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ABSTRACT. One of the main problems in Internet security is unknown “zero-day” phish-
ing e-mail attack, a new phishing e-mail that has not been trained on the old data sam-
ple or blacklisted. Existing phishing e-mail prevention mechanisms do not perform well
against zero-day phishing e-mail attacks. This paper introduces a novel framework, called
phishing dynamic evolving neural fuzzy framework (PDENFF), which adapts the “evolv-
ing connectionist system” based on a hybrid (supervised/unsupervised) learning approach.
PDENFF adaptive online is enhanced by offline learning to detect dynamically the un-
known zero-day phishing e-mails. Our analyses have shown that this framework is de-
signed for high-speed “life-long” learning with low memory footprint and minimizes the
complezity of the rule base and configuration. This framework achieves high performance,
including high level of accuracy, true positive, and true negative results that reached up to
99%, 97%, and 98%, respectively, and an improvement between 3% and 138% comparison
of the generated existing solutions to zero-day phishing e-mail exploits.

Keywords: Phishing e-mail, Dynamic evolving neural fuzzy inference system (DEN-
FIS), Evolving connectionist system (ECOS), Unknown zero-day, Online adaptive learn-
ing, Evolving clustering method

1. Introduction. Phishing is an e-mail scam that employs two techniques. The first
technique is related to social engineering schemes, which depend on forged e-mails; it
claims that it originated from a legitimate company or bank. Then through an embedded
link within the e-mail, the phisher tries to redirect users to fake Web sites. These fake
Web sites are designed to obtain financial data from their victim fraudulently, including
usernames, passwords, and credit card numbers.

The second technique involves technical deception schemes which depend on malicious
software program that remains on a user’s computer and is designed to obtain directly
the victim’s online account information. Occasionally, the phisher tries to misdirect the
user to a fake website or to a legitimate one monitored by proxies [1].

The problem of phishing e-mail is becoming worse. A survey by Gartner in 2007 on
phishing attack showed that about 3.6 million users in the USA lose money because of
phishing [2]. The total losses amount is estimated as US$3.2 billion dollars. The number
of victims increased from 2.3 million in 2006 to 3.6 million in 2007, which represents

1065



1066 A. ALMOMANI, T.-C. WAN, A. MANASRAH ET AL.

an increase rate of 56.5%. Another recent study reported by the Symantec Company
showed that roughly more than 95.1 billion phishing messages were sent in 2010. This
figure equates to approximately 260 million phishing e-mail sent daily by phishers to the
customers of trusted companies [3].

Many problems arise due to phishing e-mails, most of which affect financial companies
and their clients. Phishing e-mails range from very simple to very complicated messages
and can deceive even the cleverest of Internet users. Phishing is capable of damaging
electronic commerce because it causes users to lose their trust on the Internet [4].

Today, one of the main problems in e-mails is the so-called unknown “zero-day” phishing
e-mails. Zero-day attacks are defined as attacks that phishers mount using hosts that are
not blacklisted or using techniques that evade known approaches in phishing detection
[5,6]. Phishing e-mail is so complex that it cannot be detected by current techniques
because the phishers can be using new vulnerabilities never known before. On the other
hand, some artificial intelligence (AI) techniques, such as support vector machine (SVM),
neural network Multi Layer Perceptron (NNet-MLP) [8], and k-means algorithms [9], are
able to detect phishing e-mails based on fixed features and rules [1,7]. The level of errors
in the classification process will increase over time, especially when dealing with unknown
zero-day phishing e-mails.

Phishing e-mail detection has been a major area of focus in a number of studies. In this
paper, a new framework based on the FCOS [10,11] called Phishing Dynamic Evolving
Neural Fuzzy Framework (PDENFF), is proposed. This framework is capable of determin-
ing whether e-mail is phishing or ham (legitemate) dynamically. The implementation of
the proposed framework depends on ECOS, which adapts the evolving clustering method
(ECM) as a part of the dynamic evolving neural fuzzy inference system (DENFIS) in an
online mode along the dynamic neural fuzzy inference system (DyNFIS) to enhance the
rule creation in an offline mode [12-14].

The proposed framework can detect unknown zero-day phishing e-mails. It has a high
level of performance, including accuracy with low level of false positives (FPs) and false
negatives (FNs), and other measurements. It consumes a short time for e-mail classifica-
tion, consequently improving the level of system performance. The motivation behind the
current work is to prove that the use of ECOS will allow the use of a new clustering tech-
nique that provides a higher level of accuracy within a short time for zero-day phishing
e-mail detection.

The recent paper is going to be organized as follows. Section 2 presents the related
works. Section 3 discusses the proposed framework. Section 4 shows the implementation
and test results, and finally, Section 5 presents the conclusions and future work.

2. Related Works. A number of studies have examined phishing or Web phishing in
general, but relatively few have discussed phishing e-mail detection. Particularly, there is
a lack of research on unknown zero-day phishing e-mails detection in an online mode. In
the current study, a number of methods pertaining phishing filtering are discussed.

Most of the literature surveyed on phishing detection yields techniques implemented
through Toolbars; for example, SpoofGuard [15], AntiPhish [16], and NetCraft anti-
phishing toolbar [17], are some of the most distinguished examples of this approach,
which commonly depend on Bayesian (Naive-base) algorithms [8]. The toolbar approach
remains problematic, however. Zhang et al. [18] empirically analyzed 10 anti-phishing
toolbars and reported that the toolbars were only able to consistently detect less than
90% of phishing URLs, as well as incorrectly detected 42% of legitimate URLs as phish.
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Some approaches use supervised or unsupervised machine learning techniques for phish-
ing e-mail detection and prediction [8,19], while others use a hybrid systems (super-
vised /unsupervised) learning technique [9,20]. The main aim of the machine learning
technique depends on classifiers, which attempt to make a map of the input to the desired
output depending on a specific function. When dealing with classification problems, the
main rule involved is learning several types of input or features to predict a desirable
output.

