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Abstract. Neural network model predictive controllers have demonstrated high poten-
tial in the non-conventional branch of nonlinear control. However, the major issue in
process control of nonlinear systems is the sensitivity to parameters variations and un-
certainties. Indeed, when the process is controlled by neural network model predictive
control (NNMPC) and subject to parameters variations or uncertainties, unsatisfactory
tracking performances are obtained. To overcome this problem, we propose in this paper
an adaptive neural network model predictive control (ANNMPC) where a neural model
identification block is incorporated in the scheme and online update of the weights is pro-
vided when the process is subject to parameters variations and uncertainties. Simulations
have been carried out to show the robustness of this control algorithm.
Keywords: Predictive control, Adaptive system, Neural network, Parameters variations
and uncertainties

1. Introduction. Model predictive control (MPC), which is more advanced than the
well-known PID control, has achieved great success in practical applications in recent
decades. Indeed, we find more than 2000 applications of this controller that have been
reported in [1]. The concept of MPC, introduced in the late seventies, has nowadays
evolved to a mature level and become an attractive control strategy implemented in a
variety of process industries. One of the key advantages of MPC is its ability to deal
with input and output constraints while it can be applied to multivariable process control
[2,3,29]. Till now, most of the implemented predictive controllers (Generalized Predic-
tive Controllers) have used linear models even if most of physical systems are nonlinear.
However, linear MPC always results in poor performance for strong nonlinear models.
For this reason some authors combined MPC with other nonlinear approaches to improve
the tracking performances [30-32]. In order to use MPC to control a highly nonlinear
system, nonlinear model has to be used. Consequently, an online nonlinear optimization
problem has to be performed. The optimization problem can be non-convex and for the
fast dynamics systems the optimal solution should be determined within a slot of time
(time processing) [4,5,33]. However, no effective method that solves this problem exists.
Moreover, nonlinear model predictive control (NMPC) relies on a mathematical model
of the process for the prediction. Thus, the success of NMPC is highly dependent on
having a reliable mathematical model. It is very important to look for a model that may
effectively describe the nonlinear behavior of the system and should also be easily usable
in designing the NMPC algorithm. However, a large number of nonlinear industrial pro-
cesses may have nonlinear complex models with parameters uncertainties. To this end, a
potential method is to use neural network model predictive control instead of NMPC.
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Neural network which is able to approximate any continuous nonlinear function has been
used for modeling and control of complex nonlinear processes [6]. Neural networks with
time delay have also been used for switching system [34] and for discrete-time stochastic
system with Markovian jumping parameters [35].
In neural network model predictive control (NNMPC), neural network is used to model

the unknown process and there are typically two steps which are combined to design the
NNMPC algorithm:

• System identification using neural network (offline);
• MPC control design using neural network model as a predictor.

Many methods have been proposed in the literature that combine neural network and
model predictive control algorithm. For instance, in [7], the authors have applied nonlinear
predictive control using neural networks to affine nonlinear systems. It is shown that
the non-linear programming techniques can be avoided using a set of affine nonlinear
predictors.
In [8], a multivariable neural network modeling and neural network model predictive

control technique are applied to a steel pickling industry. The highly nonlinear dynamic
behavior of the process, which is multivariable in nature, and with interaction between
states causes difficulties to control this kind of system by conventional controllers. There-
fore, the contribution of this work is the application of an iterative multistep neural
network prediction model in a predictive control strategy for controlling such a nonlinear
system. Pand and Wang [9] have applied two neural network models for model predictive
control based on linear and quadratic programming formulation. Both neural networks
have good convergence performance and low computational complexity. In [10], Smith
et al. have presented the design and experimental validation of a nonlinear multivariable
predictive controller for an educational 3-DOF helicopter system. The control strategy
approximate predictive control based on neural network model of nonlinear plant and its
linearization at each sampling instant have been used to generate the control signal. The
authors in [11] have used an adaptive algorithm to update RBF models which increase
the complexity of the algorithm. Moreover, persistent excitation condition should be re-
spected to ensure the convergence of the algorithm. An adaptive neural network predictor
has been used for tracking control of a nonlinear system with unknown time-delay [36].
In [12], the authors have used closed loop system identification with PI controller to

model a five stage evaporator. Recurrent neural networks (RNNs) are able to provide
long-range predictions, even in the presence of the measurement noise. However, the main
drawback is in their training process due to the large number of sensitivity equations to
be solved in the associated nonlinear optimization problem.
Neural generalized predictive control (NGPC) was applied to a three-joint robotic ma-

nipulator in [13]. NNMPC presented in [14] is applied to a float column and has achieved
good performances with regards to a conventional PI controller. Recurrent neural net-
works have been combined with fuzzy logic approach to design a model predictive control
in [15]. The proposed algorithm can be used to control a large class of industrial pro-
cesses with satisfactory performance under set point and load changes. The radial basic
function neural network is used in [16] to model the dynamics of distributed parameters
systems. The efficiencies of the proposed MPC formulation have been tested in a tabular
reactor and have produced reasonable results. The work in [17] describes an algorithm for
neural models training (identification) which directly takes into account the specific fact
that these models are next used recursively in MPC for long range prediction. In [18],
the authors have used a new optimization algorithm-based TCPSO to obtain the optimal
input for NNMPC.
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We have to note that most of the previous algorithms are complex and the robustness
with regards to parameters variations of the process has not been reported.

