
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 3, March 2013 pp. 1357–1372

GROUP-BASED DIFFERENTIAL EVOLUTION FOR NUMERICAL
OPTIMIZATION PROBLEMS

Ming-Feng Han, Chin-Teng Lin, Jyh-Yeong Chang and Dong-Lin Li

Institute of Electrical Control Engineering
National Chiao Tung University

1001 University Road, Hsinchu 300, Taiwan
ming0901@gmail.com; { ctlin; jychang }@mail.nctu.edu.tw; lazybones000@yahoo.com.tw

Received January 2012; revised May 2012

Abstract. This paper proposes a group-based differential evolution (GDE) algorithm
for numerical optimization problems. The proposed GDE algorithm provides a new pro-
cess using two mutation strategies to effectively enhance the search for the globally optimal
solution. Initially, all individuals in the population are partitioned into an elite group
and an inferior group based on their fitness value. In the elite group, individuals with
a better fitness value employ the local mutation operation to search for better solutions
near the current best individual. The inferior group, which is composed of individuals
with worse fitness values, uses a global mutation operation to search for potential solu-
tions and to increase the diversity of the population. Subsequently, the GDE algorithm
employs crossover and selection operations to produce offspring for the next generation.
This paper also proposes two parameter-tuning strategies for the robustness of the GDE
algorithm in the evolution process. To validate the performance of the GDE algorithm,
13 well-known numerical benchmark functions were tested on low- and high-dimensional
problems. The simulation results indicate that our approach is efficient.
Keywords: Evolutionary algorithm (EA), Optimization, Differential evolution (DE),
Adaptive strategy

1. Introduction. Evolutionary algorithms (EAs) have become a popular optimization
tool for global optimization problems [1-7]. The optimization process of EAs usually
adopts stochastic search techniques that work with a set of individuals instead of a sin-
gle individual and use certain evolution operators to naturally produce offspring for the
next generation. These algorithms include genetic algorithms (GAs) [8], evolutionary pro-
gramming (EP) [9], evolution strategies (ESs) [10], particle swarm optimization (PSO)
[11] and differential evolution (DE) [12,13], which are well-known, effectual and classical
search techniques.

In recent years, the DE algorithm has sparked the interest of researchers [14-27]. The
DE algorithm, proposed by Storn and Price [12,13], is an efficient and effective global
optimizer in the continuous search domain. It has been shown to perform better than
genetic algorithms and particle swarm optimization with respect to several numerical
benchmarks [12,13,21,28]. The DE algorithm employs the difference between two ran-
domly selected individuals as the source of random variations for the mutation operation.
Subsequently, crossover and selection operations are used for generating offspring. Many
studies have applied the DE algorithm to difficult optimization problems and achieved
better solutions [12,13]. However, a stagnation problem has been identified, in which
the DE algorithm occasionally stops proceeding toward the global optimum [16,17]. The
reason for the stagnation problem is the limitation of the mutation operation model. In
the DE algorithm, the mutation operation model always favors the exploration ability

1357

1358 M.-F. HAN, C.-T. LIN, J.-Y. CHANG AND D.-L. LI

or the exploitation ability, which easily results in a blind search over individual space
or insufficient diversity in a population. To handle this problem, researchers have com-
bined different learning methods to solve the stagnation problem. Rahnamayan et al.
[25] combined an opposition-based learning method and the DE algorithm, calling the
method opposition-based differential evolution (ODE). The ODE employs opposition-
based optimization to choose the best solutions by simultaneously checking the fitness of
the opposite solution in the current population. The ODE successfully increases the di-
versity of a population. A combination of one-step k-Means clustering and a multi-parent
crossover operation in the DE algorithm was proposed by Cai et al. [14]. Their method
enhances the performance of the DE algorithm and balances its exploration ability and its
exploitation ability in the evolutionary process. Noman and Iba [22] proposed an adap-
tive local search (ALS) algorithm to increase the exploitation ability in the DE algorithm.
The ALS algorithm uses a simple hill-climbing algorithm to adaptively determine the
search length and effectively explore the neighborhood of each individual. Ali and Pant
[18] applied a Cauchy mutation to improve the performance of the DE algorithm. The
Cauchy mutation, which uses a Cauchy distribution, randomly forces solutions to move
to another position. This method efficiently increases the probability of finding potential
solutions in the DE algorithm. A combination of the fuzzy adaptive PSO algorithm and
the DE algorithm, called the FAPSO-DE model, has been proposed, recently. They use
two evolution processes to balance the exploration ability and the exploitation ability for
economic dispatch problems.
Unlike the studies mentioned above, this paper proposes a new idea to solve the stag-

nation problem. This idea employs the inherent properties of the DE algorithm with-
out depending on other learning algorithms. The idea combines two classical mutation
strategies instead of a single mutation model. The DE/rand/bin approach has a powerful
exploitation ability, and the DE/best/bin approach has an efficient exploration ability.
This paper combines the two operations to tradeoff between the exploration ability and
the exploitation ability in solving the stagnation problem.
In this paper, a group-based differential evolution (GDE) algorithm is proposed for

numerical optimization problems. The GDE algorithm provides a new process using
the DE/rand model and the DE/best model in the mutation operation. Initially, all
individuals in a population are grouped into Group A (inferior group) and Group B (elite
group) based on their fitness value. The Group A uses the DE/rand mutation model to
globally search for potential solutions and maintain the diversity of the population. The
Group B uses the DE/best mutation model to efficiently search the neighborhood of the
current best solution. Subsequently, crossover and selection operations are employed for
the next generation. Two adaptive strategies for automatically tuning parameters are
also proposed in this paper. The contributions of this paper are summarized as follows.

