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Abstract. In this paper, we propose a novel local feature descriptor, Local Gaussian
Structural Pattern (LGSP), for face recognition that encodes the directional information
of the face’s textures (i.e., the texture’s structure), producing a more discriminant code
than other state-of-the-art methods. Each micro-pattern’s structure is computed by using
a derivative-Gaussian compass mask, which is more robust against challenging illumina-
tion and noisy conditions, and encoded by using the principal directions. Consequently,
the compass mask helps distinguishing among similar structural patterns. Moreover, our
descriptor encodes more information by using different resolutions of the compass mask.
Thus to process a face, we divide it into several regions and extract the distribution of
the LGSP features from them. Then, we concatenate these features into a feature vector,
and we use it as face descriptor. We perform several experiments in which our descriptor
showed consistent results under age, illumination, expression, and noise variations.
Keywords: Image representation, Face recognition, Features extraction, Face descrip-
tor, Local binary patter, Local directional pattern, Local Gaussian structural pattern

1. Introduction. Face recognition has received a great deal of attention from the sci-
entific and industrial communities over the past decades owing to its wide range of ap-
plications in information security and access control, law enforcement, surveillance, and
more generally image understanding [1]. In addition, face recognition does not require
the cooperation of the individuals to be recognized. Therefore, it is a more acceptable
tool despite the existence of other bio-metrics recognition approaches such as iris scans
or fingerprint analysis.

We classify the face recognition descriptors into two classes according to their features
into global and local. The global-feature descriptors are also called holistic methods.
These methods treat the face as a whole, and extract a descriptor from it in such a way.
Researches have proposed numerous approaches using the global features. In this cate-
gory are Eigenfaces [2, 3], Fisherfaces [4], Laplacianfaces [5], Nearest Features Line-based
Subspace Analysis [6], Neural Networks [7, 8], Wavelets [9], Fast Independent Compo-
nent Analysis (ICA) [10] and kernel methods [11]. Also, different frequency features,
e.g., dominant frequency features [12] and polar frequency features [13], are also analyzed
for holistic face recognition. A method was proposed to extract features by employing
discrete cosine transform (DCT) and Gabor wavelets, and then fused their independent
features which are extracted with ICA, and Principal Component Analysis [14]. Most of
these methods were initially developed with face images collected under relatively well
controlled conditions. However, in practice, they have problems dealing with the differ-
ent appearance variations that commonly occur in unconstrained and natural images due
to pose, aging, facial expression, partial occlusions, and illumination variation. Another
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problem of automatic face recognition is that facial features have limited distinctive in-
formation for personal identification and these features are genetically dependent, which
means that genetically identical twins have very similar features.
Although these methods have been studied widely, local descriptors have gained at-

tention because of their robustness to illumination and pose variation. Heisele et al.
[15] showed the validity of the component based methods, and showed how they outper-
form holistic methods. The local feature methods compute the descriptor form parts of
the face, and then gather the information into a descriptor. Among these methods are
Local Feature Analysis (LFA) [16], Gabor features [17], Elastic Bunch Graph Matching
(EBGM) [18], and Local Binary Pattern (LBP) [19]. The last one is an extension of the
LBP feature applied to the face recognition problem, which was originally designed as a
texture descriptor [20]. LBP achieves better performance than previous methods; thus
it is widely used nowadays. Newer methods, however, tried to overcome the shortcom-
ings of LBP. One of them is the Local Directional Pattern (LDP) introduced by Jabid
et al. [21, 22]. Furthermore, Zhang et al. explored the use of higher order derivatives
to produce better results than LBP [23]. Both methods use other information than in-
tensity to overcome noise and illumination variation problems. However, these methods
still suffer in non-monotonic illumination variation, random noise, and change in pose,
age, and expression condition. Although some methods, like Gradientfaces [24], have a
high discrimination power under illumination variation, they still have low recognition
capabilities for expression and age variation conditions.
In this paper, we propose a novel face descriptor, Local Gaussian Structural Pattern

