weighted
sum of n objectives:

f (x) = w1f1 (x) + w2f2 (x) + . . .+ wnfn (x) , (4)

1048 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

where f1(x), f2(x), . . ., fn (x) are n objectives to be maximized and w1+w2+ . . .+wn = 1.
The objective is to find all non-dominated solutions for the multi-objective optimization
problem.
The objective of this study is to minimize makespan and maximum tardiness. The

feasible solutions are widely spread in the solution space. Ishibuchi et al. [10,13] proposed
the use of dynamic weights to find better feasible solutions by increasing the number of
search directions. Since the conventional approach of using randomly selected dynamic
weights may ignore the small value objective when the dynamic weight value is very small,
this study proposes the use of an FIS performed in the following steps.

Figure 1. Hybrid Taguchi-based genetic algorithm for solving flowshop
scheduling problem

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1049

Figure 2. Fuzzy inference system

(1) Calculate the objective values of the makespan and the maximum tardiness
of initial population.

Let fob1(x) denote the makespan and fob2(x) denote the maximum tardiness.
(2) Generate a set of Pareto optimal solutions for the initial population.
(3) Calculate the fitness function f(x) by the weighted sum approach.

Because these two objectives should be minimized, a fitness function for solution x is
defined by the weighted sum of two objectives.

f(x) = −w1fob1(x)− w2fob2(x), (5)

where w1 and w2 are the dynamic weights of the objective function fob1(x) and fob2(x),
respectively, and w1 + w2 = 1.

The conventional approach is to select the dynamic weights randomly. However, since
w1fob1(x) decreases to a small value when weight w1 is very small, only fob2(x) is considered
here. Therefore, the search direction is improved by using the fuzzy inference system to
adjust w1 and w2.
(4) Fuzzy inference system

Figure 2 shows that the fuzzy inference system consists of input variables, a fuzzy
logic unit and an output variable. The four main components of the fuzzy logic unit
are the fuzzification component, the fuzzy rule base, the fuzzy inference engine and the
defuzzification component.

Two objectives are used as the input variables, and the weight of fob1(x) is used as the
output variable.
(4-1) Normalizing input variables

Since the two input variables have different ranges, the values for the two objectives
are normalized to within the same range, from zero to one, before fuzzification. The
transformation used in this study [24] is

xnew =
xold − xmin

xmax − xmin

(Dmax −Dmin) +Dmin, (6)

where
xmin: minimum value of input variables,
xmax: maximum value of input variables,
Dmin = 0 and Dmax = 1.

For example: n = 10 (see Table 1).

1050 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

Table 1. Normalization of input variables

No. Chromosomes
Before normalization After normalization
Cmax Tmax Cmax Tmax

1 8 9 2 10 1 4 3 7 5 6 916 319 0.8315 0.3559
2 9 8 3 1 7 10 2 5 4 6 907 453 0.7809 0.7500
3 3 5 4 6 2 7 8 9 1 10 860 326 0.5169 0.3765
4 10 5 7 1 3 8 6 9 2 4 819 450 0.2865 0.7412
5 8 2 1 5 10 9 3 7 6 4 905 536 0.7697 0.9941
6 2 10 7 4 5 3 9 6 8 1 781 311 0.0730 0.3324
7 4 1 7 9 5 3 6 2 8 10 920 435 0.8539 0.6971
8 5 3 1 4 9 8 6 10 7 2 844 448 0.4270 0.7353
9 8 5 7 10 9 3 1 2 6 4 907 538 0.7809 1.000
10 9 4 6 1 10 2 5 3 8 7 818 352 0.2865 0.4529
11 6 4 5 9 2 1 10 8 3 7 768 307 0 0.3206
12 10 8 9 7 5 3 1 2 4 6 924 470 0.8764 0.8000
13 10 9 3 1 2 5 4 6 7 8 791 354 0.1292 0.4588
14 2 7 6 10 3 4 8 1 9 5 798 198 0.1685 0
15 5 2 7 4 1 10 8 3 9 6 851 291 0.4663 0.2735
16 6 10 9 7 2 8 5 3 4 1 855 453 0.4888 0.7500
17 10 9 4 6 2 8 5 7 1 3 833 402 0.3652 0.6000
18 8 3 5 4 7 1 6 9 2 10 946 499 1 0.8853
19 4 5 10 6 1 3 7 9 8 2 793 397 0.1404 0.5853
20 10 2 3 4 9 7 8 6 1 5 892 266 0.6966 0.2000

Figure 3. Membership function for input variables

(4-2) Fuzzification
Input variables are partitioned into three fuzzy membership functions, S, M and L

(Figure 3), and output variable is partitioned into five fuzzy membership functions, S,
SM, M, ML and L (Figure 4).