Fette et al. (2007) [19] proposed a method called PILFER with a machine learning
technique dependent on features extraction to detect phishing e-mails, and they used
10 features denoted to phishing e-mails for training data by using supervised learning
algorithms by the random forest [21] and the SVM [22] as classifiers. This method has
96% accuracy, with 0.1% FP and 4% FN. However, this supervised learning method
can detect the type of e-mails with the same set of features but cannot detect unknown
zero-day phishing attack because this attack might poss new features not included in the
learning process yet [19].

Abu-Nimeh et al. (2006) [8], compared six classifiers related to the machine learning
technique for phishing prediction. Most of the adopted classifiers used supervised learning,
and the results indicated that there is no standard classifier for phishing prediction. For
example, if some classifiers have low levels of FP, they will have a high level of FN [8]. For
example, a neural network (NNet) classifier has FP rate up to 5.58% and 21.72% FNs,
Linear regression classifiers (LR) whose FP 04.89%, but obtained a large number of FN
at 17.04% [8], which means that they are not accurate enough to detect the various types
of phishing attacks.

On the other hand, Islam et al. (2009) [20], built a system consisting of three-tier
classifications to detect phishing e-mails. The method depends on feature extraction,
followed by sequential classification and sending of the output for the decision process.
Therefore, if an e-mail is misclassified by any tier, the final decision will be determined
in the final tier. The average accuracy, reaches 97%, but this technique suffers from long
processing and complexity of analysis because it requires many stages before arriving at
the final decision; on the other hand 3% of its dataset suffers from misclassification which
directly affects the detection accuracy [20].

Yearwood et al. (2010) [39], proposed a new method that depends on profiling phishing
e-mails. They concentrated on embedded hyperlink information by extracting 12 features
related with embedded URL only that represents phishing e-mails. These features are
divided into two classes (phishing e-mail and ham e-mail). Extracted features are repre-
sented by a binary value. An e-mail is classified as “1” if it has any of the 12 features, and
“0” otherwise. Classifier algorithms such as SVM [19] and ada boost [20] classifiers were
used for detecting phishing e-mails. However, this technique depended on the phishing
e-mail with embedded hyperlinks only [39], which will make the FP and FN happen from
time to time; therefore, this technique still manifests weakness in its classification role,
and thus, uncertainty in the overall detection accuracy.

Clustering is an unsupervised learning approach, used rarely for the classification of
phishing e-mails. To our knowledge, one of studying uses a clustering method for classify-
ing phishing e-mails conducted by Dazeley et al. (2010) [9], who combined unsupervised
clustering algorithms with supervised classification algorithms. First, a variety of inde-
pendent clustering algorithms were used such as k-means [9] algorithm, Global k-means
algorithm (GKM) [9] to randomize data. Second, consensus clustering was done combined
with independent clustering. Third, the data was trained using consensus clustering used
Nearest Neighbor clustering and neural network (NNet), and then the entire data set
was classified. This technique increases the speed of the classification and enhances the
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accuracy compared with the k-means algorithm. However, the level of accuracy is still
less than 94% [9].

Basnet et al. (2008), proposed a technique that works based on 16 features. This
technique adapted many machine learning algorithms like neural network-multi layer per-
ceptron (NNet-MLP) feed forward and k-means clustering algorithm to classify e-mail
into phishing or legitimate e-mail [23]; however, k-means clustering algorithm is working
in offline mode and the level of accuracy was 90.8% which is still low; also NNet-MLP
are not suitable for adaptive online learning [12], for these algorithms cannot solve online
and unknown zero-day of phishing e-mail attack.

As a result, one of the main challenges in detecting phishing e-mails is how to detect
unknown zero-day phishing e-mails in online mode. Therefore, ECOS is a promising
platform for phishing detection [24]. ECOS proved its adaptability in terms of classifying
e-mails into phish or ham e-mails in online mode, as well as in terms of speed and use of
a one-pass algorithm [24], which accesses the data only once from the memory to create
the rule.

ECOS is a connectionist architecture that simplifies the evolution processes using knowl-
edge discovery. It can be a neural network or a set of networks that run continuously
and change their structure and functionality through a continuous relationship with the
environment and with other systems. This system, like traditional expert systems, works
with unfixed number of rules used to develop the AI [25]. It is flexible with respect to
the dynamic rule, works on either online or offline mode, and interacts dynamically with
the changing environment. Such a system can solve the complexity and changeability of
many real world problems. It grows throughout the process and adopts many techniques
[10,11].

DENFIS proposed by Kasabov and Song [12,13], is a first-order Takagi-Sugeno inference
engine [26]. DENFIS is one of the new types of fuzzy inference systems used for evolving
a connectionist system implementation. It is used for online learning with dynamic time
series prediction. The strength of the fuzzy inference system increases through its hybrid
(supervised /unsupervised) learning, which has the capability of adding new input and
new features with new classes and still evolves. DyNFIS is a new extension of the original
offline version of DENFIS [14].

3. Proposed Framework — PDENFF. Our proposed framework, called PDENFF, is
shown in Figure 1. In the proposed framework, ECOS is adapted based on the level of
similarity among the four groups of phishing e-mail features. The proposed methodology
is divided into four stages. The first stage is called pre-processing, used to extract 21
binary features from e-mails, which we called “long vector”. The second stage is the
e-mail object similarities used to decrease the size of feature vectors from 21 to four
feature groups, which we called “short vector”. The third stage includes the ECM and its
offline extension (ECMc) to generate the basis of rules [27]. Finally, DENFIS is utilized
in online mode as a fuzzy inferences system to create, update, or delete a fuzzy rule
while the system is running. DyNFIS is also used in offline mode to enhance the rules
in offline mode, enhance the level of classification accuracy, and decrease the error rate
in the prediction process based on Gaussian membership function. However, the profile
management framework is suggested to put to order the relationship between DENFIS
and DyNFIS and employ the best rules in our framework. Full details for each part are
explained next.

Before discussing the stages of our framework, we should know that PDENFF collects
and filters e-mail separately and sequentially. The first PDENFF stage implemented by
pre-processing is explained as follows:
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3.1. Pre-processing. Pre-processing involves two steps. The first step involves the se-
lection of phishing e-mail features, and the second one involves the parsing and stemming
of e-mails.