(LGSP), for robust face recognition that encodes the structural information, and the
intensity variations of the face’s texture. LGSP encodes the structural information in
a local neighborhood, from eight different directions, using derivative-Gaussian compass
mask. Consequently this mechanism is consistent against noise, since the edge response is
more stable than intensity, and the derivative-Gaussian mask is robust against noise and
illumination changes [24]. Then, from all the directions, we extract the absolute value of
the eight directions’ responses, and then we choose the top k maximum responses to create
the code. Additionally, we compute a feature vector that comprises the histograms of
directional features of different regions in the face. This approach allows us to distinguish
the prominent directions of the edge responses and the variation of intensity changes.
Furthermore, our descriptor uses the information of the entire neighborhood, instead of
using sparse points for its computation like LBP. Hence, our approach conveys more
information into the code.
The remaining of the paper is organized as follows. In Sections 2 and 3, we present a

brief description of the LBP and LDP approaches. Section 4 introduces our method and
describes the encoding scheme in detail. We present the analysis and the results of our
method under expression, age, pose and illumination conditions in Section 5. Finally, we
present concluding remarks in Section 6.

2. LBP. The LBP operator, a gray scale invariant texture primitive, has gained signif-
icant popularity for describing the texture of an image [25]. It labels each pixel of an
image by thresholding its P -neighbor values with the center value of the neighborhood,
and converts the results into a binary number as shown in the following equation:

LBPP,R(xc, yc) =
P−1∑
p=0

s(hp − hc)2
p, (1)
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s(x) =

{
1, if x ≥ 0

0, if x < 0
, (2)

where hc denotes the gray value of the center pixel (xc, yc), hp corresponds to the gray
values of P equally spaced pixels on the circumference of radius R at the center pixel,
and s(·) is a function that assigns one to the positive arguments, otherwise it assigns zero.
The values of the neighbors which do not fall exactly on a pixel position are estimated
by bi-linear interpolation. In practice, the LBP computation (1) means that the signs of
the differences in a neighborhood are interpreted as a P -bit binary number, resulting into
2P distinct values for the binary pattern. These individual pattern values are capable of
describing the texture information at the center pixel (xc, yc). The process of generating
this P -bit pattern is shown in Figure 1.

Figure 1. Basic LBP operator: P neighbors at R distance are used to
compute the LBPP,R code.

Additionally, one variation of the original LBP, known as uniform LBP, is proposed from
the observation that certain LBP codes appear more frequently in a significant image area.
These patterns are considered uniform because they contain few transitions from one to
zero or vice versa in a circular bit sequence. For example, the patterns 11111111 and
00000000 have zero transitions, while 00110000 has two transitions, and 10110001 has
four transitions. Shan et al. [26] used this variant of the LBP, which has two transitions
(LBPu2), for their facial recognition tasks. Though uniform LBP shows good recognition
accuracy in a constraint environment, it is sensitive to random noise and non-monotonic
illumination variation.

3. LDP. On the other hand, LDP computes the edge response values at different direc-
tions, and uses these responses to encode the image’s texture. Since the edge response is
less sensitive to illumination and noise than intensity, the resultant LDP feature describes
the local primitives, including different types of curves, corners, and junctions, in a more
stable manner, and also retains more information.