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1051

Figure 4. Membership function for output variable

Table 2. Fuzzy rule base

Output variable Input variable Tmax

weight 1 x2
y

S(B1) M(B2) L(B3)

Input variable Cmax
S(A1) M(C1) ML(C2) L(C3)

x1
M(A2) SM(C4) M(C5) ML(C6)
L(A3) S(C7) SM(C8) M(C9)

(4-3) Fuzzy rule base
The fuzzy rule base consists of a group of fuzzy IF-THEN rules that include all possible

fuzzy relations between inputs and outputs. Table 2 shows the nine fuzzy rules used in
this study. For example,

R1: if x1 is A1 and x2 is B1, then y is C1.

R2: if x1 is A1 and x2 is B2, then y is C2.

..

Subsets Ai, Bi and Ci are fuzzy subsets defined by their corresponding membership
functions, i.e., uAi, uBi and uCi, respectively (Figure 5).
(4-4) Fuzzy inference engine

The fuzzy inference engine performs the fuzzy inference operation by applying the
Mamdani max-min inference method. The fuzzy output represents the weight of fob1(x)
and is determined by the following equation.

µC0(y) = (µA1 (x1) ∧ µB1 (x2) ∧ µC1(y)) ∨ (µA1(x1) ∧ µB2(x2) ∧ µC2(y)) , (7)

where ∧ denotes the minimum operation and ∨ denotes the maximum operation.
(4-5) Defuzzification

Since the fuzzy output from the fuzzy inference engine of a fuzzy system must be a crisp
number, a defuzzification method is needed to convert the fuzzy result into a crisp one.
After considering various defuzzification methods, including centroid, weighted average
and height method, the height method was selected because of its simplicity. First, the
consequent membership function Ci was converted into a crisp consequent y = Zi, where

1052 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

Figure 5. Graphic depiction of fuzzy inference computation

Zi is the center of gravity of Ci. The crisp value of output variable Z0 is then represented
by (8).

Z0 =

∑
ωiZi∑
ωi

, (8)

where ωi is the membership function value of the ith activated rule [28,29].
(IV) Selection
The main purpose of the selection procedure is to retain the better solutions, i.e., the

solutions with the best fitness values, in the solution set. From the current population,
chromosomes are selected according to the selection probability P (x) of chromosome x.
The selection procedure is as follows.

(1) Calculate the fitness value of each chromosome f(x) in the population Ψ.
(2) Calculate the Roulette wheel ratio Wi(x).

Let Wheel min = fmin(Ψ)− 1

Wi(x) =
fi(x)−Wheel min∑N

i=1 (fi(x)−Wheel min)
(9)

where fmin(Ψ) is the fitness value of the worst solution in the current population Ψ
and N is the number of chromosomes of the current population Ψ.

(3) Sort the chromosomes of the current population according to the Roulette wheel ratio

in ascending order, and calculate the selection probability Pi(x) =
∑i

l=1Wl(x).
(4) New chromosome selection

Select a random number ri, 0 < ri < 1, i = 1, 2, . . . , Nsel where Nsel is the number of
selected chromosomes.
If ri < P1(x), select N1.
If Pi(x) <

= ri < Pi+1(x), select Ni+1.
Repeat the procedure until Nsel chromosomes are formed.