To represent the most effective characteristics of phishing e-mails, 21 features were
selected to obtain better accuracy in terms of the classification process [4,28,29]. The
vector generated in this stage is designated as long vector because it decreases the size of
this vector to be transformed to short vector, which will be discussed in the next phase.
The features selected in our framework are discussed next.

3.1.1. Selected phishing e-mail features. PDENFF uses the features in the first learning
process as seed to detect phishing e-mails. However, the system should be able to detect
zero-day phishing e-mails without any prior knowledge of the phishing e-mail itself. The
proposed method adapts unknown values of feature vector from the evolving clustering
nature of e-mails to build the evolving rules. Hence, the feature behavior in our system is
not a fixed factor, which is unlike the other approaches. Evolving the rule can include a
new value of feature vector related to a new phishing e-mail attack. Therefore, the system
can work with this new attack without prior knowledge of the feature vector value itself.
The most effective 21 extracted features generated by many authors were adopted and
some of the sub-features were merged into one feature, such as Feature numbers 14 and
20. We also suggested a new feature, such as Feature number 10. We suggested dividing
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all features into four groups because they represent all parts of the message. All features
are binary in nature. The groups of features are discussed below.
Group 1: External features

These features are extracted from the open source SpamAssassin tool [32], which in-
cludes the following:
1-Spam features (spamfeatures)

This is a binary feature. Take a value of 1 if the message is classified as spam and 0
otherwise. Phishing e-mails comprise a subset of spam but not vice versa. In the current
work, the open source SpamAssassin version 3.2.3.5 is used with the default rule, and
using the default threshold 0.5 [19,30].

Group 2: Body-based features

All the body-based features occur in the body of an e-mail, which are explained as
follows:
2-HTML e-mail (body_html)

This is a binary feature that returns 1 if HI'ML code is embedded in body of message,
and 0 otherwise. At present, creating a phishing e-mail is difficult without using an HTML
code because an HTML code enables an embedded link to connect directly to other Web
sites [19].
3-Body of Multipart (body-multipart)

This is a binary feature that returns 1 if the message has a multipart MIME type, and
0 otherwise, our scanning search on “Content-Type: multipart/alternative” to detect this
features [19].
4-Verify your account phrase (body_Verifyphrase)

This is a binary feature that returns 1 if the message has the phrase “Verify your
account” and 0 otherwise [31].
5-“OnClick” JavaScript event (body-JSonclick)

This is a binary feature that returns 1 if the message has an “onClick” JavaScript event
and 0 otherwise [31].
6-Code of JavaScript to Change the status bar (body-JSchangebar)

This is a binary feature that returns 1 if the message has JavaScript code to modify
the status bar, and 0 otherwise [30].
7-Code of Java script (body_javascript)

This is a binary feature that returns 1 if the message has JavaScript code, and 0
otherwise. by match for “javascript” string [19].
8-Code of Java script to open popup windows (body-JSpopup)

This is a binary feature that returns 1 if the message has JavaScript code to open popup
windows, and 0 otherwise [31].

Group 3: URL based Features

These features are extracted from the URL links of the e-mail, which included as follows:
9-html-links (url_htmllink)

This binary feature takes a value of 1 if there are embedded links in HTML part and 0
otherwise [32].
10-Number of dots in a link (url_-nodots)

Generally, a legitimate company will have no more than three dots on its domain name
[19], We suggest. It takes a value of 1 if there are more than three dots in the domain
and 0 otherwise.
11-Non matching between target and text of urls (url-TarDiflink)

Phishers often use HI'ML e-mails, in which it is possible to show a link that says pay-
pal.com but actually links to badsite.com. like <a href=*“badsite.com” > paypal.com</a
>. This is binary features, if they have different host a value “1” and “0” otherwise [19].
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12-Url IP address (url-ip)

A binary feature that returns 1 if the message has IP addresses rather than a qualified
domain name, and 0 otherwise [19].
13-Image links (url_imagelink)

Some attackers use an image as a link to hide fraudulent URLs [31]. This is binary
feature, return 1 if e-mail has images links and 0 otherwise.
14-URL bag of word links (url_bagword)

A binary feature that returns 1 if the message has one of human-readable link text,
which included one or more of the following words: click; here; login; or update in the
text portion of their links in order to hide a suspicious domain name [31].
15-URL has two domains (url_twodomain)

This is a binary feature that returns 1 if the URL founded has two domain names
and 0 otherwise. For example, http://paypal.com.phish.com, has two different domain
paybal.com and phish.com; generally, this does not happen in ham e-mail [33].
16-Non-standard port in the URL (url_nonstport)

A server accesses Web pages using ports, and a few phishers use non-standard ports
to hide their identity and location. This is a binary feature that takes a value of 1 if the
e-mail message uses a port other than 80 or 443 [29], and 0 otherwise.
17-URL containing hexadecimal characters or @ symbol (url_hezorat)

Some attackers use hexadecimal character codes to hide embedded URLs. Attackers
can write an IP address using the “%” symbol to build a hexadecimal number. Sometimes,
they use the “@Q” symbol to confuse users. This binary feature takes a value of 1 if the
message URL contains either the “%”or @ symbol, and 0 otherwise [19].

Group 4: Features Header

This is a group of features, which represent the features of header message between
sender and receiver; we selected some of those features as follows.
18-Subject replay word (sub_replay)

This is a binary feature that returns 1 if the “Re:” word is appearing in the subject
field of a given message, and 0 otherwise [31].
19-Difference between the sender domain from the domain of the embedded links (diffsen-
lindom).

When the link embedded in the HTTML does not equal the sender’s domain, it is most
likely a phishing e-mail. This is a binary feature, which returns 1 if the domain name in
the “from” field does not equal the domain name in the URL, and 0 otherwise [19].
20-Subject (bank, verify, debit) word (sub-words)

This is a binary feature that returns 1 if the message’s subject line has the word bank,
verify, debit, and 0 otherwise [31].
21-Sender e-mail address uses different replay address (sendiffreplyto)

This is binary feature that returns 1 if sender e-mail address uses different replay
address, and 0 otherwise [31].