Therefore, LDP descriptor assigns an eight-bit binary code to each pixel of the input
image. This pattern is then calculated by comparing the relative edge response values of a
pixel in different directions. Given a central pixel in the image, the eight directional edge
response values {mi | i = 0, 1, . . . , 7}, are computed using a Kirsch mask of size 3×3. Note
that the response values are not equally important in all directions. Consequently, the
presence of a corner or an edge shows high response values in some particular directions.
Therefore, the LDP descriptor encodes the most prominent k directions to generate the
code. Here, the top-k directional bit response are set to one, and the remaining (8−k)-bits
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of the eight bit LDP pattern are set to zero. Hence, the LDP code is computed by:

LDPk(xc, yc) =
7∑

s=0

gk(|ms|)2s, (3)

gk(x) =

{
1, if x ∈ maxk{mi|i = 0, . . . , 7}
0, otherwise

, (4)

where ms is the sth edge response for the center pixel (xc, yc), gk(x) is a function that
assigns one if the argument is in the k-top magnitudes of the center pixel, otherwise
it assigns zero, and maxk returns the set of the top kth elements in the set. Figure 2
illustrates the mask response and LDP bit positions.

(a)

(b)

Figure 2. (a) Eight-directional edge response positions and the LDP bi-
nary positions and (b) LDP code computation using k = 3

4. Local Gaussian Structural Pattern. We propose a Local Gaussian Structural
Pattern (LGSP) which is an eight-bit binary code assigned to each pixel of an input
image that represents the texture’s structure and its intensity transitions. As previous
research [27, 28] showed, edge magnitudes are largely insensitive to lighting changes.
Hence, we create the pattern by computing the edge response of the neighborhood us-
ing a derivative-Gaussian compass mask, and by conveying the absolutes values of the
responses we build the code scheme, which represents the texture information of the pic-
ture. Moreover, we take the top k maximum directions of those edge responses to encode
the dominant characteristics of the neighborhood.
One major problem of LBP [19] is the sparse sample that it uses to encode the neigh-

borhood intensity changes. The few number of pixels used reduces the accuracy, discards
most of the information in the neighborhood, and it makes the method sensible to noise
and illumination changes. Moreover, these drawbacks are more evident for bigger neigh-
borhoods. Hence, to avoid these problems all the neighborhood’s pixels can be used, as
LDP [21] does. Although the use of more information makes LDP stable, it recovers the
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(a) (b) (c)

Figure 3. LGSP code computation. (a) A neighborhood with gray values,
and (b) the derivative-Gaussian compass mask is applied to that neighbor-
hood to extract the edge responses. From those responses, we choose the
top three maximum directions to encode the texture in the neighborhood,
and we marked the (c) LGSP binary positions that conveys the top three
maximum responses.

information from the neighborhood using a mask that is limited in its search space, which
reduces its resilience to noise and illumination. To avoid these problems we are proposing
to use a derivative-Gaussian compass mask to compute the maximum responses of the
neighborhood, to avoid the noise perturbation, and to make our method robust against
illumination changes – as previous research [24] showed that the derivative of Gaussian is
robust against these problems. Considering this process, we can recover more important
information than the other state-of-the-art methods.

As Figure 3 shows, the top k maximum responses provide valuable information of the
neighborhood’s structure, e.g., lines, corners, and branches. However, the structural infor-
mation is as reliable as its source. Hence, we need a stable mask to produce reliable edge
information. Moreover, the use of a single neighborhood size discards useful information,
as some descriptive features are visible only at different scales. Although Kirsch mask has
been used widely, it lacks ability to represent the edge response in larger neighborhoods.
Thereby, there is a need of a mask that can produce reliable edge responses regardless of
the neighborhood size, noise, and illumination variation. Hence, our proposed mask fills
this void, and incorporates information into the code consistently. Thus, our generated
code is more robust against noise and illumination conditions, and can acquire more in-
formation from the face at different scales (as shown in Figure 4), that otherwise may be
overlooked. Note that most methods do not have an increment in the encoded informa-
tion as the size of the neighborhood increases – we discuss this behavior in Section 5.2.
Furthermore, as previous research showed [29], it is vital to provide descriptive features
for long range pixel interaction. However, neither LBP nor LDP consistently encode the
long range pixel. We find that by combining the local shape information, the relation
between the edge responses, the derivative-Gaussian compass mask, and the top k values
of the maximum responses of the eight directions, we can better characterize the face’s
appearance.