Various crossover and mutation methods have been developed for the many different
encodings. In FSP problems, Ishibuchi et al. [10,13] used two genetic operators, two-point
crossover and shift mutation, which are good operators for a two-objective GA for solving
the FSP. However, the GA in this study is improved by adding two genetic operators,

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1053

Taguchi based-crossover and shift mutation.
(V) Taguchi-based crossover operation

The GA includes a crossover operator to find a better solution. From the selected
population, two individuals are randomly selected as parents that can generate better
offspring (better solutions) by exchanging information. Here, two-point crossover method
is typically used [10,13]. Using Taguchi method [27] to find a better sequence generates
non-feasible solutions that must be repaired. Taguchi-based crossover method has proven
effective for optimizing particles in job shop scheduling problems without scheduling con-
flicts [28]. To solve the FSP, this study used a Taguchi-based crossover method without
scheduling conflicts to find the optimal or near-optimal solutions for the particle after per-
forming the experiments. Because it avoids the scheduling conflict problem in flow-shop
scheduling, Taguchi-based crossover is applied.
(1) Taguchi method

The fundamental concept of the Taguchi method is to perform the minimum number
of experiments needed to minimize the causes of variation and improve product quality.
Two major tools in this method are orthogonal array (OA) and SNR . In an experiment
involving k factors (variables) and q levels for each factor, qk combinations generally
cannot be tested if the k factors have many values. Therefore, the Taguchi method
uses OA to minimize the number of experiments needed for comprehensive testing. The
example considered in this study included 10 factors and two levels, and 210 combinations
of experiments were performed. The OA L12(2

11) requires only twelve experiments to
solve the problem. In each experiment, SNR is calculated, and the following steps are
performed to calculate the effects of various factors. The optimal level is the one with
highest effect Efl for each factor. Therefore, an optimal solution with an optimal level
usually approaches the objective value that generates the smallest variance. The details
regarding the Taguchi method can be found in [29,30].
(2) The detailed steps of the Taguchi-based crossover algorithm are as follows:

(2-1) Perform k + 1 experiments to select a suitable two-level OA Lk+1(2
k). The n jobs

are allocated in the first n columns of the OA.
(2-2) From the selected population, randomly select two individuals as parents P1 and

P2.
(2-3) Randomly generate a set of n jobs U = {1, 2, 3, . . . , n}, and separate U into U1 and

U2. The job number in U1 and U2 correspond to factor level 1 or 2 in the executed
experiment, respectively, where U1 ∪ U2 = U and U1 ∩ U2 = ϕ.

(2-4) According to the job numbers in U1 and U2, sequentially select the new P1 and the
new P2 from P1 and P2, respectively.

(2-5) Generate an offspring based on the experimental results.
(2-6) After all experiments are completed, calculate the fitness value and the SNR η for

each experiment.
A fuzzy inference system is used to adjust dynamic weights w1 and w2 for the fitness
function. In the case of a smaller-the-better characteristic, the SNR η is defined as

η = −10 log

(
1
k

k∑
i=1

y2i

)
, where yi is the fitness value of the experiment. In this case,

k equals 1.
(2-7) Calculate the effects Ef1 and Ef2 for various factors. If Ef1

>
=Ef2, level 1 is optimal

for factor f . Generate the best level for each factor where Efl = sum of ηl for factor
f at level l.

(2-8) Generate an optimal individual (offspring).
Repeat steps (2-3) to (2-5) to generate the optimal individual.

1054 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

Table 3. Orthogonal array L12(2
11)

Experiment No (i)

Factors
A B C D E F G H I J K

Column number
1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 2 2 2 2 2 2
3 1 1 2 2 2 1 1 1 2 2 2
4 1 2 1 2 2 1 2 2 1 1 2
5 1 2 2 1 2 2 2 2 1 2 1
6 1 2 2 2 1 2 1 1 2 1 1
7 2 1 2 2 1 1 2 2 1 2 1
8 2 1 2 1 2 2 1 1 1 1 2
9 2 1 1 2 2 2 1 2 2 1 1
10 2 2 2 1 1 1 1 2 2 1 2
11 2 2 1 2 1 2 2 1 1 2 2
12 2 2 1 1 2 1 2 1 2 2 1

Table 4. Selected parents

Factors A B C D E F G H I J
P1 (L1) 1 10 4 8 7 3 6 9 2 5
P2 (L2) 8 7 4 9 2 10 5 6 3 1

(2-9) Repeat steps (2-2) to (2-8) until the expected number of the population have been
met. Finally, generate the population of optimal individuals.
For example, for a job number n = 10.

(1) Select a suitable two-level OA L12(2
11) with 12 experiments. Use the first ten columns

for the ten jobs (Table 3).
(2) Select two parents (P1 and P2) as shown in Table 4.
(3) Randomly generate a set of ten jobs

U = {4, 2, 1, 7, 9, 6, 5, 8, 3, 10}.
If experiment no. 3 is executed, the factor levels are (1 1 2 2 2 1 1 1 2 2).
For level 1, U1 = {4, 2, 6, 5, 8}.
For level 2, U2 = {1, 7, 9, 3, 10}.