3.1.2. Feature parsing and stemming to extract binary features — Long vector. Parsing is
a process used to extract e-mail features. Stemming is a process that cleans the text
data included in the e-mail features. The data are then converted to a binary value
(1,0), which takes a value of one if the e-mail is likely to be a phishing e-mail and zero
otherwise. The system takes the processed e-mail dataset to the next stage. A set of
methods is used to extract all 21 probable useful features from each e-mail message by
writing a series of short JAVA scripts and Python programming language to extract the
features programmatically as follows:
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Let M = {mi,mo, ..., mr} represent all e-mail messages and F' = {fi, fo,..., fir|}
be the vector of the features space, where |M| and |F| are the number of messages and
the number of feature vectors, respectively. Let v;; be the value of the Jth feature of
the Ith message. As a result, each message appears as V; = (vj1, vig, . .., v;jp|), and each
message is V' = {v;;}, where i =1,2,...,|M]and j =1,2,...,|F]|.

After the parsing and stemming features in PDENFF are discussed, the generation of
the short vector of features is discussed next.

3.2. E-mail object similarity. In this stage, we convert the feature vector from long
vector to short vector for three reasons. The first one is to decrease the complexity of
rule generation in our framework. The second reason is to decrease the number of rule
generation, and the third is to increase the speed of classification process in our system.
Two processes have to be run to accomplish these processes after the binary values are
obtained from the pre-processing stage, which represent each e-mail in the dataset. The
processes are as follows:

3.2.1. Feature ranking. To decrease the size of the feature vector and save the effect of
all feature vectors, we suggest using a new technique called feature ranking and value
calculation. Feature ranking is used to determine the most effective feature from the
extracted features. One of the most effective algorithms used in feature ranking is the
information gain ratio (IGR) [31,34].

The system uses two main measures to develop the value of the feature vector. The
first one is entropy, which measures the disorder in a system, and the second one is
information gain, which measures the decrease in entropy achieved in the classification
based on a particular feature.

Entropy. Assuming that a collection of data samples D is available, we can calculate the
entropy of D — E(D) — in the system as follows:

N

E(D) = Z —pilog, p; (1)

i=1
where N is the number of classes in the dataset and p; is the possibility that a particular
instance belongs to class 7. In our dataset, two classes exist: ham and phishing e-mails,
respectively. Equation (2) gives the formula for the two classes of problem.

E(D) = _Ph10g2ph_Pp10g2pp (2)
where P, represents the possibility that a sample is a ham e-mail and p, denotes the
probability that it is a phishing e-mail [33].

Based on these entropy values, we can proceed to the examination of the effects of each
feature on the information gain algorithm as follows:

Information gain. The most effective attribute for the classification process is the
reduction entropy based on the largest amount. The measurement for this information
gain [31] to calculate the information gain of attribute F' over dataset D is shown by
Equation (3).

¢D.F)=ED) - Y ED) 3
vEvalues(F)
where E(D) is the entropy of the all datasets calculated based on Equation (2), F' is the
attribute in which the information gain is measured, and D, is the number of attributes
in D. F has the value v, and E(D,) is the entropy of this subset of the dataset.
Table 1 provides a complete ranking of all features selected for the proposed framework.
The training set was composed of 8,000 samples of phishing and ham e-mails collected
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from a well-known dataset used from most researchers in this field, which includes phish-
ing e-mail from the Monkey website [35] and ham e-mail from the SpamAssassin project
[36]. The more the information gains are, the more helpful will a feature be. From the in-
vestigation, “spamfeatures” was found to have the best quality, whereas “body_JSpopup”
was the least helpful and possibly caused noise in the classifier. This ranking was used to
build the value of each feature. However, our system depends on the evolving rule; thus,
if this ratio will be changed in the future, the rule can adapt to this change by evolving
with the rule itself, which will be explained in the next section. However, up to this stage,
we will use the standard dataset to calculate this ratio as a seed for our database in the
future.

3.2.2. Creation of crisp value. This step will help group the features in the next step
based on similarity. In addition, fuzzy logic is part of our framework. To work with crisp
value, therefore, we suggest to convert the binary values (0, 1) of all e-mail datasets into
crisp values for the development of crisp value by dividing all features on a 1,000 score
based on Algorithm (4) shown in [24].

X; = (1000 * IGR;/SUM(IGR;)) (4)

where X is a crisp value, ¢ is the feature number, and IGR is the information gain ratio.
Then, for each feature in the dataset, every binary value is multiplied with its crisp value,
and the product will be used in our framework, as shown in Table 1. The value is entered
into the system after grouping to construct the vector of features.

TABLE 1. Phishing e-mail features with IGR

No| Features (X;) | IGR Ranking | Crisp value
1 | spamfeatures 0.80254 176
2 | body_html 0.69261 152
3 | url_htmllink 0.64324 141
4 | url_nodots 0.62678 138
5 | url_TarDiflink 0.36063 79
6 | sub_replay 0.29624 65
7 | diffsenlindom 0.26995 59
8 | body_multipart 0.18317 40
9 | urlip 0.13054 29

10 | url.imagelink 0.11872 26

11 | url_bagword 0.11294 25

12 | sub_words 0.09481 21

13 | url_twodomain 0.05421 12

14 | sendiffreplyto 0.04322 9

15 | body_JSonclick 0.03441 8

16 | url.nonstport 0.02966 7

17 | body_Verifyphrase 0.02615 6

18 | body_JSchangebar 0.01512 3

19 | body_javascript 0.00557 2

20 | url_hexorat 0.00522 1

21 | body_JSpopup 0.00441 1

sum 4.55014 1000
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TABLE 2. Phishing e-mail groups and features values

Group Features Features Crisp value | summation range
External Features spamfeatures 176 0-176
body_html 152
body_multipart 40
body_JSonclick 8
Body based Features body_Verifyphrase 6 0-212
body_JSchangebar 3
body_javascript 2
body_JSpopup 1
url_htmllink 141
url_nodots 138
url. TarDiflink 79
url_ip 29
URL based Features url imagelink 26 0-458
url_bagword 25
url_twodomain 12
url_nonstport 7
url_hexorat 1
sub_replay 65
diffsenlindom 59
Header based Features mj<words 51 0-154
sendiffreplyto 9
Sum 0-1000

3.2.3. Grouping of features based on similarities. The grouping of features based on simi-
larities is a process that makes the data undergo classification processes easily and rapidly.
Four groups are constructed. Table 2 shows the phishing e-mail groups and the features
values.