4.1. Compass mask. Inspired by Kirsch mask [30], we use the derivative of a skewed
Gaussian to create an asymmetric compass mask that we use to compute the edge response
on the smoothed face. This mask is robust against noise and illumination changes, while
producing strong edge responses on the image’s texture. Hence, given a Gaussian mask
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Figure 4. At different scales the derivative-Gaussian mask recovers dis-
tinctive features, that may be ignored by a single scale

Figure 5. Rotated derivative-Gaussian compass masks

defined by:

Gσ(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
, (5)

where x, y are pixel location positions, and σ (sigma) is the width of the Gaussian bell;
we define our mask as:

Nσ(x, y) = G′
σ(x+ c, y) ∗Gσ(x, y), (6)

where G′
σ is the derivative of Gσ with respect to x, σ (sigma) is the width of the Gaussian

bell, ∗ represents the convolution operation, and c represents the offset of the Gaussian
with respect to its center (in our experiments we use one fourth of the mask diameter
for this offset). Then we generate a compass mask, {N0

σ-N
7
σ}, by rotating Nσ 45 degrees

apart, in eight different directions. Thus, we obtain a set of masks as shown Figure 5. Due
to the rotation of the mask Nσ, we do not need to compute the derivative with respect to
y of equivalent rotated masks.
However, our compass mask is capable of extracting important features of the face,

such as facial shapes and facial objects, e.g., nose, mouth, eyes, and eyebrows, even
under extreme lighting variations, which are key features for face recognition. Moreover,
the mask reduces the effect of shadows, and it is robust against noise and illumination
changes.

4.2. Coding scheme. In our coding scheme, we generate the code, LGSPσ, by analyzing
the edge response of each mask, {N0

σ-N
7
σ}, that represents the edge significance in its
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respective direction. Hence, to encode the information we used the top k maximum
responses, which represent the most significant bits in the code, as show in Figure 3.
Therefore, we define the code by:

LGSPσ =
k∑

j=1

2Z
σ
j (xc,yc), (7)

where (xc, yc) is the central pixel of the neighborhood being coded, Zσ
j represent the

maximum jth direction, which we define by:

Zσ
j (xc, yc) = arg maxj

i

{N i
σ(xc, yc) | 0 ≤ i ≤ 7}, (8)

where arg maxj
i

gives the jth maximum argument i, and N i
σ represent the response of the

ith direction.

4.3. Face descriptor. Each face is represented by an LGSP histogram (TH) as shown
in Figure 6. The TH contains fine to coarse information of an image, such as corners,
edges, spots and other local texture features. Given that the histograms only encode the
occurrence of certain micro-patterns without location information, in order to aggregate
the location information of the descriptor, we divide the face image into small regions,
{R1, . . . , RN}, and extract a histogram for each region. Finally, we compute the TH by
concatenating each histogram by:

TH =
N∏
i=1

Hi, (9)

where
∏

represents the concatenation operation, N is the number of the regions of divided
face and H is the histogram of the ith region of the divided face. The spatially combined
TH plays the role of a global face feature for the given face.

Consequently, TH is used during the face recognition process. The objective is to com-
pare the encoded feature vector from one person with all other candidate’s feature vector
with the Chi-Square dissimilarity measure. This measure between two LGSP histograms,
TH1 and TH2, is defined by:

χ2
(
TH1,TH2

)
=

(TH1 − TH2)2

TH1 + TH2 , (10)

the corresponding face of the feature vector with the lowest measured value indicates the
match found.