(4) Select a new P1 and a new P2.
P1 = (1, 10, 4, 8, 7, 3, 6, 9, 2, 5) → new P1 = (4, 8, 6, 2, 5)
P2 = (8, 7, 4, 9, 2, 10, 5, 6, 3, 1) → new P2 = (7, 9, 10, 3, 1)

(5) According to the factor levels (1 1 2 2 2 1 1 1 2 2), execute crossover and generate
offspring S as shown in Table 5.
S = (4, 8, 7, 9, 10, 6, 2, 5, 3, 1)

(6) After completing all experiments, calculate the fitness values and SNR η for each
experiment as shown in Table 5.

(7) Calculate the effects Ef1 and Ef2 for the various factors, and find the best level of
each factor as shown in Table 5.

(8) Generate an optimal chromosome (offspring) as shown in Table 5.
Repeat steps (3), (4) and (5) to find an optimal chromosome as follows.

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1055

(3) Randomly generate a set of ten jobs
U = {4, 2, 1, 7, 9, 6, 5, 8, 3, 10}.
Execute the optimal level (2 2 1 2 1 1 1 2 2 1).
For level 1, U1 = {1, 9, 6, 5, 10}.
For level 2, U2 = {4, 2, 7, 8, 3}.

(4) P1 = (1, 10, 4, 8, 7, 3, 6, 9, 2, 5) → new P1 = (1, 10, 6, 9, 5)
P2 = (8, 7, 4, 9, 2, 10, 5, 6, 3, 1) → new P2 = (8, 7, 4, 2, 3)

(5) According to the optimal level (2 2 1 2 1 1 1 2 2 1), execute crossover and
generate offspring S (see Table 5).
S = (8, 7, 1, 4, 10, 6, 9, 2, 3, 5)

(VI) Mutation operation
After a few generations, the individuals in the population are very close. Local opti-

mization can be avoided by performing a mutation operation to change only a few genes.
The procedure used in this study was shift change operator (Figure 6) [10], which is
performed as follows.

(1) Randomly select one parent from an optimal chromosome matrix.
(2) Randomly select two points along the job sequence.
(3) Move a job from one position to another position.

(VII) Local search
The population is diversified by using the new LS population, which consists of the

population after mutation Nmu and three non-dominated solutions Nelite randomly se-
lected from the previous set of Pareto optimal solutions. The purpose of LS method is to

Table 5. Generating improved offspring from two parents by using
Taguchi-based method

Exper

Factors

Fitness S/N
-iment values ratio
No (i) yi η

A B C D E F G H I J
Job number

1 2 3 4 5 6 7 8 9 10

1 1 10 4 8 7 3 6 9 2 5 –565.2968 –55.0455
2 1 4 7 9 2 8 10 5 6 3 –624.0732 –55.9047
3 4 8 7 9 10 6 2 5 3 1 –517.1973 –54.2731

4 1 8 10 7 9 4 2 5 3 6 –454.0288 –53.1417
5 4 8 9 7 2 10 5 6 3 1 –674.2050 –56.5758
6 10 7 2 6 4 3 8 9 1 5 –523.9099 –54.3851
7 8 3 7 4 6 9 10 5 2 1 –724.4954 –57.2007

8 4 10 9 8 6 1 7 3 2 5 –708.6616 –57.0088
9 8 1 10 7 4 9 2 6 3 5 –408.5810 –52.2256
10 8 10 5 1 4 7 9 6 3 2 –435.3097 –52.7760

11 7 4 1 2 8 10 5 3 9 6 –499.7075 –53.9743
12 7 4 1 8 2 3 10 9 5 6 –637.6585 –56.0918

