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Abstract. Task Scheduling (TS) poses a challenging problem in distributed systems for
multiple realms such as multiprocessor systems, flow-shop scheduling and project man-
agement problems in which there are multiple tasks and processors (resources), and the
problem is to efficiently assign tasks to processors. The importance of this problem can be
considered from multiple perspectives such as heterogeneity of processors, computational
complexity of reaching a solution as well as theoretical performance analysis. Also, we
propose a new modeling paradigm based on system engineering. The proposed switching
state space approach opens a possibility of using the extensive theoretical developments
that have taken place in this field within the past several decades. In its general form,
TS is inherently nonlinear because of its many nonlinear constraints. In this paper,
we demonstrate that standard TS can be mapped via nonlinear state space and, through
theoretical analysis, show stability of the resulting system for static task scheduling prob-
lems. The proposed static scheduling schedules dependent tasks on a heterogeneous multi-
processor system. A suitable transformation is then devised to convert this model to linear
switching state space with nonlinear constraints. To illustrate the utility of the model,
two scheduling approaches are then presented based on Height Sorted (HS) and Ready
Tasks (RT). These two methods are examples that show how this model can be used to
reach the stability criteria. Finally, the proposed methods are compared against a conven-
tionally accepted scheduling scheme on several random experiments showing comparative
performance.
Keywords: Modeling, Task scheduling, Static scheduling, Linear switching state space,
Stability, Control systems

Nomenclature
Parameters Definition Parameters Definition
X Vector of state variables U Control Vector
X[k] Vector of state variables in kth step X[k + 1] Vector of state variables in (k + 1)th step

Y System output V Set of tasks in DAG
E Set of edges in DAG R Set of resources
T = |V | Number (Cardinality) of tasks M = |R| Number (Cardinality) of resources
w(ni) Computation cost of node ni eij Edge from node i to node j in DAG

C(eij) Communication cost of edge eij succ(ni) Successors of node ni

pred(ni) Predecessors of node ni w(ni, rj) Execution time of node ni on resource rj
ts(ni, rj) Start time of node ni on resource rj θi,j Computation time of task i on resource j

tf (ni, rj) Finish time of node ni on resource rj µij Communication time between task i and task j
Ai, Bi, Ci, Di ith Subsystem Matrices U l lth Control vector

1. Introduction to the Task Scheduling Problem. Various aspects of task sched-
uling (TS) have been addressed by many researchers to date. This problem has many
real world applications such as in management of projects, human resources, financial
resources as well as distributed computing systems. While the vocabulary in these fields
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may be different, they all address the same base problem. For instance, processors in
the realm of computer sciences are the same as the resources in the realm of human and
financial resources. Here, we adopt the terminology that is common in computer sciences
without a loss of general applicability. In general, a multi-processor system must be both
fast as well as it must utilize its available resources efficiently to complete the requested
tasks. This is while the problem of task scheduling itself may face various challenges such
as in processor heterogeneity, interdependent tasks, excessive communication cost, as well
as limited computational resources. Finally, inappropriate scheduling of tasks can fail to
exploit the true potential of a distributed system and can offset the gains from paralleliza-
tion due to excessive communication overhead or under-utilization of processing resources
[1].
Simple definition of (static) task scheduling problems is allocating dependent tasks to

processors while total execution time (makespan) is minimized. In the static task sched-
uling, all things about tasks and processors are known before execution of tasks in real
world; therefore, finding a schedule before execution in real world is possible. This prob-
lem is generally NP-complete with only few exceptions as will be discussed later. Even in
two simple cases [2], the TS problem is NP such as, 1) scheduling unit-time tasks to an
arbitrary number of processors, 2) scheduling one or two time unit tasks to two processors.
In these two cases, communication cost is not considered among the tasks. Therefore, so-
lutions to task scheduling problems are generally non-trivial by traditional methods. Until
now, many researchers have solved this problem by heuristic and random search methods,
but they often consider certain constraints that lead to inapplicability of their methods
in the real world. Furthermore, their performance evaluation is often only numeric and
lacks theoretical guarantees. Hence, making a general model for task scheduling problems
is essential that would be amenable to theoretical and rigorous analysis.
In this paper, we present a new modeling paradigm based on switching systems theory

for theoretical modeling and analysis. This new paradigm, because of its rich mathemat-
ical framework, provides rigorous tools of analysis to yield concrete results in the field of
task scheduling. Here, we focus on static scheduling of dependent tasks on heterogeneous
multi-processor systems. It is assumed that tasks are sufficiently decomposed to their in-
tegral part such that there is no parallelism within a task and all instructions are executed
sequentially. Furthermore, we consider a distributed computing system as a well-known
sample for task scheduling problem. This paper is organized as follows. In Sections 2 and
3, the basic task scheduling problem and related work are reviewed for better readability.
There are many approaches to the classical task scheduling problem and hence only a few
are highlighted that stand out as the major directions in their field. To the author’s best
knowledge, the present work is the first to address the need for theoretical analysis such
as stability from a systems engineering perspective. Section 4 reviews the fundamentals
of switching systems paradigm. In Section 5, we then show how task scheduling can
be represented in nonlinear state space and consider the stability of the resulting model
based on system engineering analysis. This model is then transformed to linear switch-
ing state space with nonlinear constraints. In Section 6, we use the proposed model to
reach two systematic design strategies (finding appropriate control vectors). These two
algorithms are stable since they satisfy stability criteria of the earlier section. In Section
7, we compare results of our methods on 46 different experiments that are each randomly
repeated 50 times against HEFT (heterogeneous earliest finish time) [3] and show com-
parable performance of the proposed approach. Finally, we conclude the paper in Section
8.
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2. Task Scheduling Problem Definition. In task scheduling, the program to be sched-
uled is represented by a task graph or so called precedence constraint graph.

Definition 2.1. (Task Graph) [4]. A task graph is a directed acyclic graph (DAG)
G = (V ,E, w, c) representing an application P according to the graph model. The nodes
(vertices) in V represent the tasks of P and the edges in E represent the communication
between the tasks. An edge eij ∈ E from node ni to nj, ni, nj ∈ V , represents the
communication from node ni to node nj. The positive weight w(ni) associated with node
ni ∈ V represents its computation cost and the nonnegative weight c(eij) associated with
edge eij ∈ E represents its communication cost.

Before executing a task, all its predecessors must be executed and all of its inputs must
be received. After executing a node, its outputs are ready to transfer to their successors,
simultaneously [5]. When a task begins to execute on a specified processor, it will continue
its execution until completion. In other words, task execution cannot be interrupted by
any other task and hence preemption is not allowed.

The set of all direct predecessors of ni, g, is denoted by pred(ni) and the set of all
immediate successors of ni, {nx ∈ V : eix ∈ E}, is denoted by succ(ni). Source node is a
node ni ∈ V without any predecessors, i.e., pred(ni) = ∅ and exit node (sink node) is a
node ni ∈ V without any successors, i.e., succ(ni) = ∅ [5].