(1) The proposed GDE algorithm employs the inherent properties of the DE algorithm
to solve the stagnation problem. The GDE algorithm combines the two mutation
operations to tradeoff between the exploration ability and the exploitation ability.

(2) Two adaptive strategies for automatically tuning parameters are proposed for auto-
matically tuning parameters without the user’s prior knowledge. An adaptive de-
creasing weight factor method is used for the Group A. Another strategy employs a
self-adjusting method based on updating the success probability for the Group B.

(3) Thirteen well-known numerical benchmark functions are tested to validate the per-
formance of the proposed GDE algorithm. The GDE algorithm shows significantly
better performance than other EAs in statistical tests.

GROUP-BASED DIFFERENTIAL EVOLUTION 1359

The remainder of the paper is organized as follows. Section 2 describes the basic pro-
cedure of differential evolution. The flow chart of GDE and adaptive parameter control
strategy are elaborated in Section 3. Simulation results are presented in Section 4 to
compare GDE with other evolutionary algorithms. Finally, concluding remarks are sum-
marized in Section 5.

2. Differential Evolution. This section introduces a complete DE algorithm. The pro-
cess of the DE algorithm, like other EAs, produces offspring for the next generation by
the mutation operation, the crossover operation and the selection operation. Figure 1(a)
shows a standard flow chart of the DE algorithm.

Initially, a population of NP D-dimensional parameter vectors that represent the can-
didate solutions (individuals) is generated by a uniformly random process. All individuals
and the search spaceare constrained by the prescribed minimumXmin = (x1,min, x2,min, . . . ,
xD,min) and maximum Xmax = (x1,max, x2,max, . . . , xD,max) parameter bounds. The follow-
ing is a simple representation of the i-th individual in the current generation Gen:

Xi,Gen = (xi,1,Gen, xi,2,Gen, xi,3,Gen, . . . , xi,D−1,Gen, xi,D,Gen). (1)

After the initial population with NP individuals, the fitness evaluation process measures
the quality of individuals to calculate the performance. The succeeding steps include
the mutation operation, the crossover operation and the selection operation, which are
explained in the following.
Mutation Operation

Each individual in the current generation is allowed to breed by mating with other
randomly selected individuals from the population. This process randomly selects a parent
pool of three individuals to produce an offspring. Specifically, for each individual Xi,gen,
i = 1, 2, . . . , NP , where gen denotes the current generation and NP is population size,
three random individuals, Xr1,gen, Xr2,gen and Xr3,gen, are selected from the population
such that r1, r2 and r3 ∈ {1, 2, . . . , NP} and i 6= r1 6= r2 6= r3. This way, a parent pool
of four individuals is formed to produce an offspring. The following are different mutation
strategies frequently used in the literature:

DE/rand/bin: Vi,gen = Xr1,gen + F (Xr2,gen −Xr3,gen) (2)

DE/best/bin: Vi,gen = Xgbest,gen + F (Xr2,gen −Xr3,gen) (3)

DE/target-to-best/bin: Vi,gen = Xr1,gen + F (Xgbest,gen −Xr1,gen) + F (Xr2,gen −Xr3,gen)
(4)

where F is a scaling factor ∈ [0, 1] and Xgbest,gen is the best-so-far individual.
Crossover Operation

After the mutation operation, the DE algorithm uses a crossover operation, often re-
ferred to as discrete recombination, in which the mutated individual Vi,gen is mated with
Xi,gen and generates the offspring Ui,gen. The elements of an individual Ui,gen are inher-
ited from Xi,gen and Vi,gen, which are determined by a parameter called the crossover
probability (CR ∈ [0, 1]), as follows:

Ui,d,gen =

{
Vi,d,gen, if rand(d) ≤ CR
Xi,d,gen, if rand(d) > CR

(5)

where d = 1, 2, . . . , D denotes the dth element of individual vectors, D is the total number
of elements in an individual vector and rand(d) ∈ [0, 1] is the dth evaluation of a random-
number generator.
Selection Operation

1360 M.-F. HAN, C.-T. LIN, J.-Y. CHANG AND D.-L. LI

The DE algorithm applies a selection operation to determine whether the individual
survives to the next generation. A knockout competition is played between each indi-
vidual Xi,gen and its offspring Ui,gen, and the winner is selected deterministically based
on objective function values and is then promoted to the next generation. The selection
operation is described as

Xi,gen+1 =

{
Xi,gen, if fitness(Xi,gen) < fitness(Ui,gen)
Ui,gen, otherwise

(6)

where f(z) is the fitness value of individual z. After the selection operation, the population
obtains a better fitness value or retains the same fitness value but never deteriorates.

3. Group-Based Differential Evolution. This section describes a complete GDE lea-
rning process. This learning process groups the population into an elite group and an
inferior group. The groups perform different tasks based on mutation operations to pro-
duce offspring for the next generation. Two adaptive parameter tuning strategies are also
proposed in the GDE algorithm.

