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Abstract. According to experimental results, Logitboost and Rotation Forest may be the
most powerful ensemble methods for classification problems. For this reason, in this work
we combine rotation forest with logitboost ensemble. We performed a comparison with
simple bagging, boosting, logitboost, rotation forest and random subspace methods ensem-
bles, as well as other well known combining methods, on standard benchmark datasets
and the presented technique had better accuracy in most cases.
Keywords: Data mining, Machine learning, Pattern recognition, Ensembles of classi-
fiers

1. Introduction. Multiple learner systems (an ensemble of classifiers) try to exploit the
local different behaviour of the base classifiers to improve the accuracy and the reliability
of the overall inductive learning system [1].

Boosting algorithms suffer from the over-fitting problem when dealing with very noisy
data [2]. To cope with this situation, Friedman et al. suggest the use of LogitBoost, which
could greatly reduce training errors and hence yield better generalization [3]. The main
idea of Rotation Forest [4] is to simultaneously encourage diversity by using PCA to do
feature extraction for each base classifier and accuracy is sought by keeping all principal
components and also using the whole data set to train each base classifier. According to
experimental results, Logitboost and Rotation Forest may be the most powerful ensemble
methods for classification problems [5]. For this reason, in this work we combine rotation
forest with logitboost ensemble techniques. We performed a comparison with simple
bagging, boosting, logitboost and random subspace method ensembles as well as other
known ensembles on standard benchmark datasets and the presented technique had better
accuracy in most cases. For the experiments, decision stump was used as base learning
algorithm [6].

Section 2 presents the most well known algorithms for building ensembles that are
based on a single learning algorithm, while Section 3 discusses the presented ensemble
method. Experiment results using a number of data sets and comparisons of the presented
method with other ensembles are presented in Section 4. We conclude with summary and
additional research topics in Section 5.

2. Ensembles of Classifiers. This section provides a short survey of methods for con-
structing ensembles using a single learning algorithm. The Bagging algorithm (Boot-
strap aggregating) [7] votes classifiers generated by different bootstrap samples (repli-
cates). Given the parameter T which is the number of repetitions, T bootstrap samples
S1, S2, . . . , ST are generated. From each sample Si a classifier Ci is induced by the same
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learning algorithm and the final classifier C* is formed by aggregating T classifiers. A
final classification of object x is built by a uniform voting scheme on C1, C2, . . . , CT , i.e.,
it is assigned to the class predicted most often by these base classifiers, with ties broken
arbitrarily. Works in the literature focused on determining the ensemble size sufficient to
reach the asymptotic misclassification rate, empirically showing that suitable values are
between 10 and 20 depending on the particular data set and base classifier [8,9]. Fumera
et al. [10] applied an analytical framework for the analysis of linearly combined classifiers
to ensembles generated by bagging.
Dagging [11] produces a number of disjoint, stratified folds out of the data and feeds

each chunk of data to a copy of the supplied base learner. Predictions are made via
majority vote. Quite well known is Random Subspace Method [12], which consists of
training several classifiers from input data sets constructed with a given proportion k of
features picked randomly from the original set of features. The author of this method
suggested in his experiment to select around half per cent of the original set of features.
Firstly, this method obtains bootstrap instances. Then, it employs Information Gain (IG)
based feature selection technique to identify and remove irrelevant or redundant features.
Finally, base learners trained from the new sub data sets are combined via majority voting.
Random forest [13] is another method for constructing ensembles. They derive their

strength from two aspects: using random subsamples of the training data (as in bagging)
and randomizing the algorithm for learning base-level classifiers (decision trees). The
base-level algorithm randomly selects a subset of the features at each step of tree con-
struction and chooses the best among these. Cai et al. [14] took into account the diversity
of classification margins in feature subspaces for improving the performance of bagging.
Cai et al. [14] first studied the average error rate of bagging, convert the task into an opti-
mization problem for determining some weights for feature subspaces, and then assigned
the weights to the subspaces via a randomized technique in classifier construction.
The training set for each ensemble member of Boosting relies on the performance of