Scheduling of a DAG is the process of allocating each node to a resource and determining
its start time. To describe a schedule S of a DAG G = (V ,E, w, c) on a target system
consisting of a set R of dedicated processors, the following terms: ts(ni, rj) and w(ni, rj)
indicate the start time and the execution time of node ni ∈ V on processor rj ∈ R,
respectively. Thus, finishing time of a node is calculated by (ni, rj) = ts(ni, rj)+w(ni, rj).
resource(ni) denotes the processor r to which ni is allocated. There are two conditions
that must be satisfied for all nodes in G to reach a feasible scheduling [5]:
Condition 1 (Dedicated Processor Constraint). Each processor is allocated at most
one task at any given time. In other words, for any two nodes ni, nj ∈ V , if

resource(ni) = resource(nj) = rj ⇒
{

tf (ni, rj) ≤ ts(ni, rj), or
tf (ni, rj) ≤ ts(ni, rj)

(1)

Condition 2 (Node Precedence Constraint). For ni, nj ∈ V , eij ∈ E, rk ∈ R,

ts(nj, rk) ≥ tf (eij), (2)

where,

tf (eij) = tf (ni) +

{
0 if resource(ni) = resource(nj)
c(eij) otherwise

(3)

where tf (eij) is finish time of communication between task i and task j and tf (ni) is finish
time of node ni.

A scheduling model consists of an application, a target computing environment, and a
performance criterion for scheduling [6-9]. This model is defined in the following, including
a generalization towards heterogeneous processors.

One of the important characteristic of a DAG is upward rank that is calculated as
follows:

Definition 2.2. (Upward rank). The upward rank of ni ∈ V is recursively defined by

ranku(ni) = wnl
+ max

nj∈succ(ni)

(
c(eij) + ranku(nj)

)
, (4)

where succ(ni) is the set of immediate successors of task ni, c(eij) is the average commu-
nication cost of edge(i, j) and wnl

is the average computation cost of task ni. For the exit
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task nexit (sink node), the upward rank is equal to

ranku(nexit) = wexit, (5)

The task scheduling problem in this paper has the following conditions:

• Tasks have dependency to each other and are shown by DAG;
• There is communication cost between tasks in DAG (communication cost is consid-
ered when two dependent tasks are scheduled on different processors);

• Environment is static and all of information is known a priori;
• Processors are heterogeneous and connected to each other as a fully connected topol-
ogy;

• There is an independent communication system which passes communication mes-
sages between processors.

3. Related Work. Distributed systems present a challenging paradigm for TS problem
and considerable literature is devoted to its various aspects. However, the existing tech-
niques generally aim to only “solve” the TS problem and the problem is not approached
from a modeling perspective. The scheduling problem has been proven to be NP-complete
except for a few restricted cases [10]. Indeed, the problem is NP-complete even in two
simple cases: (1) scheduling tasks with uniform weights to an arbitrary number of proces-
sors [11] and (2) scheduling tasks with weights equal to one or two units to two processors
[11]. There are only three special cases for which there exist optimal polynomial-time
algorithms. These cases are (1) scheduling tree-structured task graphs with uniform com-
putation costs on an arbitrary number of processors [12]; (2) scheduling arbitrary task
graphs with uniform computation costs on two processors [13]; and (3) scheduling an
interval-ordered task graph [14] with uniform node weights to an arbitrary number of
processors [15].
Traditional methods that are used to solve this problem can be generally categorized

as either heuristic (list-based scheduling) or random search (such as genetic algorithm,
simulated annealing, and particle swarm optimization). A few of the most significant
recent directions in this area are highlighted below. Kong et al. (2008) [16] incorporate
Particle Swarm Optimization (PSO), with list scheduling and develop an alternative PSO
algorithm for multiprocessor tasks scheduling. Unlike most duplication-based heuristics
which try to duplicate all possible ancestor nodes of a given join node, Shin et al. (2008)
[17] propose a novel duplication based algorithm which duplicate some nodes based on
some parameters such as start time and earliest free slot, without redundant duplications.
Duplication is referred to as redundant when it does not lead to an improvement in the
performance or a reduction in the schedule length of an individual processor. Their
method has two steps. In the first step, task priority list is made; and in the second step,
the best possible processor, that is, the one that allows the earliest start time is selected
to execute the task with highest priority.
Kuo et al. (2008) [18] minimize makespan in flow-shop scheduling problem and in-

troduce new hybrid particle swarm optimization model named HPSO. They combine
random-key (RK) encoding scheme, individual enhancement (IE) scheme, and particle
swarm optimization (PSO). Also, Chui et al. (2009) [19] proposed a hybrid of constraint-
based reasoning (CBR) mechanism and PSO, called CBPSO, to solve timetables schedul-
ing problems for customer-service departments. When PSO searches the solution space,
CBR is utilized to reduce the invalid solution space of particle search.
Choi and Lee (2008) [20] used branch and bound algorithm to minimize the number of

tardy jobs in a two-stage hybrid flow shop scheduling. Each job is processed through two
production stages in series, each of which has multiple identical parallel machines. The
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branch and bound algorithm obtains the lower and upper bounds as well as the dominance
properties to reduce the search space. In addition, two-phase heuristic algorithms are
suggested to obtain good solutions for large-scale problems within a reasonable amount
of computation time.

Yoo (2009) [8] minimizes the total tardiness and total number of processors used in
scheduling of soft real-time DAGs on homogeneous multiprocessors systems by a multi-
objective genetic algorithm (MoGA). To evaluate chromosomes in a population, Yoo con-
verts multi-objective problem to single objective problem by adaptive weighted approach
(AWA). In this approach, the useful information from the current population is used to
readjust objective weights and to obtain a search pressure toward a positive ideal point.
In contrast, in (2009) [21], Li et al. propose a problem-specific genetic algorithm to handle
multiprocessor real-time task scheduling. This work employs not only limited problem-
specific information, but it also makes most of such information throughout the evolution
of the genetic algorithm.

Hwang et al. (2008) [22] schedule a DAG on multiprocessor system using genetic al-
gorithm to achieve the best scheduling with minimum makespan. They design the new
encoding mechanism with a multi-functional chromosome that uses the priority represen-
tation, i.e., the so-called priority-based multi-chromosome (PMC). There are also a few
works that have focused on the use of linear programming (LP) such as (2008) [23] in
which a linear programming driven genetic algorithm is introduced which combines the
capabilities of LP and GA and tries to minimize combined cost of all users in a coordinated
manner. Furthermore, Moges and Yu (2004) [24] proposed a method in which solutions
for an optimal allocation of fraction of loads to nodes in single level tree networks are
obtained via linear programming.