3.1. The GDE algorithm. In the DE algorithm, the mutation operation, which leads
to successful evolution performance, is a principal operator. In this paper, we propose a
GDE algorithm with an exploration ability and an exploitation ability, thus combining
two mutation strategies to solve practical problems. A flow chart of the GDE algorithm
is shown in Figure 1(b).
In the first step of the GDE algorithm, a population of NP D-dimensional individuals is

generated by a uniformly random process and evaluated with respect to the fitness value
of all individuals. A sorting process arranges all individuals based on their fitness value
as follows for minimum-objective problems: fitness1 < fitness2 < . . . < fitnessNP−1 <
fitnessNP . According to fitness value, all individuals are partitioned into an inferior group
and an elite group, called Group A and Group B, respectively. Group A, with includes
the NP/2 worst individuals, performs a global search to increase the diversity of the
population and find a wide range of potential solutions. The other NP/2 individuals in
the Group B perform a local search to actively detect better solutions near the current
best solution. The following represents a complete mutation operation for the Group A
and the Group B.

Group A: Vi,gen = Xi,gen + Fa(Xr1,gen −Xr2,gen) (7)

Group B: Vi,gen = Xgbest,gen + Fb(Xr3,gen −Xr4,gen) (8)

where Fa and Fb are scaling factors; Xr1,gen, Xr2,gen, Xr3,gen and Xr4,gen are randomly
selected from the population; i 6= r1 6= r2 6= r3 6= r4; and the Xgbest,gen is the best-so-far
individual in the population. Next, we perform the crossover operation and the selection
operation to produce offspring. All steps are repeated until the terminal condition is
reached.

3.2. Adaptive parameter tuning strategy. Parameter control which can directly in-
fluence the convergence speed and search capability of an algorithm, is an important task
in EAs [19-21,23,24,27,30-33]. In this section, we employ two adaptive approaches to
control the parameters F and CR for the Group A (inferior) and the Group B (elite).
The task of Group A is to globally search for potential offspring and increase the di-

versity of the population. A general strategy for parameter F often adopts a decreasing
weight factor method [15,16] due to stable convergence. F , which depends on the gener-
ation, decreases linearly. In this paper, we propose an adaptive decreasing weight factor

GROUP-BASED DIFFERENTIAL EVOLUTION 1361

(a) (b)

Figure 1. The flow chart of algorithms: (a) DE; (b) GDE. GEN is the
generation counter.

method to control the parameter in Group A. Fa depends on the generation to decrease
weight with flexibility as follows.

Fa = N

(
1− Gen

Genmax

, 0.1

)
, for every Gp, (9)

where Gen is the current generation number, Genmax is the maximum generation number,
Gp is the pre-specified period of generation and N(M , STD) is a normal distribution with
meanM and standard deviation STD. In this paper, Gp is set to 20, and Fa is constrained
between 0.1 and 1.

Unlike the task of Group A, the task of Group B, which features a stronger exploitation
ability, is to find beneficial solutions near the current optimal solution. This characteristic
always leads all individuals to a local minimum solution and stops at a certain point.

To handle this problem, an adaptive parameter-tuning strategy was proposed for Fb

in Group B. This strategy provides a process to automatically adjust Fb based on global
solution (Xgbest,gen) updating success probability (GSP). If the GSP is greater than a pre-
specified threshold (ThGSP), Fb increases to prevent premature convergence; otherwise,
the algorithm allows more individuals to move toward the Xgbest,gen position. This idea

1362 M.-F. HAN, C.-T. LIN, J.-Y. CHANG AND D.-L. LI

Table 1. Benchmark functions. D is the dimension of the function.

Test Functions D Search Range

f1 =
D∑
i=1

(xi)
2 30

and
[−100, 100]D

f2 =
D∑
i=1

|xi|+
D∏
i=1

|xi|
100

[−10, 10]D

f3 =
D∑
i=1

(
i∑

j=1

xi

)2

[−100, 100]D

f4 = max
i

|xi| [−100, 100]D

f5 =
D∑
i=1

(xi + 0.5)2 [−100, 100]D

f6 =
D∑
i=1

ix4
i + rand [0, 1) [−1.28, 1.28]D

f7 =
D∑
i=1

[100(xi+1 − x2
i) + (xi − 1)2] [−30, 30]D

f8 =
D∑
i=1

−xi sin
√
|xi|+D · 418.98288727243369 [−500, 500]D

f9 =
D∑
i=1

[xi − 10 cos(2πxi) + 10] [−5.12, 5.12]D

f10 = −20 exp

(
−0.2

√
1
D

D∑
i=1

x2
i

)
−exp

(
1
D

D∑
i=1

cos(2πxi)

)
+20+e [−32, 32]D

f11 =
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600]D

f12 =
π
D

{
10 sin2(πy1) +

D−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)]

+(yD − 1)2
}
+

D∑
i=1

u(xi, 10, 100, 4)

where

yi = 1 + 1
4
(xi + 1)

and u(xi, a, k,m) =

k(xi − a)m, if xi > a

k(−xi − a)m, if xi < −a

0, otherwise

[−50, 50]D

f13 =
1
10

{
sin2(3πx1) +

D−1∑
i=1

(xi − 1)2
[
1 + sin2(3πxi+1)

]
+(xD − 1)2[1 + sin2(2πxD)]

}
+

D∑
i=1

u(xi, 10, 100, 4)

where

u(xi, a, k,m) =

k(xi − a)m, if xi > a

k(−xi − a)m, if xi < −a

0, otherwise

[−50, 50]D

GROUP-BASED DIFFERENTIAL EVOLUTION 1363

Table 2. Experimental results of GDE, DE/rand/bin, DE/best/bin and
DE/target-to-best/bin algorithms for low-dimensional problems (D = 30)

Function Gen.