Figure 6. Face descriptor of the concatenated histograms of LGSP features
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5. Experiment and Results. We perform four experiments to evaluate the performance
of the proposed algorithm under, age, pose, illumination, and expression variation. We
test our method in two different data sets: FERET and Yale B. Moreover, we cropped
and normalized all the images to 100 × 100 pixels, based on the ground truth positions
of the two eyes and mouth. In our experiments, every image is partitioned into a grid
of 10 × 10 and 14 × 14, and we also test our method using the top two, three, and four
maximum responses, to create the code scheme to each combination, and to prove the
robustness of the proposed method. And for each set of maximum responses, we make the
comparison with other state-of-the-art methods. These methods are the local encoding
schemes: Local Binary Pattern (LBP) [19] and Local Directional Pattern (LDP) [21]. We
also test the illumination robustness of the proposed method against another state-of-
the-art methods: Gradientfaces [24], multiscale retinex (MSR) [31], self-quotient image
(SQI) [32, 33] and, total variation model (LTV) [34].

5.1. Data sets. We test the performance of the methods, for face recognition problem,
in accordance to use the CSU Face Identification Evaluation System with images from
the FERET [35] database. We used fa image set as a gallery image and the other four
sets as probe images: fb, for expression variation, fc for illumination variation, dupI and
dupII for age variation.
Furthermore, we use the Yale B [36] database for illumination variation evaluation. It

contains images of ten subjects with nine poses and 64 illuminations per pose. And we
use the frontal face images of all subjects, each with 64 different illuminations. The faces
are divided into five subsets based on the angle of the light source directions. The five
subsets are: sub1 (0◦ to 12◦), sub2 (13◦ to 25◦), sub3 (26◦ to 50◦), sub4 (51◦ to 77◦),
sub5 (above 78◦). We use sub1 image set as a gallery image and other four sets as probe
images.

5.2. Neighborhood’s size. The increment in the neighborhood size increases the input
data to the code. However, this data increment not necessarily will lead to incorporating
more information into the code. Consequently, we analyze the impact of different mask
sizes for the face recognition problem, and we show the results of this analysis in Figure 7.
For the proposed method, we use different sizes of the derivative-Gaussian mask that
depends on the given width value, σ (sigma), as shown in Figure 4. Therefore, we use a
different σ (sigma), which approximately has the width of the desire neighborhood. For
LBP, we change the radius of the neighborhood it uses. And for LDP, we test different
ways of increasing its mask, because Jabid et al. only proposed a 3 × 3 mask, and we
choose the one that gives best results. Thus, we increased the mask used in LDP by
reproducing the zeros sums over the outer rings of the neighborhood, while maintaining
the asymmetry of one side. The experiment revealed that our method is capable of
differentiating more facial characteristics as the size of the derivative-Gaussian compass
mask increases. However, this behavior is not present in the other methods, which have
a lower recognition rate as the size of the neighborhood increases. The average results of
the size variation of the neighborhoods, in the FERET database, are shown in Figure 7.
In our method, LGSPσ, we use different sizes for the derivative-Gaussian compass

mask to recover different characteristics of the face at those resolutions. However, this
information is useful due to the encoding scheme proposed, while the other methods
accuracy drops significantly. As Figure 7 shows, the average accuracy of LBP and LDP
quickly drops as the size of the neighborhood increases. However, LGSP maintains the
accuracy throughout the size increment. In the case of LBP, because it takes sparse
points from the neighborhood, when the neighborhood’s size increases these sparse points
do not necessarily reflect the texture of such regions; thus reducing its average accuracy.
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Figure 7. Average recognition rate on the FERET database for different
neighborhood’s sizes. The average accuracy of the other methods decreases
as the size of their neighborhood increases. However, the proposed method
has more stable response, as it can build a more discriminant structure for
the large neighborhoods.

And for LDP, although it peaks at 5 × 5 neighborhood, in general, the method presents
a drop in accuracy as the neighborhood size increases. Then, for larger neighborhoods
it cannot distinguish textures with similar structures. However, LGSP takes advantage
of the derivative-Gaussian mask to produce more reliable and stable code, regardless of
the neighborhood’s size. Therefore, in general the increment in the mask does not assure
more discrimination power, if that information is not well used.