Control theory has been used to design adaptive resource management in different
applications such as power management, task scheduling, QoS adaptation in Web servers,
and load balancing [25]. In [26,27], the control theory is applied to schedule real-time
tasks on distributed systems [25]. Lu et al. [26] present a Feedback Control real-time
Scheduling (FCS) framework for adaptive real-time systems. They apply a methodology
based on control theory to systematically design FCS algorithms to satisfy the transient
and steady state performance specifications of real-time systems. In [27], a framework is
proposed based on feedback control that incrementally corrects system performance to
achieve its target in the absence of initial load and resource assumptions. It allows the
designer to specify the desired temporal behavior of system adaptation for a distributed
real-time application such as the speed of convergence to desired performance upon load
or resource changes. Furthermore, unlike QoS optimization approaches, their solution
meets performance guarantees with no accurate knowledge of task execution parameters.
This can be considered as a key advantage in a poorly modeled environment.

Marbini and Sacks [28] propose a closed-loop dynamic scheduling algorithm which em-
ploys a PID controller to control CPU utilization. In this model, tasks are submitted in
a uniform distribution scheme and the controller uses very simple equations to control
the feedback error and therefore accepting or rejecting new tasks in order to maintain the
CPU utilization in an accepted level. Roux and Déplanche in [29] proposed an extension
of T-time Petri net model which takes into account the scheduling of the software tasks
distributed over multi-processor hardware architecture. This work is concerned with static
priority pre-emptive based scheduling. This extension consists of mapping the way the
different schedulers of the system activate or suspend the tasks into the Petri net model.
In this work, the underlying hardware architecture is composed of multiple processors
that are all static.

Related Work on Control Theory
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In contrast to the previous works that usually introduce a specific algorithm, in this
paper we propose a general mathematical model based on analytical proof using state
space theory that is capable of modelling a wide range of scheduling problems. Here, we
consider an analytical comparison between our model and two other similar works that
use control theory in their model. In 2002, Lu et al. [26] proposed an architecture which
features a feedback control loop that is invoked at every sampling instant k similar to
our model. This architecture has a basic scheduler that schedules admitted tasks with
a scheduling policy such as Earliest Deadline First (EDF). The scheduler uses two con-
trol variables and the controller compares the performance references with corresponding
controlled variables to get the current errors. Because this work is mainly developed for
real-time systems, another component of this model is QoS actuator which dynamically
changes the total estimated requested utilization at each sampling instant k according to
the control input variables. This model is mainly developed for real-time systems which
have some QoS parameters.
Also in 2002, Marbini and Sacks [28] proposed a simple PID controller that is capable

of controlling CPU utilization factor for simple tasks being submitted in a uniformly
distributed scheme. The tasks are independent and are generated periodically. There is
just one processing unit. The miss ratio of the accepted tasks was periodically monitored
and sent to PID. The PID calculates the control signal using control equations. Based
on the results of these calculations, another component called Admission Controller (AC)
decides whether to accept new tasks or not. While the above approaches succeeded in
using control theory for task scheduling, their domain of application remained very limited
and cover very simplified versions of scheduling, i.e., addressing only QoS in [26] and only
one processing unit in [28].
In contrast to the above, we aim to reach a ‘general’ model of scheduling in state space

by using linear switching systems. This modeling space allows the various constraints and
applications of scheduling in real environment to be efficiently and faithfully represented,
such as those in resource management. The components of the scheduler are developed in
such a way that most of the parameters of the problems can be covered. Another impor-
tant advantage of the proposed method over these similar works is that the modeling of
the constraints and also stability of the method is proven using control theory principals;
furthermore all of the components of a task scheduling problem are well mapped to cor-
responding one in control theory. This leads to a powerful theoretical method applicable
to practical problems.
The major contributions of this work can be stated as follows:
- The task scheduling problem is mapped to linear switching state space. This mapping

transforms the problem of task scheduling to choosing among several switches, hence
simplifying the controller (scheduler) design process.
- The above mapping is a general modeling framework, not just an algorithm, to solve

the scheduling problem. In other words, the modeling strategy can be adapted to other
variations of the scheduling problem such as job shop and work flow scheduling as well as
project management problems.
- The switching state space introduces various theoretical measures of performance,

such as system stability in this paper, for the problem of task scheduling.
- The model is capable of supporting multiple constraints in a real environment such as

considering the small time steps as well as the optimal routing between processing nodes.

4. Switching Systems. A switching system is a time-variant system that consists of a
finite number of subsystems and a logical rule that orchestrates switching between these
subsystems. Mathematically, these subsystems are usually described by a collection of
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indexed differential or difference equations. In this paper, we focus on switching systems
whose subsystems are systems with a collection of discrete-time linear time invariant (LTI)
systems [30]:

X[k + 1] = AiX[k] +BiU [k], i ∈ {1, 2, 3, . . . , N}
Y [k] = CiX[k] +DiU [k], i ∈ {1, 2, 3, . . . , N} (6)

where x[k] is state variable at step k, Ai, Bi, Ci, Di is ith subsystem matrices of state
space, and Z+ stands for nonnegative integers. The finite set Q is an index set and
stands for the collection of discrete modes. The logical rule that orchestrates switching
between these subsystems generates switching signals, which are usually described as
classes of piecewise constant maps Z+ → Q. By piecewise constant map, we mean that
the switching signal σ(k) has a finite number of discontinuities on any finite interval
of Z+. This requirement is always satisfied by discrete-time switching systems because
a minimum-stay time threshold helps avoid possible chattering in the switching signal.
Chattering in switching systems occurs when switching signal from one subsystem to
another is done quickly. In other words, the minimum required time for the system
to stay in a specific subsystem is not satisfied [30]. It is usual to reform state space
equation of systems to a switching system model; because by this formation, the problem
of determining of control vectors transforms to an optimization problem that searches for
an appropriate switching controller [31]. Figure 1 shows an example of linear switching
system and its formulation.

5. The Proposed Scheduling Model in State Space. Solving heterogeneous TS
problems by traditional modeling/search approaches is generally NP complete. Hence, a
different modeling paradigm based on nonlinear state space paradigm is proposed here.

Consider a general form of a nonlinear system in discrete time is:{
X[(k + 1)∆T ] = f [X[k∆T ], U [k∆T ], k∆T ]
Y [k∆T ] = g[X[k∆T ], U [k∆T ], k∆T ]

k ∈ {1, 2, 3, . . .}, X ∈ Rn, Y ∈ Rn, U ∈ Rm
(7)

where f and g are nonlinear vector functions, X is a vector of state variables, U is control
vector, Y is system output and ∆T is the length of time steps. Here, we propose to model
TS in the above nonlinear form, Equation (7). Various components of this model are
shown in subsequent subsections.

Figure 1. Linear switching system
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5.1. Basic definitions in the proposed model.
• State variables
State variables in this model correspond to a vector (X) whose size is equal to the

number of tasks, and each element has a value between 0 (the task has completed) and
1 (the execution of task has not started). Hence, each element xj[k] corresponds to the
remaining process of a given task j at kth step.