GDE DE/rand/bin DE/best/bin
DE/target-to
-best/bin

Mean
(Best, Worst)

f1 1500

1.83E–42
(9.61E–59,
9.15E–41)

2.53E–13
(5.37E–14,
1.16E–12)

4.51E–14
(2.30E–15,
1.56E–13)

4.84E–16
(7.17E–17,
1.76E–15)

f2 2000

4.02E–30
(3.86E–41,
1.37E–28)

2.93E–09
(5.42E–10,
8.45E–09)

7.82E–11
(1.75E–11,
3.00E–10)

2.11E–11
(3.84E–12,
6.81E–11)

f3 5000

1.13E–25
(9.22E–38,
5.53E–24)

3.78E–10
(3.72E–11,
1.93E–09)

3.77E–11
(3.43E–13,
7.58E–10)

3.18E–14
(1.96E–16,
1.60E–13)

f4 5000

6.67E–11
(2.43E–14,
2.59E–09)

2.17 E–02
(4.15E–13,
5.25E–01)

1.93E–09
(2.48E–11,
1.95E–08)

8.34E–11
(4.04E–14,
6.83E–10)

f5 1500

0.0E+00
(0.0E+00,
0.0E+00)

2.98E–13
(6.03E–14,
8.50E–13)

3.97E–14
(4.03E–15,
1.82E–13)

5.55E–16
(3.87E–17,
5.20E–15)

f6 3000

2.08E–03
(6.02E–04,
9.43E–03)

1.74E–01
(3.60E–03,
7.77E–01)

7.12E–03
(3.00E–03,
1.23E–02)

5.79E–03
(2.16E–03,
1.14E–02)

f7 3000

3.73E–07
(1.27E–19,
1.12E–05)

1.17E+00
(1.67E–05,
3.06E+00)

7.97E–01
(1.83E–11,
3.98E+00)

5.58E–01
(1.04E–13,
3.98E+00)

f8 1500

2.52E+00
(1.18E+02,
8.58E–04)

6.80E+03
(4.71E+03,
7.27E+03)

2.94E+03
(1.78E+03,
4.88E+03)

3.12E+03
(9.49E+02,
6.89E+03)

f9 1500

5.68E–13
(0.0E+00,
6.86 E–12)

7.62E+01
(7.88E+00,
1.67 E+02)

4.55E+01
(2.28E+01,
7.36E+01)

1.71E+02
(1.33E+02,
2.13E+02)

f10 1500

9.69E–15
(7.99E–15,
3.28E–14)

1.68E–07
(7.25E–08,
3.31E–07)

5.59E–08
(2.08E–08,
2.16E–07)

6.64E–09
(2.47E–09,
1.67E–08)

f11 1500

0.0E+00
(0.0E+00,
0.0E+00)

1.08E–12
(5.87E–14,
1.38E–11)

8.31E–03
(6.32E–15,
5.65E–02)

5.86E–03
(0.0E+00,
2.21E–02)

f12 1500

1.50E–32
(1.34E–32,
4.06E–32)

3.81E–14
(1.66E–15,
2.84E–13)

1.03E–01
(8.03E–16,
2.06E+00)

2.69E–02
(3.60E–18,
5.19E–01)

f13 1500

1.70E–32
(1.57E–32,
6.8E–32)

3.17E–13
(2.82E–14,
1.76E–12)

2.63E–03
(2.49E–15,
1.09E–02)

1.08E–08
(2.86E–17,
5.41E–07)

1364 M.-F. HAN, C.-T. LIN, J.-Y. CHANG AND D.-L. LI

is fully captured by the following equations.

Fb = Fb − [(rand · (ThGSP −GSP)], (10)

GSP =
Xgbest,gen Updating Time

Size of Group B
, (11)

where rand is a random number between 0 and 1. The average GSP was computed
to adjust the Fb at every period Gp. In this study, ThGSP was set to 0.2 and Fb was
constrained between 0.1 and 1.

4. Simulation Results. To verify the performance of the proposed algorithm, a set of
13 classical benchmark test functions [9,35,36] is used in this simulation. The analytical
forms of these functions are shown in Table 1, where D denotes the dimensionality of the
problem. Based on their properties, the functions can be divided into two problems: a
unimodal function problem and a multimodal function problem. All of these functions
have an optimal value at zero.
The GDE algorithm is compared with three classical DE algorithms, including the

DE/rand/bin, the DE/best/bin and the DE/target-to-best/bin algorithms. In all simu-
lations, we set the parameters of the GDE algorithm to be fixed, initial Fa = initial Fb

= 0.9, initial CRa = initial CRb = 0.5. The parameters settings for three classical DE
algorithms are recommended as follows. DE/rand/bin: F = 0.5 and CR = 0.9 [13,20,30];
DE/best/bin: F = 0.8 and CR = 0.9 [16]; DE/target-to-best/bin: F = 0.8 and CR = 0.9
[18].
Many researchers have used the same parameter setting to solve their problems. In this

simulation, we set the population size NP to be 100 and 400 for D = 30 and D = 100,
respectively. All results reported in this section are obtained based on 50 independent
runs.

4.1. Results for low-dimensional problems. In this simulation, the GDE, DE/rand/
bin, DE/best/bin and DE/target-to-best/bin algorithms were applied to low-dimensional
problems with respect to 13 benchmark test functions. Table 2 shows the detailed
performance of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin algo-
rithms, including the mean, best and worst performances over 50 independent runs. This
table indicates that the GDE algorithm clearly exhibits better performance than the
DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms with respect to 13
benchmark test functions. In particular, the GDE algorithm searched the global optimal
solution at zero on Function 5 and Function 11.
The learning curves of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/

bin algorithms with respect to the 13 test functions for low-dimensional (D = 30) prob-
lems are shown in Figure 2. This figure shows that the GDE algorithm exhibits speedier
convergence than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms
with respect to the 13 benchmark test functions. An interesting case is shown in Figure
3(h) and Figure 3(i). The DE/rand/bin, DE/best/bin and DE/target-to-best/bin algo-
rithms were stopped at locally optimal solutions on Function 9 and Function 10. The
GDE algorithm maintained continued convergence to find the optimal solutions. It is
shown that the proposed GDE algorithm successfully overcomes the stagnation problem
for low-dimensional problems.