5.3. Results on FERET database. To evaluate the pose, age and expression variation
robustness of our method, we perform the evaluation in the FERET [35] database. First,
we evaluate the performance of the LGSPσ code for single σ (sigma). In Figure 8 we show
the variation of the recognition rate for different σ (sigma) values, and test our proposed
method using the top two, three, and four responses with different grid’s size.

The results for a single σ (sigma) (Figure 8) in age variation data sets (dupI and dupII )
present an increment in the accuracy as the grid size increases, e.g., from 10×10 to 14×14,
because each grid’s cell conveys more discriminant information. In other words, as the
grid’s size increases the number of pixels in each cell decreases. Thus, the histogram of
each cell would have fewer bins (as there are fewer possibilities in each cell), which lead
to more discriminant histograms in the presence of a stable code (such as the proposed
one). Furthermore, the results in the illumination variation data set (fc) also show this
characteristic. However, the expression variation data set (fb) results have a decrement,
in average, of 0.5%.

Figure 9, shows the comparison of LGSP with other two methods: LBP and LDP.
Also, we explore the accuracy of Gradientfaces; however, due to its sub-par results in this
database we do not show them here. Instead, see Section 5.6 for the discussion about
this method. And Table 1 shows the comparison with others state-of-the-arts methods,
as LBP, LDP (Kirsch), PCA, EBGM, and Bayesian. Although EBGM outperforms our
method under expression variation by 3.46%, it decreases its recognition rate under il-
lumination and age variation by more than 30%. Meanwhile, our method maintains the
recognition rate in different environments, and in general, the results of our method out-
perform the results of the different state-of-the-art methods.
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Figure 8. Recognition accuracy of LGSPσ, with varying σ (sigma) in both
databases, conveying the top two, three, and four maximum responses

5.4. Robustness. We made three more experiments to evaluate the robustness of the
proposed method to the training data, and we compare against two methods: LBP and
LDP. In our experiments, we change the training data set on FERET database, and test
against the other data sets. Hence, in the first experiment, we use the data set fb as the
training data set, and the rest for testing (fa, dupI, and dupII ). The other two experiments,
proceed in the same manner, and we use dupI and dupII as training data – Figure 10
shows the results of these experiments. The main idea behind these experiments, is to
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(a) (b)

Figure 9. Comparison of the recognition rate of LGSP and state-of-the-
art methods in the FERET database, with a grid size (a) 10 × 10 and (b)
14× 14

Table 1. Performance comparison on FERET database for different methods

Subset fb (%) fc (%) dupI (%) dupII (%)

LBP 83.23 85.20 67.40 54.13
LDP (Kirsch) 85.12 77.55 70.83 62.84
PCA 85.00 65.00 44.00 22.00
EBGM 90.00 42.00 46.00 24.00
Bayesian 82.00 37.00 52.00 32.00
LGSPTop 3 86.54 91.84 74.73 69.73

(a) (b) (c)

Figure 10. Comparison of the recognition rate of LGSP and state-of-the-
art methods in the FERET database, with grid size 10 × 10, using (a) fb,
(b) dupI and (c) dupII as training data

evaluate the independence of training data in the results. Therefore using PCA we can
reduce the number of bins in the histogram and decrease the computational time.

5.5. Noise evaluation. To evaluate the robustness of the proposed method against
noise, we corrupted the probe face images, using FERET database, with white Gaussian
noise, and then try to identify them using the same process as described in Section 5.
We perform this experiment with different levels of noise, and the results are shown in
Figure 11. The robustness of LGSP, against noise, is notorious as it outperforms the
other methods for every level of noise in every data set. LDP and LBP have problems
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Figure 11. Recognition accuracy in the FERET database in presence of noise

Figure 12. (Top row) Sample images of a single subject of the Yale B
database under illumination variation, with the facial characteristics hidden
by the shadows, (bottom row) and the LGSP coded faces, in which the facial
features can be easily distinguished

overcoming the errors introduced by the noise. However, LGSP, due to its mask, has
a highest recognition rate. The tendency of the results of Section 5.3 appears in the
Figure 11 too. These results also show that the age variation is more challenging than
expression and illumination variation. Nevertheless, LGSP scheme produces better results
than other methods. Moreover, each LGSP scheme has different characteristics that can
be exploited in certain conditions.