X[k] = [x1[k] x2[k] . . . xT [k]]
′ (8)

where (T = |V |) and all of the elements of X[k] are usually initialized to ‘1’.
• Control Vector
Control vector U [k] is a matrix M × T , where T = |V |, M = |R|, and shows the

execution status of each task and each processor in kth time step. Each element in this
matrix is between ‘0’ and ‘1’ and depicts available processing power of each processor. The
characteristic of this matrix is that at each step there is at most one nonzero element in
each row and each column. Element ui,j in kth time step shows the percentage of utilizing
processor i in execution of task j. If ui,j[k] = 1, task j is said to be fully executed on
resource i in kth time step. An important constraint in control vector is that all of the
tasks, that are simultaneously executed at kth time step, must be independent from each
other. Furthermore, each task can be processed on only one processor, and each processor
can process at most one task at any given time.
• Constraints in designing Controller
Stability analysis and design of the control algorithm should incorporate the problem

constraints. These constraints are summarized as follows:
1. {Initialization} The initial state vector is set to a column of ones, i.e., all of the tasks
need to be executed at the beginning.

X[0] = [1 1 . . . 1]′ (9)

2. All of the elements of the control vector U are chosen in range [0, 1], i.e.,

∀i, j 0 ≤ ui,j ≤ 1 (10)

3. {Constraint of Independence} In each column and each row of control vector, U , there
is at most one nonzero element. In other words, there is at most one processor allocated
to each task at any given time. Also, that there is at most one task assigned to a processor
at any given time.

if ∃ui,j 6= 0 ⇒ {∀j′ 6= j ui,j′ = 0, ∀i′ 6= i ui′,j = 0} (11)

4. {Constraint of Predecessors} Based on precedence relations in DAG, each task can be
executed only after execution of its predecessor(s). In other words,

if ∃ui,j 6= 0 ⇒ (∀r ∈ pred(nj)xr = 0) (12)

5. {Concurrent Task Independence} Based on precedence relations in DAG, all of tasks
that are executed concurrently are independent from each other. In other words,

∀i, j, r, s if (ui,j 6= 0 & ur,s 6= 0) ⇒ (µj,s = 0 & µs,j = 0) (13)

6. {Constraint of Communication Cost} If two tasks with precedence relation are sched-
uled on different processors, non-zero communication cost is considered. Otherwise, com-
munication cost is µi,j = 0.
7. {Constraint of Task Completion} After completion of task execution, corresponding
processor is freed. In other words,

∀i, j if xj[k] = 0 ⇒ ui,j[k + 1] = 0 (14)
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8. {Constraint of Completeness} All of the given tasks must be assigned (and completed
since a task does not free a processor until it is completely executed).

∀j ∃i ∃k ui,j[k] 6= 0 (15)

• The Non-linear System Function f
The function f in system dynamics, Equation (6), relates the defining parameters of

the system such as the vector of state variables X, control vector U , time step k, as well
as the DAG. For the TS problem, f is defined in discrete time form as follows,

X[k + 1] = max

(
0, X[k]−∆T ∗Diag

([
1

θij
∗ U

]))
(16)

where ∆T is the time step in seconds, Diag is the main diagonal of matrix A, and
θ = [θij]T ∗M where θij shows computation time of task i on processor j. The max
operator is chosen to ensure that the state variable does not become negative. In other
words, since execution time of each task is different, some tasks may be completed before
others during the same discrete time interval and then it is essential to use max operator.
Also, the communication cost between tasks (on same or different processors) is shown by
µ which is a T×T matrix. Communication cost is considered in the process of determining
control vectors. These control vectors remain the same when the communication between
two tasks is running. Once communication is completed, the processors resume their
operation as dictated by the control vector. For example, if U l, lth control vector, is
applied in range [a, b] step, next control vector U l+1 is applicable if all of its information
received. Therefore, U l+1 is applied in range [c, d] step which c ≥ b. During b to c steps,
current control vector is still the previous control vector U l, which does not affect the
state of system.

5.2. System stability. In control viewpoint, it is necessary to prove some basic theories
such as stability that illustrates the transition and final response for system [31-33]. Ex-
tending this definition to the task scheduling paradigm enables the theoretical study of
such features. In other words, with the present approach, it is now possible to rigorously
study “convergence” behavior of scheduling problems. The set of C controllers that stabi-
lize the nominal feedback system (C,P0) are described by below the Yula Parameterization
theorem as follows:

Theorem 5.1. [34] Let P0 be an open loop stable plant. Then the set of all controllers
stabilizing the nominal feedback system is

C =

{
C(s) =

Q(s)

1− P0(s)Q(s)

}
(17)

where Q(s) is proper and stable. Yula also introduces a similar theorem for MIMO sys-
tems. In following the above work, we introduce here the below theorem to address the
convergence and stability of TS problems.

Theorem 5.2. If control vectors U1, U2, . . . , Uk satisfy all constraints as mentioned in
Section 5.1, at step ak we have

X[ak] = max

(
0, X[ak−1]−Diag

([
1

θ

]
∗ Uk

))
(18)

Proof: We suppose that U l, l = 1, 2, . . . , k operates at time slot as

0 ≤ U1 ≤ a1, A1 ≤ U2 ≤ a2, . . . , ak−1 ≤ Uk ≤ ak
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Also, we can write

[
1

θT×M

]
∗ UM×T =


1

θ11
· · · 1

θ1M
...

. . .
...

1
θT1

· · · 1
θTM

 ∗


u11 u12 · · · u1T

u21 u22 · · · u2T

...
...

. . .
...

uM1 uM2 · · · uMT

 (19)

=


u11

θ11
+ u21

θ12
+ u31

θ13
+ · · ·+ uM1

θ1M
. . .

u12

θ21
+ u22

θ22
+ u32

θ23
+ · · ·+ uM2

θ2M
...

. . .
...

· · · u1T

θT1
+ u2T

θT2
+ u3T

θT3
+ · · ·+ uMT

θTM


And,

Diag

([
1

θT×M

]
∗ UM×T

)
=


u11

θ11
+ u21

θ12
+ u31

θ13
+ · · ·+ uM1

θ1M
u12

θ21
+ u22

θ22
+ u32

θ23
+ · · ·+ uM2

θ2M
...

u1T

θT1
+ u2T

θT2
+ u3T

θT3
+ · · ·+ uMT

θTM

 (20)

In Equation (20), each row contains only one non-zero fraction. This is because uij = 1,
means task i executes on processor j and based on 3rd constraint, each task can only
execute on one processor. Thus, we can write

Diag

([
1

θT×M

]
∗ UM×T

)
=

[
ur11

θ1r1

ur22

θ2r2
· · · urT T

θTrT

]′
(21)

where ri is the index of the processor that executes task i. It should be mentioned that it
is possible that ri = rj, i 6= j where task i and task j are executed in different time slots.
We can expand Equation (16) and write

X[a1] = max

0,


1
1
...
1

−Diag

([
1

θT×M

]
∗ U1

M×T

)
∗ (a1 − 0)

 (22)

We expand Diag
([

1
θT×M

]
∗ U1

M×T

)
based on Equation (21) and we set σi

j =
U i
rjj

θjrj
, then

X[a1] = max

0,


1
1
...
1

− a1 ∗


U1
r11

θ1r1
...