In Table 2, the first group is classified as Ezxternal Features group consisting of spam
features. The second group is called the Body-based features consisting of the summation
of the values of seven features. The third group is the URL-based Features consisting
of the summation of the values of nine features, and the fourth group is the header-
based features consisting of the summation of the values of four features. The vector
now consists of four values. Short vector represents 21 features of the long vector. This
grouping aims to decrease the size of the feature vector by saving the effect of each feature,
thus helping the system have more control in the classification process. In next stage,
the process of how our framework will use the crisp input value short vector to work with
ECOS for the classification of the input samples in the two classes (ham and phishing
e-mails) is discussed. Figure 1 shows the process of adaptive DENFIS and DyNFIS for
the classification of crisp input samples based on Gaussian function.

3.3. Adaptive ECM and its extension, ECMc. ECM online, along with its exten-
sion, constrained optimization called ECMc-offline [27] , is adopted for the clustering
process because ECM is fast. The ECM algorithm works in a very straightforward man-
ner. One sample is needed at a time and performed by one-pass dynamic clustering
algorithm. Partitioning of an input space is also done where no prior knowledge about
the optimum number of clusters is required [12]. The one-pass algorithm sequentially
reads the input exactly once, without unbounded buffering. ECM constructs a powerful
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method that is able to classify and partition e-mail data input. Each cluster is described
by a cluster center C,, and cluster radius R.,. The cluster centers (called prototypes)
are described by the maximum distance d,,x between the input samples and the nearest
cluster center; the distance cannot be longer than some distance threshold value Dyp,.

ECM is used to allow PDENFF to deal with noisy datasets. ECM with ECMc works
in DENFIS and DyNFIS, respectively, to build the base of evolving rules. The cluster
center does not essentially fall in the center of gravity of the “real center” in ECM online.
On the other hand, the offline version of ECM is proposed to deal with such problem of
cluster centers whenever they are not positioned at the center of gravity. Thus, we suggest
a dynamic system between ECM and ECMc in our framework. ECMc optimizes the final
result in offline mode by capturing stream of e-mails while the system is working in the
online mode. The idea came from inspiration of the combination of ECM and ECMc
using the enhanced evolving clustering method [37].

We suggest to enhance the clustering of every 8,000 samples captured as a default
parameter of the system because the time required to receive a new e-mail is not known in
advance; thus, we build our enhancement based on the number of e-mail samples. Figure
2 shows the flowchart of ECM with its extension ECMc as it works in our framework.

Below we explain the algorithm steps of combination between ECM and ECMc. Note
that steps from one to five related to the offline mode of ECMc and the steps from six to
eleven related to the online mode of ECM.

Step 1: if it is the first time of inputs go to step 6 to create new cluster. Else create the
cluster center C,;, 7 = 1,2,3,...,n that already created before.

Step 2: determine the membership matrix U where the element Uj; is 1 if the ith data
point Z; belongs to C;, and 0 otherwise. Once the cluster centers C,; are defined, the
values U;; are derived as

Then Uij = ]_, Else Uij =0.

Step 3: use the condition of minimization method to update the cluster centers, as per
the following equation.

|1 Zk — C¢jl| < Dy (6)

Step 4: to optimize the cluster. Calculate the objective function J; according to the

following equation.

n

J]:Zjl( ) ||zk—ocj||> (7)
k,XkeCj

Within cluster C; for each j =1,2,3,...,n.

Step 5: if the result is less than certain tolerance value, or the result after compared

with the earlier iteration is less than threshold value, or the iteration number for the

optimization is greater than certain value, go to step 7, else go to step 2.

Step 6: create a new cluster C'; by suggesting the place of the first input from the input

samples as a first cluster center C'cy, put the cluster radius Ry = 0.

Step 7: if all input data from the data stream, have been implemented, then STOP, else

the input sample Z; which is in progress is taken with normalized Euclidean distance D,

between the input data sample with all n clusters center C; that created previously.

D;; =||Z; — C.j||, where j =1,2,...,n, is calculated (8)

Step 8: if we have cluster C,, with its center Cy,, and radius R,,,, while the distance
value D;,, represent the minimum distance between the cluster center Cy,, and input Z;
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which is defined by this equation
Dim = ||Zz_Ccm|| :miﬂ{Di]‘}, fOI'j = 1,2,3,...,’/’L (9)
And D;,, < Rym (10)

When the current input sample Z; belongs to this cluster, then go back to step 7.
Step 9: based on the calculation of the distance values, discover a cluster C,, (have center
C'a, cluster radius R,,, with distance value D;, which has the shortest distance value S;,).

Sia = Djg + Rye = min, j=1,2,3,...,n (11)

Step 10: if the shortest distance value S;, > 2Dy, (while Dy, represent the distance
threshold parameter) then sample Z; will not belong to any existing cluster. Then go
back to step 6 to create a new cluster.

Step 11: if the shortest distance value S;, < 2Dy, the cluster C, is updated by moving
its center, C\,, with increasing the value of cluster radius R,,. While (R!" = S;,/2) and
the new cluster center C7" is placed on the line connecting input vector Z; with the old
cluster center C,,. From the last calculation the distance between the new cluster centers
C*" to the input sample Z; is equal to R}'¢"

ua

cnew — g, ((ow ~ 7)) x (;;)) (12)

Then go back to step 7.

The group centers are implemented based on evolving the features vector of e-mails in
the input stream, which depends on the distance between four groups of feature vectors.
With the level of similarity between the values of group features, the final result will
determine to which group the e-mail belongs based on the fuzzy rule created by DENFIS.
The main output that will be taken from the ECM algorithm is the centers of the clusters
and the cluster radius for dynamic rule creation.