4.2. Results for high-dimensional problems. To verify the ability of the proposed
algorithm to address high-dimensional problems, the GDE, DE/rand/bin, DE/best/bin
and DE/target-to-best/bin algorithms were applied to the 13 benchmark test functions.
Table 3 shows the detailed performance of the GDE, DE/rand/bin, DE/best/bin and

GROUP-BASED DIFFERENTIAL EVOLUTION 1365

Figure 2. The best learning curves of GDE, DE/rand, DE/best and
DE/target-to-best with respect to the 13 benchmark test functions for low-
dimensional problems. (a) Function 1; (b) Function 2; (c) Function 3; (d)
Function 4; (e) Function 5; (f) Function 6; (g) Function 7; (h) Function
8; (i) Function 9; (j) Function 10; (k) Function 11; (l) Function 12; (m)
Function 13.

1366 M.-F. HAN, C.-T. LIN, J.-Y. CHANG AND D.-L. LI

Figure 3. The best learning curves of GDE, DE/rand, DE/best and
DE/target-to-best with respect to the 13 benchmark test functions for high-
dimensional problems. (a) Function 1; (b) Function 2; (c) Function 3; (d)
Function 4; (e) Function 5; (f) Function 6; (g) Function 7; (h) Function
8; (i) Function 9; (j) Function 10; (k) Function 11; (l) Function 12; (m)
Function 13.

GROUP-BASED DIFFERENTIAL EVOLUTION 1367

Table 3. Experimental results of GDE, DE/rand/bin, DE/best/bin and
DE/target-to-best/bin algorithms for high-dimensional problems (D = 100)

Function Gen.

GDE DE/rand/bin DE/best/bin
DE/target-to
-best/bin

Mean
(Best, Worst)

f1 2000

4.95E–21
(8.68E–28,
9.07E–20)

3.71E+01
(2.14E+01,
5.22E+01)

5.25E+00
(2.31E+00,
1.11E+01)

1.13E+00
(5.33E–01,
2.60E+00)

f2 3000

9.81E–23
(1.60E–28,
3.66E–21)

2.46E+00
(1.58E+00,
3.82E+00)

1.41E–01
(7.18E–02,
2.29E–01)

7.27E–02
(2.87E–02,
1.41E–01)

f3 8000

2.74E–10
(7.24E–12,
4.08E–09)

2.23E+05
(1.47E+05,
3.13E+05)

4.91E+04
(2.97E+04,
7.34E+04)

3.04E+04
(1.39E+04,
4.65E+04)

f4 15000

1.23E–02
(1.00E–02,
1.55E–23)

9.19E+01
(5.68E+01,
9.54E+01)

1.08E+01
(5.86E+00,
15.9E+00)

2.40E+00
(1.19E+00,
4.25E+00)

f5 1500

5.27E–22
(1.31E–23,
5.44E–21)

3.70E+02
(2.03E+02,
5.19E+02)

6.93E+01
(4.00E+01,
1.06E+02)

2.08E+01
(1.32E+01,
3.23E+01)

f6 6000

6.15E–03
(4.40E–03,
8.26E–03)

2.98E–02
(2.21E–02,
3.49E–02)

7.27E–02
(4.67E–02,
1.10E–01)

4.24E–02
(2.66E–02,
610E–02)

f7 6000

6.70 E+00
(1.71E–06,
3.72E+01)

9.11E+01
(9.05E+01,
9.23E+01)

1.52E+02
(8.40E+01,
2.99E+02)

1.06E+02
(7.69E+01,
1.49E+02)

f8 1000

2.66E+03
(9.82E+02,
3.79E+03)

3.14E+04
(2.94E+04,
3.24E+04)

1.36E+04
(1.05E+04,
1.81E+04)

2.86E+04
(2.03E+04,
3.17E+04)

f9 9000

0.0E+00
(0.0E+00,
0.0E+00)

8.08E+02
(7.53E+02,
8.47E+02)

1.74E+02
(1.26E+02,
2.42E+02)

4.20E+02
(7.3E+01,
7.99E+02)

f10 3000

4.41E–13
(3.45E–13,
5.65E–13)

1.54E–01
(9.20E–02,
2.09E–01)

2.68E–01
(2.08E–02,
1.32E+00)

9.45E–03
(5.51E–03,
1.30E–02)

f11 3000

0.0E+00
(0.0E+00,
0.0E+00)

2.48E–01
(1.47E–01,
3.71E–01)

1.72E–02
(7.14E–03,
3.53E–02)

2.32E–03
(5.98E–04,
1.44 E–02)

f12 3000

2.43E–24
(1.80E–28,
2.54E–23)

2.35E+00
(3.11E–01,
1.05E+01)

2.81E+00
(6.42E–01,
6.66E+00)

2.47E–01
(6.86E–04,
1.34E+00)

f13 3000

7.65E–25
(3.38E–28,
4.18E–24)

8.82E+00
(2.32E+00,
2.47E+01)

7.49E+00
(5.72E–01,
3.58E+01)

1.91E–01
(4.17E–03,
3.84E+00)