U1
rT T

θTrT


 = max

0,


1
1
...
1

− a1 ∗


σ1
1

σ1
2
...
σ1
T


 (23)

and

X[a2] = max

(
0, X[a1]−Diag

([
1

θ

]
∗ U2

))

= max

0, X[a1]− (a2 − a1) ∗


σ2
1

σ2
2
...
σ2
T


 (24)

= max

0,


1
1
...
1

− a1 ∗


σ1
1

σ1
2
...
σ1
T

− (a2 − a1) ∗


σ2
1

σ2
2
...
σ2
T



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If we continue, we will achieve

X[ak] = max

(
0, X[ak−1]−Diag

([
1

θ

]
∗ Uk

))
(25)

Theorem 5.3. (Stability). If control vectors U1, U2, . . . , Uk satisfy all constraints as
mentioned in Section 5.1, we achieve ||X[ak]|| = 0, at step ak.

Proof: Based on previous theorem, we have

X[aT ] = max

(
1, X[aT−1]−Diag

([
1

θ

]
∗ U ′

))
(26)

That U l, l = 1, 2, . . . , k operates at time slot as

0 ≤ U1 ≤ a1, a1 ≤ U2 ≤ a2, . . . , af−1 ≤ U f ≤ af

where f ≤ k. In following Equation (25), we now expand Equation (26).

X[af ] = max

(
0, X[af−1]−Diag

([
1

θ

]
∗ Uf

))

= max

0,


1
1
...
1

− a1 ∗


σ1
1

σ1
2
...
σ1
T

− (a2 − a1) ∗


σ2
1

σ2
2
...
σ2
T

− · · · − (af − af−1) ∗


σf
1

σf
2
...

σf
T


 (27)

= max

0,


1
1
...
1

−

 a1σ
1
1 + (a2 − a1) ∗ σ2

1 + · · ·+ (ak − ak−1) ∗ σf
1

...

a1σ
1
n + (a2 − a1) ∗ σ2

n + · · ·+ (ak − ak−1) ∗ σf
T




Based on task scheduling constraints, each task must be executed only at one time slot;
thus in each row, only one element is non-zero. We propose task i to execute on time slot
i, then σsi

i 6= 0.
We can now write,

X[af ] = max

0,


1
1
...
1

−

 (as1 − as1−1) ∗ σs1
1

...
(asf − asf−1) ∗ σ

sf
T


 (28)

In the above equation, we can rewrite second statement as:

(asi − asi−1) ∗ σsi
i = (asi − asi−1) ∗

U si
rii

θiri
(29)

Based on length of each slot is equal to maximum execution time of tasks, we can write

(asi − asi−1) ≥ θipi ⇒ (asi − asi−1) ∗
U si
rii

θiri
≥ 1 ⇒ (asi − asi−1) ∗ Asi

i ≥ 1 (30)

And then,

X[af ] = max

0,


1
1
...
1

−

 (as1 − as1−1) ∗ As1
1

...
(asf − asf−1) ∗ A

sf
T


 = 0 ⇒ ||X[af ]|| = 0 (31)

And theorem is proven.
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5.3. Linear function fL. In order to simplify a complex model and to benefit from the
extensive theoretical results in the field of linear systems, nonlinear equations are usually
converted to linear equations [32]. Linear control systems are much easier to design:
however, this conversion usually leads to approximation which may be unacceptable.
Here, the construct of linear control systems is used to find appropriate linear switching
controllers (optimization problem). Nonlinear constraints are considered separately from
the linear switching controller; hence the resulting model is exact. By simplifying the
model to a linear switching controller, these constraints effectively “reduce” the search
space for appropriate controllers [31]. More specifically, we substitute a linear function
fL for its nonlinear counterpart f by considering all of the nonlinearities as nonlinear
constraints in the controller design process. The resulting model is then converted it to
a switched control problem. For this reason, max and Diag operators should be removed
from Equation (16). The following subsections address this process.

5.3.1. Removing Diag operator and simplification. By the following theorem, Diag oper-
ator is removed from the product of two general matrices.

Theorem 5.4. The linear form of Diag(Q× U), where Q is an a× b matrix and U is a
b× a matrix, is

Diag(Q× U) =



q11 · · · q1b 0 . . . . . . 0
0 q21 · · · q2b 0 . . . . . 0
0 0 q31 · · · q3b 0. . . . 0
. . 0 . . . . . .
. . . . . . . . .
. . . . . . . . .
0 . . . . . .0 qa1 · · · qab


∗



u11

u21

u31

...
ub1

u12

u22

u32

...
ub2

...
u1a

u2a

u3a

...
uba



(32)

Proof: We can show Qa×b and Ub×a as vectors:

Qa×b =



q̄1

q̄2

.
q̄i

.

.
q̄a


, q̄i = [q̄i1 q̄i2 · · · q̄ib] (33)

Ub×a = [ū1 ū2 . ūj . . ūa], ūj =


ūj
1

ū2
j

...

ūj
b

 (34)
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Therefore, we can write Q as a vector with a rows and one column and also, U as a
vector with one row and b columns. We can write

Diag(Q× U) = Diag





q̄1

q̄2

.
q̄i

.

.
q̄a


∗ [ū1 ū2 . ūj . . ūa]


= Diag

 q̄1ū1 · · · q̄1ūa

...
. . .

...
q̄aū1 · · · q̄aūa

 (35)

= [ q̄1ū1 q̄2ū2 . . . q̄aūa ]

Also we can write

[ q̄1ū1 q̄2ū2 . . . q̄aūa ] =



q̄1 0 . . . . . . 0
0 q̄2 0 . . . . . 0
0 0 q̄3 0 . . . . 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 . . . . . . 0 q̄a


∗


ū1

ū2

...
ūa

 (36)

And finally, we reach

Diag(Q× U) =



q11 · · · q1b 0 . . . . . . 0
0 q21 · · · q2b 0 . . . . . 0
0 0 q31 · · · q3b 0. . . . 0
. . 0 . . . . . .
. . . . . . . . .
. . . . . . . . .
0 . . . . . .0 qa1 · · · qab


∗



u11

u21

u31
...
ub1

u12

u22

u32
...
ub2
...

u1a

u2a

u3a
...

uba


(37)

And theorem is proven.
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Based on Theorem 5.4, Equation (16) converts to

X[k + 1] = max


0, X[k]−∆T ∗



q̄1 0 . . . . . . 0
0 q̄2 0 . . . . . 0
0 0 q̄3 0 . . . . 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 . . . . . . 0 q̄T


∗


ū1

ū2

...
ūT




(38)

where QT×M = 1
θT×M

.

5.3.2. Linearization of max operator. Here, we remove max operator by considering a
constraint on designing control vectors. This process is illustrated by the following exam-
ple.

Example 5.1. If there are three processors as well as three independent tasks, a possible
control vector is

Figure 2. A possible control vector

Execution time of each task is assumed to be:

• Execution time of first task on first processor is 10 units.
• Execution time of second task on second processor is 5 units.
• Execution time of third task on third processor is 12 units.