5.6. Results on Yale B database. We use the Yale B [36] database to evaluate the
robustness of our method against illumination variation. The difficulty of this database
increases for the subsets four and five, due to the illumination angles that cover half of the
face with shadows. Nevertheless, our method is able to recover face features in the dark
areas, as it does not rely on intensity like LBP. Figure 12 shows some samples faces and
their respective LGSP coded face, and this demonstrates the capabilities of the method
to recover characteristics in extreme illumination conditions. As the figure shows, the
shadow in the face makes impossible to distinguish one eye and part of mouth. However,
in the LGSP coded face eyes and the mouth can readily be identified. Moreover, the
recognition accuracy in the subset four and five shows that our method outperforms the
other ten methods using different grid sizes, 10× 10 and 14× 14.
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(a) (b)

Figure 13. Comparison of the recognition rate of LGSP and state-of-the-
art methods in the Yale B database, with a grid size (a) 10 × 10 and (b)
14× 14

Table 2. Performance comparison on the Yale B database

Subset #2 (%) #3 (%) #4 (%) #5 (%)

LBP 100.00 100.00 86.4286 82.6316
LDP (Kirsch) 100.00 100.00 84.4286 90.00
MSR 100.00 91.67 65 77.37
LTV 100.00 100.00 98.57 100.00
SQI 99.17 96.67 80.71 84.74
Harmonic images 100.00 99.70 96.90 n/a
Cones-attached 100.00 100.00 91.40 n/a
Cones-cast 100.00 100.00 100.00 n/a
Linear subspace 100.00 100.00 85.00 n/a
Gradientfaces 100.00 100.00 93.57 94.2105
LGSPTop2 100.00 100.00 100.00 100.00

We evaluate our method against ten other methods. The comparison against simi-
lar methods, such as, LDP with different masks, LBP, and Gradientfaces, is shown in
Figure 13. Table 2 shows a more general evaluation against other methods, e.g., MSR,
SQR, LTV, Linear subspace [36], Cones-attached [36], Cones-cast [36], and Harmonic
images [37]. All methods are flawless in the first two data sets, which have minor illumi-
nation changes. However, for the last two sets the recognition rate of the other methods
decreases significantly. Specially, in the subset five, some methods are not capable of
recognizing the face in these conditions. Moreover, LGSP is more robust than the other
methods (at two different grid sizes), with all the different coding schemes (top two, three,
and four). However, the Cones-cast method needs complicated 3-D model; thus, it cannot
be applied in practical application. Moreover, the recognition rates on the subset five are
not given.

6. Conclusions. In this paper we introduced a novel encoding scheme, LGSP that takes
advantage of the structure of the face’s textures and that encodes them efficiently. LGSP
uses the directional information that is more stable against noise than intensity, to code
the different patterns from the face’s textures. Additionally, we introduced a derivative-
Gaussian compass mask to extract this directional information. This mask is more stable
against noise and illumination variation, which makes LGSP a reliable and stable coding
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scheme. The code scheme that we presented, inherently, uses the absolute values of the
neighborhoods and conveys the k maximum responses of the directions which allows it to
distinguish similar texture’s structures.
Furthermore, we evaluated LGSP under expression age and illumination variations, and

found that it is reliable and robust throughout all these conditions, unlike other methods.
For example, Gradientfaces had excellent results under illumination variation but failed
with expression and age variations. However, LGSP is more robust under challenging
illumination conditions. Also, LBP and LDP recognition rate deteriorates faster than
LGSP in presence of noise and illumination changes.
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