1368 M.-F. HAN, C.-T. LIN, J.-Y. CHANG AND D.-L. LI

DE/target-to-best/bin algorithms, including the mean, best and worst performances over
50 independent runs. Clearly, it is difficult to find optimal solutions using these algorithms
because of the high dimensionality of the problem. According to Table 3, the GDE algo-
rithm showed better performance than the DE/rand/bin, DE/best/bin and DE/target-
to-best/bin algorithms with respect to the 13 benchmark test functions. Note that the
GDE algorithm efficiently searches for a global optimal solution at zero for Function 9
and Function 11.
The learning curve of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin

algorithms with respect to the 13 benchmark test functions for high-dimensional (D =
100) problems is shown in Figure 3. In this figure, the GDE algorithm also presents
speedier convergent curves than other algorithms for high-dimensional functions. The
stagnation situation also occurs when the DE/rand/bin, DE/best/bin and DE/target-
to-best/bin algorithms are executed, as shown in Figure 3(b), Figure 3(c), Figure 3(e),
Figure 3(g) and Figure 3(i). The GDE algorithm continuously maintained a convergent
curve on Function 2, Function 3, Function 5, Function 7 and Function 9. In this paper, the
simulation results show that the proposed GDE algorithm clearly achieves better perfor-
mance and successfully overcomes the stagnation situation for low- and high-dimensional
problems.

4.3. Statistical comparison. To understand the significant difference between the GDE
and other algorithms over multiple test functions, we performed a statistical procedure
based on the Friedman test. [40,41] with the corresponding post-hoc tests. We set the
GDE algorithm as the control algorithm to compare with other algorithms. The perfor-
mance of the algorithm is significantly different if the corresponding average ranks differ
by at least the critical difference (CD)

CD = q0.05

√
j(j + 1)

6T
, (12)

where j is the number of algorithms, T is the number of test functions, and the critical
value q0.05 = 2.569 can be found in [41].
Table 4 presents the complete results of the Friedman test. In this simulation, j = 4,

T = 13 and CD = 0.13. All differences were greater than the critical difference, which
means that the GDE algorithm is significantly better than the DE/rand/bin, DE/best/bin
and DE/target-to-best/bin algorithms in this case.

4.4. Comparison with other algorithms. Further results regarding the comparison of
the GDE algorithm with other evolutionary algorithms is presented in this section. These
algorithms include jDE [30], SaDE [24], ALEP [37], BestLevy [37], NSDE [38] and RTEP
[39]. Table 5 shows the comparative results with respect to 30-dimensional problems. In

Table 4. Results of the Friedman test for statistical comparison

D = 30
Algorithm Difference in Rank Critical Difference (CD)

DE/rand/bin (3.54− 1) = 2.54

1.30DE/best/bin (3.15− 1) = 2.15
DE/target-to-best/bin (2.31− 1) = 1.31

D = 100
DE/rand/bin (3.69− 1) = 2.69

1.30DE/best/bin (3.07− 1) = 2.07
DE/target-to-best/bin (2.23− 1) = 1.23

GROUP-BASED DIFFERENTIAL EVOLUTION 1369

Table 5. Comparison with other evolutionary algorithms (D = 30), in-
cluding GDE, jDE [30], SaDE [24], ALEP [37], BestLevy [37], NSDE [38]
and RTEP [39]

Function
GDE

jDE SaDE ALEP BestLevy NSDE RTEP
[30] [24] [37] [37] [38] [39]

Mean
f1 1.83E–42 1.10E–28 4.50E–20 6.32E–04 6.59E–04 7.10E–17 7.50E–18
f2 4.02E–30 1.50E–23 1.90E–14 – – – –
f3 1.13E–25 9.00E–02 – 4.18E–02 3.06E+01 7.90E–16 2.40E–15
f4 6.67E–11 1.40E–15 7.40E–11 – – – –
f5 0.0E+00 0.00E+00 0.00E+00 – – – –
f6 2.08E–03 3.30E–03 4.80E–03 – – – –
f7 3.73E–07 3.10E–15 – 4.34E+01 5.77E+01 5.90E–28 1.10E+00
f8 2.52E+00 – – 1.10E+03 6.70E+02 – 2.90E–07
f9 5.68E–13 1.50E–15 – 5.85E+00 1.30E+01 – 2.50E–14
f10 9.69E–15 7.70E–15 – 1.90E–02 3.10E–02 1.69E–09 2.00E–10
f11 0.0E+00 0.00E+00 – 2.4E–02 1.80E–02 5.80E–16 2.70E–25
f12 1.50E–32 6.60E–30 6.10E–05 6.00E–06 3.00E–05 5.40E–16 3.20E–13
f13 1.70E–32 5.00E–29 1.70E–19 9.80E–05 2.60E–04 6.40E–17 7.10E–08

Table 6. Simulation results of the GDE with various initial F and CR values

Function

GDE
F = 0.1 F = 0.1 F = 0.5 F = 0.5 F = 0.9 F = 0.9
CR = 0.1 CR = 0.5 CR = 0.5 CR = 0.9 CR = 0.5 CR = 0.9

f1 4.38E–43 7.12E–43 5.21E–42 2.53E–42 1.83E–42 2.13E–42
f3 1.01E–25 1.33E–25 3.83E–25 1.77E–25 1.13E–25 1.40E–25
f5 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
f7 1.24E–05 2.95E–05 7.15E–07 2.11E–08 3.73E–07 5.51E–07
f9 8.69E–10 8.69E–10 6.90E–13 5.91E–13 5.68E–13 5.95E–13
f11 7.79E–54 1.61E–54 0.0E+00 0.0E+00 0.0E+00 0.0E+00
f13 3.90E–29 1.27E–29 3.45E–32 3.21E–32 1.70E–32 2.53E–32

unimodal function problems, the GDE algorithm showed the best results for five of six
functions. In multimodal function problems, the GDE algorithm showed the best results
for three of seven functions and provided a result near the best solution for Function 10.
The overall results show that the GDE algorithm is a more effective algorithm than other
competitive algorithms.