Then, it is possible to break the control vector of Figure 2 to several control vectors as in
Figure 3.
In other words, we zero out the corresponding tasks in control vector in an ascending

order of execution times. By this method, if execution of one task has ended, its cor-
responding processor is freed, and its corresponding elements of state variables do not
become negative.
By considering this new constraint on control vector, we reach a linear model as follows:

X[k + 1] = X[k]−∆T ∗



q̄1 0 . . . . . . 0
0 q̄2 0 . . . . . 0
0 0 q̄3 0 . . . . 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 . . . . . . 0 q̄T


∗


ū1

ū2

...
ūT

 (39)

where QT×M = 1
θT×M

.
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(a) (b) (c)

Figure 3. (a) Contorl vector 1, (b) control vector 2, and (c) control vector 3

5.4. Switching model in task scheduling problems. In Equation (39), U is a linear
input with non-linear constraints. It is now desirable to find a simple scheme for controller
design. By converting this model to a switching linear space model, we can use various
optimization/design methods to solve it.

If Equation (39) is written as

X[k + 1] = AiX[k] +BiU [k], i ∈ {1, 2, 3, . . . , N} (40)

Then in switching model,

(∀s = 1, 2, 3, . . . , S i = s A = Ai, B = Bi)
X[k + 1] = AX[k] +BUs

(41)

where S is the number of sub-systems. Minimum value of subsystems S is equal to the
number of levels in DAG; because at each level tasks are independent from each other and
then they can possibly execute in parallel. Maximum number of sub-systems is equal to
the number of tasks in DAG; i.e., in each time slot, only one task is executed. Therefore,
we can write

Numbers of Levels of DAG ≤ S ≤ Number of Tasks (42)

Switching signal is a discrete signal that determines which subsystem is active at kth step.
Controller design is equal to determining switching signal and then finding appropriate
values for switching indices.

6. The Control Approaches. The above proposed model is general and applicable to
different scheduling problems such as human resource management and project manage-
ment. Here, we focus on the problem of task scheduling for distributed systems. Many
researchers have to date approached this problem but these approaches are generally
heuristic and lack rigorous mechanisms of analysis and guarantee of performance. We
assume that all processors are generally completely available and we can use all of their
processing power to solve the TS problem; therefore, each element of control vector, U is
either ‘0’ or ‘1’.

In this section, at first we transform a given scheduling problem to state space form.
Then we present a systematic scheme to determine control vectors that schedule DAGs
with minimum total execution time.

6.1. Transforming the TS problem in state space form. DAG and θ matrices are
known in the numerical example of Figure 4. In this example, we design control vectors
manually. As shown in Table 1, in 25th step (Time = 25) all elements of X are zero;
therefore, total execution time is 25. Figure 5 shows Gantt chart of this problem.

Table 1 shows state variable values based on (16) on step k ∈ [0, 25]. Figure 6 shows
switching signal of numerical example.
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(a) (b)

(c)

Figure 4. A numerical example: (a) DAG, (b) time table and (c) control vectors

6.2. A systematic method to determine control vectors. In the previous subsec-
tion, a numerical example illustrates how TS problem can be solved manually; but manual
determination of control vectors is not always trivial. In this subsection, we propose that
yield similar results to an optimal schedule based on HEFT [3].

Table 1. State variable values

@
@
@

k
0 1 2 3 4 5 6 7 8 9 10 11 12

X1 1 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0 0 0 0 0
X2 1 0.909 0.818 0.727 0.636 0.545 0.454 0.363 0.272 0.181 0.09 0 0
X3 1 1 1 1 1 1 1 1 1 0.857 0.714 0.571 0.428
X4 1 1 1 1 1 1 1 1 1 1 1 1 1
X5 1 1 1 1 1 1 1 1 1 1 1 1 1

@
@
@

k
13 14 15 16 17 18 19 20 21 22 23 24 25

X1 0 0 0 0 0 0 0 0 0 0 0 0 0
X2 0 0 0 0 0 0 0 0 0 0 0 0 0
X3 0.285 0.142 0 0 0 0 0 0 0 0 0 0 0
X4 1 1 1 1 0.833 0.666 0.499 0.332 0.165 0 0 0 0
X5 1 1 1 1 1 1 1 1 1 1 1 1 0
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Figure 5. Gantt chart for the sample problem

Figure 6. Switching signal

6.2.1. Height sorted (HS) based controller. At first, we label nodes in DAG based on their
height:

height(ni) =

{
0 if pred(ni) = ∅
1 + max

nj∈pred(ni)
{height(nj)} otherwise (43)

Based on its definition, in each control vector, tasks on the same height do not have
precedence relation, i.e., they can be executed on different processor control vectors are
ordered in ascending order of height values. After grouping, we need to allocate tasks
in each group to different processors to minimize total execution time. In this stage, we
allocate each task to the processor that can finish it sooner than other processors. The
start time and end time of control vector are then derived based on this information
(groups and processors). And then the controller is executed. Start time of each slot is
equal to the ready time of included tasks and finish time of each slot is equal to maximum
finish time of included tasks. As shown in Figure 7, all of the constraints (which are
stated in 4.1) on control vectors are satisfied by the algorithm. For instance, in each row
in the control vector, there is always only one ‘1’, all of the tasks are executed and also all
of precedence relations are considered. Therefore, based on Theorem 5.3, the proposed
algorithm is stable.

Time complexity of the first part of HS algorithm is O(T log T ) for sorting tasks and
time complexity of the second part is O(T.M), because of lines 8 and 9, where T is number
of tasks and M is number of processors. Generally, time complexity of HS algorithm is
O(T.M). Figure 8 shows a numerical example that is solved by this method. Figure 7
shows the HS algorithm.

6.2.2. Ready tasks (RT) based controller. The second proposed method, similar to the
first method, has two phases: grouping and assigning tasks to processors. The difference
is that the first method assigns tasks based on their level, whereas the second method
assigns tasks based on all of the upward ranks of the remaining tasks. RT can be described
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Figure 7. HS algorithm

as follows. In the first phase, we determine ready tasks in each step; where a ready task
is one that all of its precedence tasks have already been selected or does not have any
precedence tasks. At each step, α ≤ G tasks are selected to make a group similar to HS,
where G = min(M, number of tasks in ready tasks set). When a ready task is selected, it
is removed from the set of ready tasks. Tasks in each group are sorted in descending order
based on upward rank. Similar to HS, after the first stage, the processor is determined.
Figure 9 shows this algorithm. As shown in Figure 8, all of the constraints (which are
stated in 4.1) on control vectors are satisfied by the algorithm. For instance, in each row
in the control vector, there is always only one ‘1’, all of the tasks are executed and also all
of precedence relations are considered. Therefore, based on Theorem 5.3, the proposed
algorithm is stable. Time complexity of the first part of RT algorithm is O(T log T ) for
sorting tasks and time complexity of the second part is O(T.M), because of lines 7 and 8,
where T is number of tasks and M is number of processors. Generally, time complexity
of RT algorithm is O(T.M).