the earlier trained classifiers. Thus, Boosting attempts to generate new classifiers that
are able to better classify the hard instances for the previous ensemble members. There
are several boosting variants; AdaBoost [15,16] is the most well-known. Schapire and
Singer [17] identified two scenarios where AdaBoost is likely to fail: (i) when there is
insufficient training data relative to the complexity of the base classifiers, and (ii) when
the training errors of the base classifiers become too large too quickly. Schapire and
Singer [18] proposed Real AdaBoost, a generalized version of AdaBoost, in which weak
classifiers are piece-wise functions whose output is a real value representing the confidence-
rated prediction. Normally, to construct such weak classifiers, one splits the input space
X into non-overlapping blocks (or subspaces) X1, X2, . . . , XN so that the predictions of
the weak classifier are the same for all instances falling into the same block. In the case of
one-feature-based weak classifiers, this is equivalent to dividing the real line into intervals.
Meanwhile, determining the appropriate number of bins for weak classifiers learned by
Real AdaBoost is a challenging task because small ones might not accurately approximate
the real distribution while large ones might cause over-fitting, increase computation time
and waste storage space. Friedman et al. [3] imported an additive logistic regression
model into AdaBoost and exactly explained the boosting algorithm from a statistical
view. From the perspectives of additive regression model and exponential loss function,
Friedman et al. [3] proposed some new boosting algorithms including GentleBoost and
LogitBoost. Yin et al. [19] introduced a strategy of boosting based feature combination,
where a variant of boosting is proposed for integrating different features. Different from
the general boosting, at each round of this variant boosting, some weak classifiers are
built on different feature sets, one of which is trained on one feature set. And then these
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classifiers are combined by weighted voting into a single one as the output classifier of
this round.

Garca-Pedrajas and Ortiz-Boyer [20] proposed a boosting approach to random sub-
space method (RSM) to achieve an improved performance and avoid some of the major
drawbacks of RSM. RSM is a successful method for classification. However, the random
selection of inputs, its source of success, can also be a major problem. For several prob-
lems some of the selected subspaces may lack the discriminant ability to separate the
different classes. These subspaces produce poor classifiers that harm the performance of
the ensemble. Garca-Pedrajas and Ortiz-Boyer [20] search subspaces that optimize the
weighted classification error given by the boosting algorithm, and then the new classifier
added to the ensemble is trained using the obtained subspace.

MultiBoosting [21] is another technique of the same category that can be considered as
wagging committees formed by AdaBoost. Wagging is a variant of bagging; bagging uses
re-sampling to get the datasets for training and producing a weak hypothesis, whereas
wagging uses re-weighting for each training instance, pursuing the effect of bagging in
a different way. Rotation Forest is a successful ensemble classifier generation technique
[4], in which the training set for each base classifier is formed by applying Principal
Component Analysis (PCA) to rotate the original attribute axes. Specifically, to create
the training data for a base classifier, the attribute set F is randomly split into K subsets
and PCA is applied to each subset. All principal components are retained in order to
preserve the variability information in the data. Thus, K axis rotations take place to
form the new attributes for a base classifier.

Melville and Mooney [22] presented a new meta-learner (DECORATE, Diverse Ensem-
ble Creation by Oppositional Re-labeling of Artificial Training Examples) that uses an
existing strong learner (one that provides high accuracy on the training data) to construct
a diverse committee. This is accomplished by adding different randomly constructed in-
stances to the training set when building new committee members. These artificially
constructed instances are given category labels that disagree with the current classifica-
tion of the committee, thereby directly increasing diversity when a new learner is trained
on the augmented data and added to the committee.