4.5. The sensitivity of initial F and CR. To understand the sensitivity of parame-
ters, this paper presents the results of further simulations with various initial Fa, Fb, CRa

and CRb values. The proposed GDE algorithm was applied to low-dimensional problems.
In this simulation, the population size and the maximum generation were set to100 and
1500. For the redundancy of parameters, we set F = Fa = Fb and CR = CRa = CRb.
All results reported in this section are obtained based on 50 independent runs for vari-
ous initial F and CR values. Table 6 presents the results of the GDE algorithm based
on various initial F and CR values. The results show that the overall performance is
not significantly different when the GDE algorithm uses various initial F and CR values.
Therefore, the proposed GDE algorithm offers an advantage that is robust with respect
to the initial F and CR values.

1370 M.-F. HAN, C.-T. LIN, J.-Y. CHANG AND D.-L. LI

5. Conclusions. This paper has proposed a GDE algorithm for numerical optimization
problems. The GDE algorithm is a generalized DE model that combines exploitation
ability and exploration ability. In addition, two adaptive parameter-tuning strategies
are used to adjust the scaling factors F and CR in the GDE algorithm. The simulation
results demonstrate that the proposed GDE algorithm successfully handles the stagnation
problem and effectively searches for the global optimal solution in benchmark function
optimization problems. The statistical test reveals the significant differences between the
GDE algorithm and other EAs.
Two advanced topics regarding the proposed GDE algorithm should be addressed in

future research. First, the GDE algorithm may adopt other further evolutionary learning
strategies to improve its performance. For example, a symbiotic learning method has been
to used to enhance the performance of the PSO algorithm. The basic idea of symbiotic
learning methods is that an individual is composed of multiple elements, which are ran-
domly selected from a subpopulation. Every subpopulation performs an evolution process
to produce new elements. This method increases the possibility of finding potential solu-
tions. Second, in addition to the simulations performed in this paper, the proposed model
can be applied to solve neuro-fuzzy system optimization problems.

Acknowledgment. This work was supported in part by the Aiming for the Top Univer-
sity Plan of National Chiao Tung University, the Ministry of Education, Taiwan, under
Contract 100W9633 and 101W963. This work was also supported in part by the UST-
UCSD International Center of Excellence in Advanced Bioengineering sponsored by the
Taiwan National Science Council I-RiCE Program under Grant Number: NSC-100-2911-
I-009-101 and NSC-101-2911-I-009-101.

REFERENCES

[1] C. A. C. Carlos, Theoretical and numerical constraint-handling techniques used with evolutionary al-
gorithms: A survey of the state of the art, Computer Methods in Applied Mechanics and Engineering,
vol.191, pp.1245-1287, 2002.

[2] P. Fei, T. Ke, C. Guoliang and Y. Xin, Population-based algorithm portfolios for numerical opti-
mization, IEEE Transactions on Evolutionary Computation, vol.14, pp.782-800, 2010.

[3] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE
Press, New York, 1995.

[4] D.-W. Gong, N.-N. Qin and X.-Y. Sun, Evolutionary algorithms for optimization problems with
uncertainties and hybrid indices, Information Sciences, vol.181, pp.4124-4138, 2011.

[5] M.-F. Han, L.-D. Liao, Y.-H. Liu, W.-R. Wang, C.-T. Lin and B.-S. Lin, Performance optimized of
the novel dry EEG electrodes by using the non-dominated sorting genetic algorithms (NSGA-II),
TENCON 2010-2010 IEEE Region 10 Conference, pp.1710-1715, 2010.

[6] M. N. Omidvar, X. Li, Z. Yang and Y. Xin, Cooperative co-evolution for large scale optimization
through more frequent random grouping, IEEE Congress on Evolutionary Computation, pp.1-8,
2010.

[7] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan and Q. Zhang, Multiobjective evolutionary
algorithms: A survey of the state of the art, Swarm and Evolutionary Computation, vol.1, pp.32-49,
2011.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Univ. Michigan, 1975.
[9] X. Yao, Y. Liu and G. Lin, Evolutionary programming made faster, IEEE Transactions on Evolu-

tionary Computation, vol.3, pp.82-102, 1999.
[10] T. T. Bäck and H.-P. Schwefel, Evolution strategies: A comprehensive introduction, Natural Com-

puting, pp.3-52, 2002.
[11] J. Kennedy and R. Eberhart, Particle swarm optimization, The IEEE Int. Neural Netw., 1995.
[12] K. Price, R. Storn and J. Lampinen, Differential Evolution: A Practical Approach to Global Opti-

mization, Springer-Verlag, Berlin, 2005.
[13] R. Storn and K. Price, Differential evolution – A simple and efficient heuristic for global optimization

over continuous spaces, Journal of Global Optimization, vol.11, pp.341-359, 1997.

GROUP-BASED DIFFERENTIAL EVOLUTION 1371

[14] Z. Cai, W. Gong, C. X. Ling and H. Zhang, A clustering-based differential evolution for global
optimization, Applied Soft Computing, vol.11, pp.1363-1379, 2011.