In next phase we will explain how ECM and ECMc will work with fuzzy inferences
system based on DENFIS and DyNFIS respectively to build full evolving dynamic system
able to distinguish between phishing e-mail and ham e-mail in life-long learning system.
However, this is the first time the DENFIS and DyNFIS will be used to solve phishing
e-mail problem so we have a novelty in adaptive like this algorithms see Figure 1.

3.4. Rule creation based on fuzzy inference system. In this phase, an evolving
rule is generated for classification process. We suggest three parts to build unlimited
“life-long” training system that will enhance the rules while the system is working in
the online mode. The first one depends on the DENFIS-online mode. The second one
depends on the DyNFIS-offline mode to enhance the rules. Finally, profile management
framework was suggested to arrange the relationship between the first and second parts.
The rule for each part in our framework is explained below.

3.4.1. Rule creation based on DENFIS — online mode. The proposed framework uses
DENFIS in online mode. DENFIS is a dynamic inference system which is capable of
creating or updating a fuzzy rule while the system is running. The output depends on
the most active fuzzy rules at any given time. DENFIS depends on the fuzzy rule set
that is chosen automatically. One of the most powerful features related to DENFIS is the
capability to generate new rules before or during the learning process. DENFIS can also
extract rules during or after the learning process.

ECM is the most important parts of the DENFIS algorithm, as the antecedent of the
fuzzy rules based on the cluster centers. When once the clusters are fully optimized, a
fuzzy inference system is then developed.
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DENFIS uses the Takagi-Sugeno fuzzy inference engine with triangular membership
functions (MF) composed of m fuzzy rules. However, the new version of the DENFIS-
online mode works only based on the Gaussian membership function [12,38].

We suggest to adapt the new version of the DENFIS-online mode based on Gaussian
function because an extension can be made to the DyNFIS-offline mode also because
the Gaussian MF coverage of the problem space expands a long way as the degree of
membership decreases steadily. The bell curve from the peak at different rate depends on
the parameter of the function and does not reach zero, as shown in Figure 3.

0.5 r, L

FI1GURE 3. Gaussian membership function

In DENFIS, the rules are defined by the Gaussian-type membership function, and it
has two parameters, as expressed in Equation (13).

The fuzzy rule sets are defined by the following Gaussian-type membership function
(MF):

_ —(z —m)?
Gaussian MF = aexp ( 52 ) (13)
where z is the input vector, m is the center of the Gaussian function, and o is the width
(cluster radius) of the Gaussian function, listed in the order of vector o, m] [14].

When the model is given as an input-output pair (2;, y;), DENFIS is used to distinguish
a phishing from a ham e-mail.

However, to enhance the rules generated by DENFIS, we suggest the need for the
DyNFIS offline mode while the system is working in the online mode to enhance the rules
based on ECMc to make the generated rules more fit and accurate for the classification
input samples without stopping the system. This process should be done because DENFIS
and DyNFIS have the same format or rules based on the Gaussian membership function
rules.

3.4.2. Enhancement rules based on DyNFIS-offline mode. The proposed framework uses
the DyNFIS-based on ECMc to enhance the rule in offline mode while the system is
working in online mode to build life-long learning framework. The data derived from the
offline part of ECM is fed to DyNFIS. However, DyNFIS works based on the Gaussian
membership function in offline mode because it is more accurate and more suitable for real-
world applications. DyNFIS will allow the antecedents and consequences to be optimized
using back-propagation and minimize the error in the active rules based on minimizing
the objective function [14].

Our proposed framework takes advantage of the DENFIS and DyNFIS-Gaussian MF
to minimize the error in the active rules for building the framework. It is most suited
to higher level of noise data and has the ability to detect and predict zero-day phishing
e-mail rapidly with high accuracy in the classification and prediction processes.

However, to arrange the relationship between the two algorithms (DENFIS and DyN-
FIS), we suggest the profile management framework.
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3.4.3. Profile management framework. Profile management frameworks play two main
rules in third and fourth phase respectively in PDENFF. The first contribution of Profile
management framework occours in the third level which is implemented by capturing
input samples form ECM-Online then enhancing the place of input vector by enhancing
the postion of clusters centers is based on ECMc-offline. This process to optimize the
clusters is based on decreasing the objective function. This condition happens by default
for every 800 samples of e-mails because the length of time the mail server that will receive
a new message is not known. Therefore, this process is controlled based on the number
of e-mails and not based on time.

The second contribution of profile management framework occours in the fourth level
which is implement by 2 steps

1. capture the rule profiles created in DyNFIS-offline mode
2. insert capturing rule profile to DENFIS-online mode while the system is working.

This process appears as parallel system to enhance the repository of rules based on
ECMc. The profile management framework will load the enhanced rule to DENFIS,
which can be automatically adaptive the rules without duplication and has ability to
select the best rule in classification process automatically because it has the same format
of rules, which depends on the same type of Gaussian membership function.

For any new input data, this process will make PDENFF work with unlimited life-long
training system, using footprint memory, because the system will use the enhanced rules
in the online mode. Afterward, in our framework, if a new rule is created, a new feature of
phishing e-mail will occur. Therefore, the system can work with the noise data in a high
level of accuracy in the classification process, as proven in the implementation process
and test results. See Figure 4.

ham Email Phishing Email ham Email Phishing Email
- -
T o < T R <
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FIGURE 4. Methodology for detection phishing attack based on PDENFF
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FIGURE 5. Place of PDENFF in computer network

Figure 4 shows how the effective of rule by DENFIS for classification process will be
increased by taking the advantage of rule generated by DyNFIS to make very high level
of performance in classification process inplemented by PDENFF.

A schematic representation PDENFF is shown in Figure 5.

Figure 5 shows that PDENFF stays between the server and user to stop the phisher
attack before it gets to the user, which makes the process work in high level of security
and fully controlled by PDENFF.

4. Implementation and Test Results. Our framework was tested on an Intel Duo
Core E4500 system with 2 GB RAM and a Windows operating system. A flexible pre-
processing and feature extraction system was implemented using Python and Java pro-
gramming language for the purpose of this investigation. MATLAB version 7.10 was used
for the connectionist framework of the system engine and for computation and analysis.
Three experiments were constructed to prove our objectives, which are explained in detail
after the discussion of the dataset used in our framework.