3. Presented Methodology. According to experimental results, Logitboost and Rota-
tion Forest may be the most powerful ensemble methods for classification problems [5].
For additional improvement of the prediction of a classifier, we suggest combining Rota-
tion Forest with logitboost ensemble. We use Logitboost DS as base learner of Rotation
Forest ensemble. The design choices and the parameter values of the Rotation Forest
were picked in advance and not changed during the experiment. In detail, these were as
follows:

1. Number of features in a subset: 3;
2. Number of classifiers in the ensemble: 5;
3. Extraction method: principal component analysis (PCA);
4. Base classifier model: Logitboost DS.
The approach is presented briefly in Figure 1. It has been observed that for bagging,

boosting, rotation forest and random subspace method, an increase in committee size
(sub-classifiers) usually leads to a decrease in prediction error, but the relative impact
of each successive addition to a committee is ever diminishing. Most of the effect of
each technique is obtained by the first few committee members [8,9]. We used 5 × 5
sub-classifiers for the presented algorithm.

The presented ensemble is effective owing to representational reason. The hypothesis
space h may not contain the true function f (mapping each example to its real class),
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(input LS learning set; T ( = 5) number of bootstrap samples; LA learning algorithm
output C* classifier)
Begin
Let E be an ensemble of learners, initially empty.
for j = 1 to T do
begin
The input variables are randomly grouped.
For each group of input variables:
− Consider a data set formed by this input variables.
− Eliminate from the data set all the examples from a proper subset of the classes.
− Eliminate from the data set a subset of the examples.
− Apply PCA (Principal Component Analysis) with the remaining data set.
− Consider the components of PCA as a new set of variables.
Sj := the training data set using as new variables the components selected by PCA
for each group

1. Starting with the instances of Sj with equal weights wi = 1/N , i = 1, . . . , N ,
function F (x) = 0 and sample probability estimates p(xi) = 0.5.

2. Repeat for m = 1 to T :
a. Compute the working response and sample weights:
zi = [yi − p(xi)]/[p(xi)(1− p(xi))],
wi = p(xi)(1− p(xi)).
b. Fit the decision stump fm(x) by weighted least squares regression of zi to xi

using weights wi.
c. Update F (x) and p(x):
F (x) = F (x) + 0.5fm(x),

p(x) =
(
1 + e−2F (x)

)−1

d. Add fm(x) to E.
end of repeat

end of for
begin
Output C* = The most often predicted class of E

End

Figure 1. The rotation forest of Logitboost algorithm

but several good approximations. Then, by taking combinations of these approximations,
classifiers that lie outside of h may be represented.

4. Comparisons and Results. For the comparisons of our study, we used 32 well-
known datasets mostly from many domains from the UCI repository [23]. These data
sets were selected so as to come from real-world problems and to vary in characteristics.
Thus, we have used data sets from the domains of: pattern recognition (anneal, iris, zoo),
image recognition (ionosphere, sonar), medical diagnosis (breast-cancer, colic, breast-w,
diabetes, heart-c, heart-h, heart-statlog, hepatitis, lymphotherapy, primary-tumor) com-
modity trading (autos, credit-g) music composition (waveform), computer games (monk1,
monk2, kr-vs-kp), various control applications (balance), language morphological analysis
(dimin) [24] and prediction of student dropout (student) [25]. In order to calculate the
classifiers accuracy, the whole training set was divided into ten mutually exclusive and
equal-sized subsets and for each subset the classifier was trained on the union of all of
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Table 1. Comparing the presented ensemble with well known ensembles
that uses as base classifier the DS

Dataset Rotation Forest Bagging Boosting Random- Dagging
of Logitboost DS DS DS Subspace DS DS

anneal 98,33 82,96 * 83,63 * 82,26 * 83,64 *
audiology 79,21 46,46 * 46,46 * 46,46 * 32,35 *
autos 79,05 44,95 * 44,9 * 45,29 * 46,64 *

breast-cancer 73,45 73,38 71,55 73,9 72,22
breast-w 97,42 92,56 * 95,28 93,29 * 95,22
colic 83,41 81,52 82,72 81,78 80,84

credit-g 74,2 70 * 72,6 70 * 70,2 *
diabetes 76,7 72,45 * 75,37 72,35 * 75,25
dimin 94,3 59,31 * 59,31 * 62,92 * 59,57 *