Ef1
–329.32 –331.6 –326.3 –329.9 –329.2 –328.5 –325.7 –330.7 –332.9 –324.5

60 584 836 684 864 288 141 786 468 826

Ef2
–329.27 –326.9 –332.2 –325.2 –329.3 –330.0 –332.8 –327.8 –325.6 –334.0

71 447 196 005 167 743 890 245 563 205

Opti
2 2 1 2 1 1 1 2 2 1-mal

level

Opti

8 7 1 4 10 6 9 2 3 5
-mal
chro
-mos

-ome

1056 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

Figure 6. Shift change operator

Figure 7. Swap change operator

improve the solutions obtained by the crossover and mutation operation. Two operators
used for the LS are the shift change operator and the swap change operator.
The algorithm uses the swap change operator (Figure 7) to change the jobs at positions

i and j.
For the swap change operator [31] of a chromosome consisting of n jobs, the number

of full neighborhood solutions is n(n − 1)/2. For example, when n = 10, the number of
neighborhood solutions that must be examined for a chromosome is 45, which is a small
problem size. Although the full neighborhood solutions are used in this study, computing
time may be overly long when the job number is high. Therefore, computing speed is
increased by using a single adjacent pairwise interchange neighborhood composed of the
following n− 1 schedules for (Ji, J2, J3, J4, . . . , Jn−1, Jn):

(J2, J1, J3, J4, . . . , Jn−1, Jn),

(Ji, J3, J2, J4, . . . , Jn−1, Jn),

(Ji, J2, J4, J3, . . . , Jn−1, Jn),

..

(Ji, J2, J3, J4, . . . , Jn, Jn−1).

For example, when n = 10, only nine adjacent pairwise interchange neighborhood solu-
tions are considered.
(VIII) Elitist preservation strategy
A new population with Nls chromosomes generates after local search. The elitist preser-

vation strategy always keeps the best chromosomes of a population in the next generation.
Therefore, the following procedure is used to select the bestNini solutions after local search
for next generation:

(1) Calculate the values of the objective function for Nls chromosomes.
(2) Calculate the fitness function for Nls chromosomes.

To enlarge the searching space, randomly selected dynamic weights are used for the
fitness function.

(3) Sort all chromosomes in the population by fitness function values, and delete those
with the lowest fitness function values; obtain a new population with Nini chromo-
somes for the next generation.

(IX) Update the set of Pareto optimal solutions

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1057

(1) Generate a population consisting of the new population for the next generation and
the set of Pareto optimal solutions for the last generation.

(2) Use the population to update the set of Pareto optimal solutions.

(X) Termination
Use the number of generations as the termination condition. If the current generation

is equal to the number of maximum generations, then stop; otherwise, go to step IV.
(XI) Display the final Pareto optimal front

The HTGA gives decision makers the best solutions for the final Pareto optimal front.
The decision makers can then select any one of the solutions based on their preferences.

Table 6. Hybrid Taguchi-based genetic algorithm parameter settings

Parameter Description Setting
Test problem 1 Test problem 2

n Job number 10 40
m Machine number 5 20
q Population size 20 20

Maximum generation 3000, 6000, 9000, 12000. 500
ω Dynamic weight

selection by FIS
cr Crossover rate 0.9 0.9
mr Mutation rate 0.3 0.3

Nsel
Number of selected

17 17
chromosomes

Nelite Number of elite solutions 3 3
Stopping Maximum Maximum Maximum
condition generation generation generation

Table 7. Processing time for each job on each machine

Job No.
Machine number

Due date
1 2 3 4 5

1 32 21 10 51 33 674
2 1 27 42 19 45 396
3 61 87 66 23 58 431
4 42 45 75 85 97 369
5 62 59 41 86 91 626
6 61 24 24 81 85 597
7 3 71 3 93 30 790
8 97 34 36 31 38 437
9 26 20 85 75 17 656
10 9 28 74 23 51 780

Table 8. Global optimal solutions obtained by hybrid Taguchi-based ge-
netic algorithm

No. of jobs 1 2 3 4 5 6 7 8 9 10 11
Cmax 681 691 702 710 713 716 733 749 752 753 782
Tmax 197 136 123 120 106 90 75 70 53 21 4

1058 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

4. Numerical Example and Simulation Results. This section evaluates the perfor-
mance of the proposed HTGA approach by comparing its optimization results with those
obtained for the same cases using the MOGLS in [10] and the modified MOGLS in [13].
Table 6 shows the HTGA parameter settings. The same crossover rates and mutation
rates are used in test problems 1 and 2 for comparisons between the MOGLS in [10] and
the modified MOGLS in [13].
(I) Test problem 1
The same example given in [10] (see Table 7) is used to test the proposed HTGA

approach and to compare its performance with the GA approach in [10]. Table 8 shows
the global optimal solutions (GOS) obtained by the HTGA. Figure 8 shows the Pareto
front of the HTGA. Figures 9 and 10 show the number of global optimal solutions (GOS)
for four generations (3000, 6000, 9000, 12000) in 30 runs of the HTGA with weights
selected randomly and with weights selected by FIS method, respectively.
The simulation results reveal two findings.