4.1. Dataset. Two datasets were used for the assessment of the proposed framework
in our experiments. The first one was the well-known dataset from most authors in
this area, consisting of 4,000 phishing messages received from November 2004 to August
2007 provided by the Monkey website [35] and 4,000 ham e-mails from the SpamAssassin
project [36]. The second one was a collection of sample sets of 300 new phishing and
2,000 ham e-mails from the mail server in our NAV6 center in the period from July 2011
to April 2012. We used the first dataset in the three experiments, whereas the second
dataset was used in the third experiment only. Our experiments worked based on 10-fold
cross validation using random method with min-max (linear normalization) for all input
to confine the input in the range [0, 1] and to preserve exactly all relationships of the data
values. For each fold of the experiments, 80% of the dataset was trained, whereas 20% of
the dataset was tested.

We used many measurements to make our experiments clear. This measurements in-
cluded true positive (TP), the number of phishing e-mails correctly classified as phishing,
true negative (TN), the number of ham e-mails correctly classified as ham, FP, the num-
ber of ham e-mails correctly classified as ham, and FN, the number of phishing e-mails
wrongly classified as ham. The other measurements are presented in Table 3, and the full
details of each experiment are shown below.

TABLE 3. Equations used to calculate recall/sensitivity, precision, F'-
measure, and overall accuracy

Recall/Sensitivity | precision F-Measure Over all Accuracy
_ |TP| _ |TP| __ 2-precision-recall | __ |TP|+|TN]|
~— |TP|+|FN] ~— |TP|+|FP| | = precisiontrecall | = |TP|4+|TN|+|FP|+|FN]|
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4.2. First experiment. This experiment used the first dataset, which consists of 8,000
e-mails (ham = 4,000 and phish = 4,000). The main objective of this experiment is to
show the effect of the short vector based on the crisp input value compared with the
long vector based on binary input value in our framework. PDENFF depends on the
distance threshold (Dy,,) in ECM; thus, we designed the experiments based on 10-fold
cross validation for each Dy,,.. We selected five Dy, in the range [0.1,0.5] because they
showed the best result in our framework. The testing results based on the short vector are

shown in Table 4, and the average of the testing results for each Dy, is shown in Figure
6.

TABLE 4. Performance measurement results based on distance threshold
(Dypy) — short vector

. Recall/ Time Number of
Dinr FP FN Accuracy precision Sensitivity | consuming (s) | fuzzy rules
0.1 | 0.03 £0.02 | 0.04 £0.2 | 0.98 £ 0.01 | 0.97 &+ 0.02 | 0.97 &+ 0.01 4+ 2 48 + 2
0.2 0.04 £0.01| 0.03+0.2 |0.97 +£0.01| 0.95 %+ 0.02 | 0.96 + 0.02 4+1 21 £ 3
0.3 |0.02 + 0.01|0.03 + 0.01{0.99 + 0.01{0.98 + 0.01/0.97 + 0.02 3+1 9+ 3
0.4 |0.04 £0.02|0.04 +£0.02|0.96 &+ 0.02 | 0.90 &+ 0.03 | 0.95 + 0.03 4+1 14+1
0.5 | 0.02 + 0.01 | 0.05 + 0.01 | 0.94 +£ 0.01 | 0.95 + 0.03 | 0.95 + 0.01 4+1 6t1
100%
95% —W
’ 0 == AcCcuracy
precision
90% 96% e Rz cal|
85%

0.1 0.2 0.5

0.3
threshold

Ficure 6. PDENFF performance average based on distance threshold —
short vector

Table 4 and Figure 6 show that the performance of PDENFF based on short vector
had very good results. However, the optimal threshold was Dy, = 0.3, which showed the
best result compared with all other thresholds. The overall accuracy reached up to 99%.
Thus, this threshold was used in experiments 2 and 3 to prove the other objectives in our
framework. To show the difference in working with the short vector from the long vector,
the same experiments were constructed using the long vector features. The results are
shown in Table 5 and Figure 7.

Table 5 and Figure 7 show that the performance of PDENFF based on long vector had
very good result but is less than that using the short vector. In addition, the optimal
threshold here is Dy, = 0.3. However, the main difference between using long vector
and short vector in our framework lies in the number of rules generated, the time con-
sumed in the classification process after extracting the e-mails (shown in Figures 8 and
9, respectively), and the complexity of the rule sets.

Figures 8 and 9 respectively show that the average time consumed and the fuzzy rule
generated by the long vector were about 10 times more than those of the short vector,
proving that the general performance of the short vector is better than that of the long
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TABLE 5. Performance measurement results based on distance threshold

(Dypy) — long vector
. Recall/ Time Number of
Dinr FP FN Accuracy precision Sensitivity | consuming (s) | fuzzy rules
0.1 0.02 £0.01 | 0.04 £ 0.01 | 0.96 + 0.01 | 0.97 £ 0.01 | 0.96 + 0.01 40 £+ 10 637 £ 50
0.2 | 0.04 £ 0.01 | 0.02 £ 0.01 | 0.97 £ 0.01 | 0.96 &+ 0.02 | 0.95 + 0.01 21 £ 5 280 £ 30
0.3 |0.02 + 0.01|0.03 + 0.02({0.97 + 0.01{0.98 + 0.01|0.97 + 0.01 15 £ 3 87 + 20
0.4 | 0.05 £0.01 ] 0.03 £0.01|0.96 £0.01 | 0.96 + 0.02 | 0.95 =+ 0.03 13 + 2 25+ 5
0.5 0.04 = 0.01 | 0.04 £ 0.01 | 0.96 £ 0.02 | 0.98 + 0.01 | 0.95 + 0.01 8+ 2 20 + 2
—&—Accuracy precision === Recall/Sensitivity
98% 98%
e %
6% 96%
95%
0.1 0.2 0.3 0.4 0.5
threshold
Ficure 7. PDENFF — performance average based on distance threshold —
long vector
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FIGURE 8. Average time con-
sumed in the testing and train-
ing phase

FIGURE 9. Average number of
rules — training phase

vector. The complexity of rules generated in the long vector is more than that of the short
vector because the number of Gaussian membership function in each rule in the short
vector is four, whereas the number of Gaussian membership function in the long vector is
21, for each rule. This result increases the complexity of the rule generation with time;
thus, experiments 2 and 3 were completed using PDENFF based on short vector.
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4.3. Second experiment — comparison of the PDENFF performance with other
classifier algorithms. This experiment used the same dataset employed in the first ex-
periment. The objective of this experiment is to compare PDENFF with other classifica-
tion algorithms currently used for phishing e-mail detection. Therefore, we used the short
vector with six classifiers in our framework. We used the random 10-fold cross validation
to evaluate the performance of these algorithms. The performance measurement results
for all folds are shown in Table 6, whereas Figure 10 shows the performance average of
the classification algorithms.