haberman 73,82 73,07 74,06 73,23 73,16
heart-c 85,11 75,26 * 83,11 75,1 * 81 *
heart-h 80,98 81,41 82,42 81,71 82,89

heart-statlog 85,19 75,33 * 81,81 75,3 * 80,48
hepatitis 82,54 80,61 81,5 79,31 80,59

hypothyroid 97,88 95,39 92,97 * 93,84 * 94,99
ionosphere 92,61 82,66 * 92,34 84,82 * 81,68 *

iris 95,33 68,87 * 95,07 72 * 75,2 *
kr-vs-kp 93,18 66,05 * 95,08 82,97 * 67,15 *

lymphography 85,05 74,5 * 75,44 * 74,08 * 75,24 *
monk1 82,69 73,41 * 69,79 * 72,17 * 66,94 *
monk2 57,35 61,13 53,99 61,96 58,58

primary-tumor 48,98 28,91 * 28,91 * 27,38 * 26,81 *
segment 95,19 56,54 * 28,52 * 57,36 * 60,93 *
sick 96,51 96,55 97,07 94,03 96,52
sonar 80,71 73,21 * 81,06 72,64 * 70,89 *

soybean 93,11 27,83 * 27,96 * 38,02 * 44,71 *
students 86,67 87,22 87,16 86,51 87,19
titanic 78,65 77,6 77,83 77,6 77,6
vote 96,78 95,63 96,41 94,83 95,61
vowel 75,35 23,58 * 17,47 * 28,35 * 37,06 *

waveform 84,7 57,49 * 67,68 * 61,85 * 67,18 *
zoo 96,18 60,53 * 60,43 * 60,43 * 52,99 *

W/D/L 0/11/21 0/19/13 0/10/22 0/14/18
Average accuracy 84,39 69,26 71,25 70,43 70,35

the other subsets. Then, cross validation was run 10 times for each algorithm and the
average value of the 10-cross validations was calculated [26].

For bagging, boosting and random subspace methodology, much of the reduction in
error appears to have occurred after ten to fifteen classifiers. However, Adaboosting con-
tinues to measurably improve their test-set error until around 25 classifiers [1]. The time
complexity of the presented ensemble is about the same with the remaining ensembles.
This happens because we use 5 ∗ 5 sub-classifiers (totally 25).
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Table 2. Comparing the presented ensemble with other well known en-
sembles that uses as base classifier the DS

Dataset Rotation Forest Multiboost Decorate Rotation Logitboost
of Logitboost DS DS DS Forest DS DS

anneal 98,33 83,63 * 76,89 * 84,07 * 98,55
audiology 79,21 46,46 * 46,46 * 46,46 * 84,92 v
autos 79,05 44,9 * 52,02 * 45,81 * 80,93

breast-cancer 73,45 71,9 75,16 73,81 72,4
breast-w 97,42 95,07 95,04 96,85 95,71
colic 83,41 83,13 83,01 82,06 81,51

credit-g 74,2 71,34 70 * 70 * 70,8 *
diabetes 76,7 75,22 76,08 74,6 74,09
dimin 94,3 59,31 * 64,75 * 84 * 96,3

haberman 73,82 73,09 71,86 75,14 74,82
heart-c 85,11 83,34 72,43 * 82,12 83,46
heart-h 80,98 82,26 81,78 82,01 77,57 *

heart-statlog 85,19 82,48 81,04 * 81,85 82,22
hepatitis 82,54 81,13 80,82 78,71 * 81,92

hypothyroid 97,88 92,97 * 92,97 * 92,89 * 99,58
ionosphere 92,61 87,69 * 90,61 86,05 * 91,17

iris 95,33 95,13 94 65,33 * 94
kr-vs-kp 93,18 93,94 90,43 88,62 * 93,8

lymphography 85,05 74,69 * 71,48 * 75,52 * 82,33 *
monk1 82,69 72,35 * 69,23 * 76,47 * 72,31 *
monk2 57,35 54,47 58,6 62,13 54,45