6.2.3. Comparison among the Optimal Solution, HEFT, HS and RT. In this subsection,
we compare the results of HEFT, HS and RT with the optimum solution. Optimum solu-
tion is found by a linear method which finds all of possible schedules and selects schedules
with the minimum makespan. Such exhaustive method is clearly computationally ex-
pensive; nevertheless it can serve as an excellent benchmark. Hence, this comparison is
performed for a small DAG because finding optimum solution is not possible for large
DAGs and processor networks due to their time complexity. In other words, this problem
is NP-complete and is not trivially solvable by traditional methods when problem size
grows. Figure 12 shows DAG and θ matrix. In this example, optimum solution has a
makespan of 514. Since it is small, all of the other methods, HEFT, HS and RT, find the
optimal scheduling with makespan equal to 514.
One of the best known heuristics in TS problems is Heterogeneous Earliest Finish Time

(HEFT) method [3]. In earlier literature, the HEFT algorithm is reported to significantly
outperform the other algorithm in terms of average schedule length ratio and speedup
[3,35]; therefore, we use it as a benchmark algorithm in this paper. Figure 11 shows
HEFT algorithm.
As shown, HEFT has two parts. In the first part, HEFT sorts nodes based on upward

rank. In the second part, HEFT selects the task with the highest upward rank value at
each step and schedules the selected task on the processor that minimizes its finish time.
This step is iterated until all of tasks are scheduled on processors. Time complexity of
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Solving a numerical example by HS. (a) DAG, (b) θ matrix, (c)
height of tasks, (d) classification of tasks based on height value, (e) control
vectors, (f) resulted scheduling.
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Figure 9. RT algorithm

Table 2. Characteristics of random experiments

Experiment # of
# of tasks CCR

DAG
No Processors Sparsity

1 8
{10, 20, 30, 40, 50,

1 0.5
100, 150, 200, 250}

2 8 50 1
{0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9}
3 {4, 5, 6, 7, 8, 9, 10} 50 {0.01, 0.1, 1, 10} 0.5

the first part of HEFT algorithm is O(T log T ) for sorting tasks and time complexity of
the second part is O(T.M), because of lines 4 and 5 in Figure 11, where T is number of
tasks and M is number of processors. Generally, time complexity of HEFT algorithm is
O(T.M).

7. Experimental Results. In this section, we describe the performance of the pro-
posed HS and RT control algorithms on several random examples including task graphs
(DAGs)generated using the P-Method [36]. In this method, DAG is generated based on
the probabilistic construction of an adjacency matrix of a DAG. Element aij of the ma-
trix is defined as 1 if there is a precedence relation from ti to tj; otherwise, aij is zero.
The adjacency matrix of acyclic graph is an upper triangular matrix, i.e., all elements on
diagonal and lower triangles are zero. Each upper triangular element is determined based
on Bernoulli process with parameter p, which represents the probability of success. For
each element, when the Bernoulli trial is a success, then the element is assigned a value
of one; for a failure the element is given a value of zero. The parameter p can be consid-
ered to be the Sparsity of the task graph. With this method, a probability parameter of
p = 1 creates a totally sequential task graph, and p = 0 creates an inherently parallel one.
Values of p that lie in between these two extremes generally produce DAGs that possess
intermediate structures [36].
To evaluate our methods, randomly generated DAGs with characteristics shown in Table

2, are used. Communication to Computation Ratio (CCR) is a measure that reflects the
general scheduling behavior with respect to communication [4]. DAG Sparsity is Bernoulli
parameter that is a measure of precedence relations between tasks.
In these experiments, the number of heterogeneous processors is 10 and its topology is

fully connected. The computation cost of tasks and communication cost between tasks
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Solving a numerical example by RT. (a) DAG, (b) θ matrix,
(c) upward rank, (d) grouping of tasks, (e) control vectors and (f) resulting
schedule.
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Figure 11. HEFT algorithm

(a) (b)

Figure 12. Numerical example. (a) DAG, (b) θ matrix.

in task graph is chosen randomly based on normal distribution similar to [1,8,9]. The
parameters of normal distribution have been reported in Table 5. We iterate each exper-
iment 50 times and report mean of results in each experiment. Experimental results are
compared with Heterogeneous Earliest Finish Time (HEFT) [3].
As shown in Table 3, the result of proposed controllers are very close to HEFT and

in experiments with less than 50 tasks the result of proposed methods are better than
HEFT.
In some DAGs more than one source node (node without any predecessor) may exists.

For example in the following DAG, nodes 1 and 8 are source nodes because they do not
have any predecessors. Sometimes, some of the source nodes are close to sink nodes (nodes
without any successor), such as node 8, and therefore have low upward rank. With these
DAGs, HEFT operates as follows: it calculates upward rank of all nodes and then sorts
nodes in descending order of upward rank. As a result, nodes such as node 8 are located
at intermediate levels of the sorted list, resulting in delayed scheduling of them. Although
such nodes have low upward rank, they have a lot of impact on scheduling. In HS, since
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Table 3. Experiment 1 – 50 run average and standard deviation of
makespan – Comparing HS, RT and HEFT on DAGs with different number
of tasks (CCR = 1, Sparsity = 0.5, Processors = 8)

# Tasks Parameter HEFT HS RT

10
Average 84.00 83.00 84.00
STD 12.50 10.60 10.90

20
Average 171.00 169.00 170.00
STD 25.52 21.53 22.15

30
Average 261.00 258.00 259.00
STD 38.85 32.87 33.78

40
Average 341.00 334.00 336.00
STD 50.86 42.53 43.88

50
Average 437.00 431.00 432.00
STD 65.19 54.85 56.51

100
Average 849.00 872.00 850.00
STD 126.65 111.03 111.09

150
Average 1260.00 1295.00 1257.00
STD 188.02 164.97 164.34

200
Average 1689.00 1734.00 1690.00
STD 252.04 220.91 221.04

250
Average 2118.00 2166.00 2109.00
STD 316.10 275.85 275.76

300
Average 2536.00 2598.00 2533.00
STD 378.42 330.79 331.21

Figure 13. A sample DAG

we act based on level, nodes 1 and 8 have same level and therefore node 8 is scheduled
sooner than in HEFT. In RT, since we consider all of ready tasks at each step, node 8 is
scheduled sooner than in HEFT.

In DAGs with higher number of tasks, the impact of delayed scheduling nodes such
as in node 8 is less; therefore, in experiments with a higher number of tasks, although
makespan of HEFT is lower than HS and RT, they are close together.