Figure 8. Pareto fronts of hybrid Taguchi-based genetic algorithm
(HTGA) and the algorithm presented in [10] for ten-job and five-machine
flowshop scheduling problem

Figure 9. Number of globally optimal solutions (GOS) generated by
weights selected randomly

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1059

Figure 10. Number of globally optimal solutions (GOS) generated by
weights selected by fuzzy inference system (FIS) method

Figure 11. Improvement in the success rate of the hybrid Taguchi-based
genetic algorithm

(1) Comparison of HTGA with the algorithm developed by Ishibuchi and Murata [10].
The algorithm developed by Ishibuchi and Murata [10] used randomly selected dynamic

weights and conventional two-point crossover. Figure 8 shows that the Pareto front ob-
tained by the HTGA is better than that obtained by the algorithm presented in [10].

(2) Selection of improved dynamic weights using FIS method.
Figures 9 and 10 show that the numbers of runs with 11 GOS increase when the

maximum number of generations increases. Figure 11 shows the success rates (number
of runs with 11 GOS/total number of runs) for four generations of HTGA with weights
selected randomly and weights selected by FIS method. Figure 11 confirms that the
success rates of the dynamic weights selected by FIS method are better than those of the
dynamic weights selected randomly. Therefore, we can conclude that the robustness of
the HTGA approach with weights selected by FIS increases as the maximum number of
generations increases. Therefore, the fuzzy inference system substantially improves the
HTGA solutions.

1060 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

(II) Test problem 2
The same example considered in [13] is used for random generation of a 40-job, 20-

machine flowshop scheduling problem as described in section IIIA of [10]. The population
size (q) is equal to 20. Taguchi based crossover is performed by using orthogonal array
L64(2

63). The first 40 columns are used for 40 jobs. The full neighborhood solutions and
500 generations are used.
Compared with the approach used by Ishibuchi et al. [13], (see Figure 4 in [13]), the

HTGA algorithm achieves better solutions for the same problem (Figure 12).

Figure 12. Non-dominated solutions obtained in 12 runs of hybrid
Taguchi-based genetic algorithm (HTGA) for 40-job and 20-machine flow-
shop scheduling problem

Table 9. Simulation results for ten-job and five-machine flowshop schedul-
ing problem in test problem 1 with numbers of globally optimum solutions
(GOS) and numbers of runs for crossover rates (Cr) of 0.7, 0.8 and 0.9

Maximum Cr = 0.7 Cr = 0.8 Cr = 0.9
generation

No. of No. of No. of No. of No. of No. of
GOS runs GOS runs GOS runs

3000 11 4 11 6 11 6
10 12 10 14 10 14
9 13 9 7 9 9
8 1 8 3 8 1

6000 11 12 11 14 11 15
10 12 10 14 10 11
9 4 9 2 9 4
8 2

9000 11 14 11 18 11 19
10 9 10 10 10 11
9 4 9 2
8 3

12000 11 16 11 20 11 24
10 11 10 10 10 4
9 3 9 2

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1061

Table 10. Computation results using different crossover rates (0.7, 0.8,
0.9) for ten-job and five-machine flowshop scheduling problem in test prob-
lem 1

Maximum Cr = 0.7 Cr = 0.8 Cr = 0.9
generation

Best Avg. Std. dev. Best Avg. Std. dev. Best Avg. Std. dev.
3000 11 9.633 0.752 11 9.766 0.882 11 9.833 0.778
6000 11 10.133 0.884 11 10.4 0.611 11 10.366 0.706
9000 11 10.133 0.991 11 10.533 0.618 11 10.633 0.481
12000 11 10.433 0.667 11 10.666 0.471 11 10.733 0.573

The proposed HTGA consistently obtained robust solutions under varying parameters.
For example, we use different crossover rates (0.7, 0.8, 0.9) in test problem 1, the result
is still robust. Tables 9 and 10 show the simulation results and the computation results.
Table 10 shows that the HTGA obtains much smaller standard deviations for different
crossover rate in each maximum generation. Hence, the proposed HTGA obtains better
quality solutions in terms of robustness and stability.