[15] C.-H. Chen, C.-J. Lin and C.-T. Lin, Nonlinear system control using adaptive neural fuzzy networks
based on a modified differential evolution, IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, vol.39, pp.459-473, 2009.

[16] S. Das, A. Abraham, U. K. Chakraborty and A. Konar, Differential evolution using a neighborhood-
based mutation operator, IEEE Transactions on Evolutionary Computation, vol.13, pp.526-553,
2009.

[17] S. Das and P. N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE Transac-
tions on Evolutionary Computation, vol.15, pp.4-31, 2011.

[18] M. Ali and M. Pant, Improving the performance of differential evolution algorithm using Cauchy
mutation, Soft Computing, vol.15, pp.991-1007, 2011.

[19] J. Zhang and A. C. Sanderson, JADE: Self-adaptive differential evolution with fast and reliable
convergence performance, IEEE Congress on Evolutionary Computation, pp.2251-2258, 2007.

[20] J. Zhang and A. C. Sanderson, JADE: Adaptive differential evolution with optional external archive,
IEEE Transactions on Evolutionary Computation, vol.13, pp.945-958, 2009.

[21] E. Mezura-Montes, M. E. Miranda-Varela and R. del Carmen Gmez-Ramn, Differential evolution
in constrained numerical optimization: An empirical study, Information Sciences, vol.180, pp.4223-
4262, 2010.

[22] N. Noman and H. Iba, Accelerating differential evolution using an adaptive local search, IEEE
Transactions on Evolutionary Computation, vol.12, pp.107-125, 2008.

[23] A. K. Qin, V. L. Huang and P. N. Suganthan, Differential evolution algorithm with strategy adap-
tation for global numerical optimization, IEEE Transactions on Evolutionary Computation, vol.13,
pp.398-417, 2009.

[24] A. K. Qin and P. N. Suganthan, Self-adaptive differential evolution algorithm for numerical opti-
mization, The 2005 IEEE Congress on Evolutionary Computation, vol.2, pp.1785-1791, 2005.

[25] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, Opposition-based differential evolution,
IEEE Transactions on Evolutionary Computation, vol.12, pp.64-79, 2008.

[26] M.-T. Su, C.-H. Chen, C.-J. Lin and C.-T. Lin, A rule-based symbiotic modified differential evolution
for self-organizing neuro-fuzzy systems, Applied Soft Computing, vol.11, pp.4847-4858, 2011.

[27] W. Gong, Z. Cai, C. X. Ling and L. Hui, Enhanced differential evolution with adaptive strategies for
numerical optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol.41, pp.397-413, 2011.

[28] J. Vesterstrom and R. Thomsen, A comparative study of differential evolution, particle swarm opti-
mization, and evolutionary algorithms on numerical benchmark problems, Congress on Evolutionary
Computation, vol.2, pp.1980-1987, 2004.

[29] C. T. Lin, M. F. Han, Y. Y. Lin, J. Y. Chang and L. W. Ko, Differential evolution based optimiza-
tion of locally recurrent neuro-fuzzy system for dynamic system identification, The 17th National
Conference on Fuzzy Theory and Its Applications, 2010.

[30] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, Self-adapting control parameters in
differential evolution: A comparative study on numerical benchmark problems, IEEE Transactions
on Evolutionary Computation, vol.10, pp.646-657, 2006.

[31] C.-T. Lin, M.-F. Han, Y.-Y. Lin, S.-H. Liao and J.-Y. Chang, Neuro-fuzzy system design using
differential evolution with local information, 2011 IEEE International Conference on Fuzzy Systems
(FUZZ), pp.1003-1006, 2011.

[32] T. Josef, Adaptation in differential evolution: A numerical comparison, Applied Soft Computing,
vol.9, pp.1149-1155, 2009.

[33] J. Liu and L. Jouni, A fuzzy adaptive differential evolution algorithm, TENCON’02, Proc. of 2002
IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol.1,
pp.606-611, 2002.

[34] F. Xue, A. C. Sanderson, P. P. Bonissone and R. J. Graves, Fuzzy logic controlled multiobjective
differential evolution, The IEEE Int. Conf. Fuzzy Syst., 2005.

[35] Y.-W. Shang and Y.-H. Qiu, A note on the extended rosenbrock function, Evolutionary Computation,
vol.14, pp.119-126, 2006.

[36] X. Yao, Y. Liu, K.-H. Liang and G. Lin, Fast evolutionary algorithms, The Advances Evol. Comput-
ing: Theory Applicat., New York, 2003.

[37] C. Lee and X. Yao, Evolutionary programming using mutations based on the Lévy probability
distribution, IEEE Trans. Evol. Comput., vol.8, pp.1-13, 2004.

1372 M.-F. HAN, C.-T. LIN, J.-Y. CHANG AND D.-L. LI

[38] Z. Yang, J. He and X. Yao, Making a difference to differential evolution, Advances Metaheuristics
Hard Optimization, pp.397-414, 2007.

[39] M. S. Alam, M. M. Islam, F. X. Yao and K. Murase, Recurring two-stage evolutionary programming:
A novel approach for numeric optimization, IEEE Transactions on Systems, Man, and Cybernetics
– Part B: Cybernetics, vol.41, pp.1352-1365, 2011.

[40] J. Demar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning
Research, pp.1-30, 2006.

[41] S. Garćıa and F. Herrera, An extension on statistical comparisons of classifiers over multiple data
sets for all pairwise comparisons, Journal of Machine Learning Research, pp.2677-2694, 2008.