Table 6 and Figure 10 show that PDENFF based on DENFIS and DyNFIS has the best
performance compared with other classifier algorithms, at an accuracy of approximately
99% and approximately 96% for DENFIS. SVM and NNet (MLP), usually use to detect
phishing e-mail, had an overall accuracy of approximately 93%, and the k-means had
the worst level of performance because it depended on unsupervised learning only. The
performance of the Bayesian (Naive base) was approximately 90%, usually use in the
toolbar algorithms. The performance of the random forest algorithms was approximately
91% using the PILFER model. These results encouraged us to present the performance

TABLE 6. Performance measurement result of the classification algorithms

classifiers TP TN Accuracy precision Recall F-Measure | Online/
Offline
PDENFF 0.97 + 0.02(0.98 + 0.01|0.99 + 0.01{0.98 + 0.01|0.97 + 0.02|0.97 + 0.02 | Online en-
(DENFIS & hanced by
DyNFIS)(pihr=3) Offline
DENFIS(p¢pr=3) | 0.95 & 0.02 | 0.96 & 0.02 | 0.96 £ 0.01 | 0.95 & 0.01 | 0.95 £ 0.01 | 0.95 £ 0.01 |Online or
offline
SVM 0.94 + 0.02 | 0.93 £ 0.02 | 0.93 & 0.01 | 0.94 + 0.01 | 0.93 £ 0.01 | 0.93 4+ 0.01 |Online or
offline
NNet (MLP) 0.93 £ 0.01 | 0.91 £ 0.02 | 0.92 £ 0.03 | 0.93 £ 0.01 | 0.92 + 0.02 | 0.92 + 0.02 |Online or
offline
k-means 0.89 + 0.01 | 0.90 £+ 0.02 | 0.90 £+ 0.01 | 0.88 £+ 0.02 | 0.90 £+ 0.01 | 0.89 £ 0.02 | Offline-only
Bayesian (Naive-| 0.91 £ 0.01 | 0.90 & 0.01 | 0.91 4+ 0.01 | 0.90 &+ 0.01 | 0.92 £ 0.02 | 0.91 £ 0.03 | Online-only
base)
Random forest 0.92 + 0.01 | 0.93 4+ 0.02 | 0.91 £+ 0.02 | 0.91 + 0.01 | 0.90 4+ 0.02 | 0.90 + 0.02 | Offline or
offline
100%
08% IR
g 0% TSR
¥ 94% S
g 92% Eﬁh"‘:‘:\*z&%’*_
S 90% =5 — | TP
o 88%
2 86% ™
84%
82% == Accuracy
q\°°\ <§<\c° \\@ \?\ «é“’ ,b%é\ @f} i DIECISION
Q‘s ¥ ° ’\-@ < e° ©
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& (5‘} >
S PGy <& F-Measure
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F1GURE 10. Performance average of the classification algorithms
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of our framework to detect zero-day phishing e-mail attack compared with the other
algorithms in experiment 3.

4.4. Third experiment — detecting zero-day attack. We present the process of how
our framework was able to solve the phishing problem using the first dataset used in the
first experiment during the training phase and using the second dataset collected from
our center (NAV6) as a test dataset during the testing phase, based on 10-fold cross
validation. We need to have more different between the learning and testing datasets
to show the average performance of the classification algorithms of our framework based
on DENFIS and DyNFIS compared with other classifier algorithms in these experiments
(Figure 11).

Figure 11 shows that the average performance of 98% of our framework based on DEN-
FIS and DyNFIS is still the best result compared with other classification algorithms,
followed by the approximately 95% of DENFIS. The worst result from the NNet (MLP)
and k-means algorithms was approximately 85%, indicating an improvement of PDENFF
based on DENFIS and DyNFIS in detecting zero-day phishing e-mail attacks from 3% to
13%, capacity to work with noise data, and the ability of life-long learning using classifi-
cation data in the online mode.
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FIGURE 11. Average performance of the classification algorithms — “zero
day” attack

5. Conclusions and Future Work. The proposed framework improved the level of
performance in detecting and predicting unknown zero-day phishing e-mails between 3%
and 13%. PDENFF distinguished phishing e-mails from ham e-mails in an online mode
based on new rules, classes, or features to enhance learning using ECOS. Therefore, the
present work is an important step in the use of ECOS for phishing e-mail detection.

A new technique was used for the extraction of features based on the assumption that
all features have a binary value of either zero or one. It built short vector of values based
on the IGR. The proposed approach used a new incremental clustering algorithm modified
for this purpose, which depends on the maximum distance (MazDist) between the input
data and the cluster center for classification and for developing new rules in DENFIS
online mode and enhancing the rules based on DyNFIS offline mode while the system is



ENHANCED ONLINE PHISHING E-MAIL DETECTION FRAMEWORK 1085

working. Our framework depended on the Takagi-Sugeno fuzzy model generation and
Gaussian membership function.

The experiments proved that the proposed framework has better performance, includ-
ing the enhancement of time consumption by 10 times and decreasing the number of
generated rules, enhancing the overall accuracy of FP, FN, F-measure, recall, precision,
and others measurement compared with other learning algorithms that used existing solu-
tion. Therefore, the proposed approach has a great potential for real-world applications.
For future studies, we will try to build a system that takes advantage of DENFIS based
on triangular function and of DyNFIS based on Gaussian function to enhance the fuzzy
rule for building a system capable of high-speed work and has a high performance for
real-world implementation.
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