5. Conclusions. This study presented a hybrid genetic algorithm that uses Taguchi-
based crossover to solve global optimal solutions for the FSP. Weighted sum method is
used to find the fitness of each chromosome. This HTGA combines GA with a local search
and elitist preservation strategy. The numerical examples in this study confirm that the
HTGA has the following performance characteristics:

(I) Whereas randomly selected weights are generally used for the fitness function in
each calculation, this study improved search performance by using FIS instead. Figure 11
shows that weight selection by FIS method is more effective than random weight selection.

(II) The proposed Taguchi-based crossover avoids the scheduling conflict problems that
occur in conventional Taguchi crossover and easily finds global optimal solutions by using
two-level orthogonal arrays and SNR. Therefore, the Taguchi-based crossover enhances
the GA. The simulation results in Figure 9 and Figure 10 confirm that the proposed
HTGA obtains better and more robust solutions compared with the conventional ap-
proach. Figure 8 shows that the Pareto front obtained by the HTGA is better than that
obtained by the algorithm presented in [10].

(III) In this study, the set of Pareto optimum solutions is updated by using the popula-
tion for the current generation and the Pareto optimum solutions for the last generation.
The Pareto optimum solutions are then inherited by the next generation, and the global
optimal solutions are obtained.

Computer simulations showed that the merits of the proposed HTGA include its sim-
plicity, its global exploration capability, its fast convergence and its robustness. The il-
lustrative examples showed that the proposed HTGA approach effectively solves the FSP
and outperforms the MOGLS algorithm by Ishibuchi and Murata [10] and the modified
MOGLS algorithm by Ishibuchi et al. [13].

Acknowledgment. This work was in part supported by the National Science Council,
Taiwan, under grant number NSC 99-2221-E-151-071-MY3.

REFERENCES

[1] C. L. Chen, V. S. Vempait and N. Aljaber, An application of genetic algorithms for flow shop
problems, European Journal of Operational Research, vol.80, pp.389-396, 1995.

1062 C.-I YANG, J.-H. CHOU AND C.-K. CHANG

[2] T. Murata, H. Ishibuchi and H. Tanaka, Genetic algorithms for flowshop scheduling problems, Com-
puters Ind. Engng., vol.30, no.4, pp.1061-1071, 1996.

[3] B. W. Cheng and C. L. Chang, A study on flowshop scheduling problem combing Taguchi experi-
mental design and genetic algorithm, Expert Systems with Application, vol.32, pp.415-421, 2007.

[4] D. R. Sule, Industrial Scheduling, PWS Publishing Company, Boston, 1996.
[5] C. Wu and X. Gu, A genetic algorithm for flowshop scheduling with fuzzy processing time and due

date, Proc. of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China,
pp.2938-2942, 2004.

[6] W. H. Ho, J. X. Chen, I. N. Lee and H. C. Su, An ANFIS-based model for predicting adequacy
of vancomycin regimen using improved genetic algorithm, Expert Systems with Applications, vol.38,
pp.13050-13056, 2011.

[7] W. H. Ho, Takagi-Sugeno fuzzy model of nonlinear HIV dynamics: Chebyshev-series approach in-
tegrated with genetic algorithm, International Journal of Innovative Computing, Information and
Control, vol.8, no.2, pp.1439-1451, 2012.

[8] F. S. Ismail, R. Yusof, M. Khalid, Z. Ibrahim and H. Selamat, Performance evaluation of self orga-
nizing genetic algorithm for multi-objective optimization problem, ICIC Express Letters, vol.6, no.1,
pp.1-7, 2012.

[9] F. N. Ferdinand, K. H. Chung, H. J. Ko and C. S. Ko, Genetic algorithm-based approach to multi-
objective decision making model for strategic alliances in express courier services, ICIC Express
Letters, vol.6, no.4, pp.929-934, 2012.

[10] H. Ishibuchi and T. Murata, A multi-objective genetic local search algorithm and its application
to flowshop scheduling, IEEE Trans. on System, Man, and Cybernetics – Part C: Applications and
Reviews, vol.28, pp.392-403, 1998.