primary-tumor 48,98 28,91 * 28,6 * 24,79 * 46,91
segment 95,19 28,52 * 40,39 * 62,73 * 95,93
sick 96,51 96,81 96,81 95,04 97,91
sonar 80,71 78,29 75,45 * 74 * 79,29

soybean 93,11 27,96 * 39,96 * 34,72 * 92,97
students 86,67 87,22 87,24 87,24 86,37
titanic 78,65 77,6 77,6 78,55 77,83
vote 96,78 95,56 95,64 95,64 95,41
vowel 75,35 17,47 * 27,37 * 38,99 * 71,31 *

waveform 84,7 66,17 * 67,3 * 69,92 * 82,66
zoo 96,18 60,43 * 61,36 * 60,45 * 95,09

W/D/L 0/18/14 0/15/17 0/13/19 1/26/5
Average accuracy 84,39 70,92 71,64 72,71 83,27

We compare the presented ensemble with bagging, boosting, logitboost, Random-
SubSpace and MultiBoost version of DS (using 25 sub-classifiers), as well as, with DEC-
ORATE, Dagging and Rotation Forest combining method using DS as base classifier. It
must be also mentioned that we used the free available source code for these algorithms
by [26] for our experiments. Decision stumps (DS) are one level decision trees [6] that
classify instances by sorting them based on feature values. In the last raw of Table 1 and
Table 2 one can see the aggregated results.
In the experiments, we represent with ∗ that the specific ensemble looses from the

presented ensemble. That is, the presented algorithm performed statistically better than
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the specific ensemble according to t-test with p<0.05. In addition, in Table 1, we represent
with v that the presented ensemble looses from the specific ensemble according to t-test
with p<0.05. In all the other cases, there is no significant statistical difference between
the results (Draws). In the last row of the Table 1 and Table 2 one can see the aggregated
results in the form (a/b/c). In this notation, a means that the specific ensemble algorithm
is significantly more accurate than the presented ensemble in a out of 32 data sets, c means
that the presented ensemble is significantly more accurate than the specific ensemble in
c out of 32 data sets, while in the remaining cases (b), there is no significant statistical
difference between the results.

The presented ensemble is significantly more accurate than Bagging DS in 21 out of the
32 data sets, while it has significantly higher error rates in none data set. The presented
ensemble is significantly more accurate than Boosting DS in 13 out of the 32 data sets
whilst it has significantly higher error rates in none data set. Furthermore, Dagging
DS has significantly lower error rates in 18 out of the 32 data sets than the presented
ensemble, whereas it is significantly less accurate in none data set. What is more, Rotation
Forest DS is significantly more accurate than the presented ensemble in none out of the
32 data sets whilst it has significantly higher error rates in 19 data sets. The presented
ensemble is significantly more accurate than DECORATE DS in 17 out of the 32 data
sets, while it has significantly higher error rates in none data set. The presented ensemble
is significantly more accurate than Random-Subspace DS in 22 out of the 32 data sets
whilst it has significantly higher error rates in none data set. What is more, Logitboost DS
is significantly more accurate than the presented ensemble in one out of the 32 data sets
whilst it has significantly higher error rates in 5 data sets. To sum up, the performance
of the presented ensemble is more accurate than the other well-known ensembles that use
only the DS algorithm.

5. Conclusions. One of the most active areas of research in supervised machine learning
has been to study methods for constructing good ensembles of learners [27]. In this work
we built an ensemble combining rotation forest and logitboost ensembles. It was proved
after a number of comparisons with other ensembles, that the presented methodology
gives better accuracy in most cases. The presented ensemble has been demonstrated to
(in general) achieve lower error than either boosting or bagging or random subspace or
rotation forest method or other well known ensembles methods when applied to a base
learning algorithm and learning tasks for which there is sufficient scope for both bias and
variance reduction.

Nevertheless, there are still some interesting problems deserved to be investigated fur-
ther, which include but are not limited to the following items: (a) Evaluation of the
performance of the presented algorithm by adopting other algorithms such as rule learn-
ers and neural networks as the base learning algorithm; (b) How to automatically select
the optimal number of learners in each sub-ensemble.
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