The next experiment is about DAG Sparsity. These experiments are performed for
50 tasks and 10 processors that are fully connected. In addition, each experiment has
been iterated 50 times and average value has been reported. Table 5 shows parameters of
normal distribution that is used to randomly generate computation and communication
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Table 4. Experiment 2 – 50 run average and standard deviation of
makespan – Compring HS, RT and HEFT on DAGs with different spar-
sity levels (CCR = 1, Number of tasks = 50, Processors = 8)

Sparsity Parameter HEFT HS RT

0.1
Average 135.88484 150.61433 143.12059
STD 29.76 33.56 30.61

0.2
Average 225.28988 241.29017 228.50856
STD 49.24 53.76 48.86

0.3
Average 289.74098 303.77117 293.61047
STD 63.32 67.74 62.79

0.4
Average 364.52774 381.48965 366.90289
STD 79.61 85.12 78.54

0.5
Average 430.41431 441.56268 428.79773
STD 93.91 98.59 91.77

0.6
Average 482.59026 486.58198 480.88965
STD 105.21 108.56 102.94

0.7
Average 522.23542 529.24895 522.17147
STD 113.89 118.10 111.85

0.8
Average 557.07088 559.5233 557.89501
STD 121.42 124.90 119.52

0.9
Average 574.5813 572.55392 573.84068
STD 125.27 127.81 122.84

Table 5. Experiment 3 – Setting of parameters based on normal distribution

Computation time Communication time
Mean Variance Mean Variance

Experiments with varying
10 4 10 6

number of tasks
Experiments with varying

10 4 10 6
Sparsity value

Experiments with
100 4 10 6

CCR = 0.01
Experiments with

100 4 10 6
CCR = 0.1

Experiments with
20 4 20 6

CCR = 1
Experiments with

10 4 100 6
CCR = 10

times in DAG. Table 4 shows the result of the experiment. As shown in this table,
makespan of HS controllers and HEFT are close together, in all of Sparsity values and
sometimes the RT is better than HEFT.
In addition, more experiments are performed as shown in Table 6 Each cell shows the

average result of 50 separate execution of experiment with randomly generated DAGs with
specified parameters. Computation time and communication time of tasks in experiments
are generated randomly based on normal distribution. Table 5 shows parameters of normal
distribution function that are used.
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Table 6. Experiment 3 – 50 run average and standard deviation of
makespan repeated for 50 independent runs (Number of Tasks = 50, Spar-
sity = 0.5)

# Proc Method
CCR = 0.01 CCR = 0.1 CCR = 1 CCR = 10

Average STD Average STD Average STD Average STD

4
HEFT 33613.811 340.31003 12122.97 474.2812 3221.97 103.7077 2523.06 212.9125
HS 33037.74 358.59624 12221.74 482.745 3301.14 88.4415 5950.41 211.6781
RT 33116.995 364.52961 12137.05 473.8932 3209.56 102.0932 5726.12 237.8184

5
HEFT 31690.596 432.93612 11989.52 551.376 3182.87 133.0228 2453.74 172.7356
HS 33664.481 417.12938 12071.97 544.0969 3260.24 119.5259 6000.65 280.7522
RT 32629.978 396.92558 12002.61 548.7594 3167.54 126.4412 5732.21 270.2922

6
HEFT 31399.513 373.87099 12053.3 515.0406 3192.24 102.8087 2460.88 141.3361
HS 33777.223 396.62514 12145.2 510.445 3264.83 104.6349 5970.45 240.0112
RT 33301.225 389.55232 12069.51 507.9879 3168.5 108.9867 5775.32 286.5996

7
HEFT 31166.632 421.9845 11983.04 581.9847 3182.45 107.3619 2566.24 232.5873
HS 33469.732 484.78769 12069.28 582.9445 3260.53 106.2959 5983.41 273.3193
RT 32477.883 456.48202 12002.1 583.4138 3174.19 103.52 5745.82 257.5152

8
HEFT 31528.373 409.53076 11980.84 553.7696 3197.57 121.3184 2479.69 167.3255
HS 34056.899 397.22778 12067.02 545.0182 3279.69 118.1766 6005.92 239.7304
RT 33813.452 445.03422 11991.42 554.3868 3180.94 115.7275 5743.37 195.4504

9
HEFT 34149.529 410.56562 12020.58 541.7361 3188.88 126.1868 2434.67 137.639
HS 33249.595 402.71553 12113.87 537.4327 3270.41 117.8027 5966.56 230.7038
RT 34092.924 441.36717 12033.55 540.4003 3182.31 127.5147 5713.61 208.4604

10
HEFT 32426.103 411.47325 12058.53 575.948 3183.51 114.2389 2491.59 190.4354
HS 32591.922 414.53706 12155.29 570.4473 3252.69 113.9986 5976.21 244.231
RT 32976.138 453.14563 12073.84 577.7726 3171.89 113.163 5731.46 200.7092

In these experiments, number of tasks T and Sparsity parameter of DAG are fixed to
200 and 0.5, respectively. Number of fully connected processors and CCR parameter of
DAG are changed between 4 to 10 and {0.01, 0.1, 1, 10} respectively.

As shown in Table 6, when CCR = 0.1 or CCR = 1, the result of HS and RT are
generally comparable with those of HEFT. The results of RT are consistently better than
HS due to its global view. In the grouping stage of HS, we only consider height of tasks
in DAG that has a local view to DAG and restrict selection of tasks from other levels;
while in RT we have a global view and do not consider level of tasks, but consider all of
ready tasks. However, when CCR = 10, HEFT exceeds the performance of HS and RT.
It should be noted that real world DAG applications with CCR = 10 are less common,
because DAGs with CCR = 10 are those where total communication is 10 times that of
computation.

8. Conclusion and Future Works. Task scheduling and its varieties have a consider-
able number of significant applications in the functioning of modern society. Hence, many
methods have been developed to date, but they are mostly based on heuristics. There
are relatively few aspects of TS that has been approached from a theoretical perspective.
Here, we propose to address the problem of static task scheduling (TS) by proposing
a new general paradigm based on system engineering. This new modeling paradigm is
promising due to its extensive theoretical developments. It is different from its earlier
competitors, particularly when compared with those with a systems engineering perspec-
tive, in terms of its extended generality, general applicability, and translation to design
of a controller through solving an optimization problem based on switching systems. We
demonstrate how TS can be mapped via nonlinear state space and, through theoretical
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analysis, show a test of stability for the resulting system. A transformation is subse-
quently devised to convert this state space model to linear switching state space with
nonlinear constraints. Two systematic methods are then presented to determine control
vectors based on this model. Theoretical analysis confirms the asymptotic stability of the
closed loop TS model. In TS terms, it is shown that all tasks can be completed with the
proposed controller given sufficient time. The proposed HS and RT controllers are then
compared against the HEFT scheme on several randomly generated experiments. Results
indicate comparative performance particularly when CCR is 0.01, 0.1, and 1.
This paper considers static TS environments as has also been the concern of great many

scholars earlier; however most real world problems are defined in dynamic environments
(i.e., changes in time) and face preemption. We believe that the proposed framework
simply extends to such non pre-emptive and dynamic task scheduling problems. Hence,
the model can be exploited for special cases such as concurrent task execution in single-core
processors. In the future, we aim to consider these aspects as well as further theoretical
analysis by application of system theory perspective to TS.
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