[11] H. Ishibuchi and T. Murata, Multi-objective genetic local search algorithm, Proc. of the 3rd IEEE
Int. Conf. Evolutionary Computation, Nagova, Japan, pp.119-124, 1996.

[12] H. Ishibuchi, T. Yoshida and T. Murata, Balance between genetic search and local search in memetic
algorithms for multiobjective permutation flowshop scheduling, IEEE Trans. Evol. Comput., vol.7,
pp.204-223, 2003.

[13] H. Ishibuchi, T. Yoshida and T. Murata, Selection of initial solutions for local search in multiobjective
genetic local search, Proc. of Congr. Evol. Comput., Honolulu, HI, USA, pp.950-955, 2002.

[14] T. Murata, H. Ishibuchi and H. Tanaka, Multi-objective genetic algorithm and its application to
flowshop scheduling, Computers Ind. Engng., vol.30, pp.957-968, 1996.

[15] T. Murata and H. Ishibuchi, MOGA: Multi-objective genetic algorithms, Proc. of IEEE International
Conference on Evolutionary Computation, Perth, Australia, pp.289-294, 1995.

[16] V. R. Neppalli, C. L. Chen and J. N. D. Gupa, Genetic algorithm for two-stage bi-criteria flowshop
problem, European Journal of Operational Research, vol.95, pp.356-373, 1996.

[17] P. C. Chang, J. C. Hsieh and S. G. Lin, The development of gradual-priority weighting approach for
multiobjective flowshop scheduling problem, Int. J. Prod. Econ., vol.79, pp.171-183, 2002.

[18] F. Dugardin, F. Yalaoui and L. Amodeo, New multi-objective method to solve reentrant hybrid flow
shop scheduling problem, European Journal of Operational Research, vol.203, pp.22-31, 2010.

[19] N. Karimi, M. Zandieh and H. R. Karamooz, Bi-objective group scheduling in hybrid flexible flow-
shop: A multi-phase approach, Expert Syst. Appl., vol.37, pp.4024-4032, 2010.

[20] J. E. C. Arroyo and V. A. Armentano, Genetic local search for multiobjective flowshop scheduling
problem, European Journal of Operational Research, vol.167, pp.717-738, 2005.

[21] N. Melab, M. Mezmaz and E. G. Talbi, Parallel cooperative meta-heuristics on the computational
grid, A case study: The bi-objective flow-shop problem, Parallel Computing, vol.32, pp.643-659,
2006.

[22] B. B. Li and L. Wang, A hybrid quantum-inspired genetic algorithm for multi-objective flow shop
scheduling, IEEE Trans Syst Man Cybern B, vol.37, pp.576-591, 2007.

[23] P. C. Chang, S. H. Chen and C. H. Liu, Sub-population genetic algorithm with mining gene structures
for multi-objective flowshop scheduling problems, Expert Syst. Appl., vol.33, pp.762-771, 2007.

[24] Y. F. Tseng, H. M. Huang and Y. H. Zeng, CNC milling process optimization using fuzzy-Taguchi
with principle component analysis approach, Proc. of the 13th National Conference on Fuzzy Theory
and Its Applications, Taiwan, pp.899-906, 2005.

[25] J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information, Prentice Hall, New
Jersey, 1998.

[26] D. L. Hung and W. F. Zajak, Design and implementation of a hardware fuzzy inference system,
Information Science, vol.3, pp.193-207, 1995.

HYBRID TAGUCHI-BASED GENETIC ALGORITHM 1063

[27] L. Y. Tseng and Y. T. Lin, A hybrid genetic local search algorithm for the permutation flowshop
scheduling problem, European Journal of Operational Research, vol.198, pp.84-92, 2009.

[28] J. T. Tsai, T. K. Liu, W. H. Ho and J. H. Chou, An improved genetic algorithm for job-shop
scheduling problems using Taguchi-based crossover, Int. J. Adv. Manuf. Technol., vol.38, pp.987-
994, 2008.

[29] D. C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 1991.
[30] M. S. Phadke, Quality Engineering Using Robust Design, McGraw-Hill, New York, 1989.
[31] S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop, Ellis

Horwood Limited, John Wiley&Son, New York, 1981.