Many attempts have been made to increase the robustness of NNMPC to model mis-
matching and disturbances. Indeed, using neural network model as the predictor in NN-
MPC always causes a steady state tracking error due to the parameters variations of
the process since the neural network modeling and identification process is done offline
(batch form) [19]. Different approaches are used to eliminate this steady state error. For
example, Akesson et al. [20] directly subtracted the approximated prediction error from
output of neural network model to obtain offset free responses. Kuure-Kinsey et al. [21]
used Kalman filter to remove the steady state error. Jazayeri et al. [22] estimated the
external disturbances and model mismatches to eliminate the steady state error.

In this paper, we present a new neural network model predictive control of nonlinear
systems that can deal with uncertainties and high parameters variations. Using simula-
tion, we will show that the NNMPC is sensitive to parameters uncertainties and a steady
state error will be induced. To overcome this problem, a new neural network block is
added to the NNMPC scheme. The proposed algorithm is based on a neural network
model of the process that is able to correct itself as new information is available. We have
to note that adaptive neural network mechanism has been used for prediction to com-
pensate time-delay and nonlinearity in [36]. In this work, the adaptive neural network
mechanism is used to compensate the steady-state error due to parameters variations.
Indeed, the proposed new scheme is simple, robust against parameters uncertainties, and
does not need to estimate the parameters uncertainties or to subtract the predicted error
from the output [20-22]. Thus, the steady-state error induced by the parameters varia-
tions during the operation is eliminated. The effectiveness of the proposed algorithm will
be verified through its application to a nonlinear system with parameter variations.

Therefore, the proposed method is adequate for model predictive control of nonlinear
systems subject to parameter variations and/or uncertainties. For instance, this method
can be used to control different machines (DC motor, AC motor, PMS motor, etc.) where
resistances are subject to variations due to overheating of the machine during operation.
The proposed method can also be used to control complex nonlinear system where it is
difficult to obtain explicitly the mathematical model of the plant (chemical processes).
Further, the main drawback of NMPC is the time processing needed to reach the optimal
solution. In this work neural networks have been chosen for their parallel structure which
can decrease considerably the time processing especially for fast dynamic systems.

The remaining parts of the paper are outlined as follows. Section 2 deals with the
problem statement and preliminaries. This section describes the neural network model
predictive control for a class of nonlinear systems represented by nonlinear autoregressive
moving averaging model (NARMA). Main results are given in Section 3 where an adaptive
mechanism is added to the previous neural predictive controller to overcome the problem
induced by the parameters variations. To see the effectiveness of the proposed algorithm,
simulations are performed for both matched and mismatched case in Section 4. Section
5 concludes this paper.

2. Problem Statement and Preliminaries. In industrial processes, model predictive
control has been widely used for set point tracking. Since most processes in industry
contain non-linearity, therefore predictive control based on nonlinear models (NARMA
polynomial model) is more convenient to deal with these kinds of nonlinear systems. In
this work, we consider the class of systems described by the following nonlinear difference
equation (NARMA model):

y(k + 1) = f(y(k), y(k − 1), · · · , y(k − n), u(k − 1), · · · , u(k −m)) (1)
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where n and m are the known structure orders of the system. u(k) and y(k) are the scalar
input and output of the plant respectively. f(.) is the unknown nonlinear function. For
the sake of simplicity we will consider SISO systems and the proposed method could be
extended to MIMO systems. The purpose of the control algorithm is to select a proper
control signal u(k), such that the output of the plant y(k) is made as close as possible to
a prescribed set point yref (k). To this end, we have to minimize the cost function which
is based on the square predicted error and it is represented by

J(N1, N2,∆u) =

N2∑
j=N1

(yref (k + j)− ŷ(k + j))2 +
Nu∑
j=1

α(j)∆u(k + j)2 (2)

where ŷ(k+ j) is the predicted output signal, yref (k) is the reference signal, ∆u(k) is the
control action increment, α is the weight of the control action, N1 is the minimum horizon
prediction, N2 is the maximum horizon prediction, and Nu is the control horizon. The
objective of the control problem is to minimize the cost function J with respect to the
control action.

2.1. Neural network model predictive control. The original idea of applying artifi-
cial neural network (ANN) was to imitate the way the human brain processes information.
For our purpose, ANN will simply be regarded as a convenient way to model the nonlinear
input-output mapping of the process.

A. Identification of Nonlinear System: The structure for identification of a nonlinear
model is shown in Figure 1 and requires that the error between the neural output yNN(k)
and the output of the plant y(k) be back propagated. In this case, the cost function to
be minimized is

J̄ =
1

2

∑
k

(y(k)− yNN(k))
2 (3)

The output neural network will be modeled by

yNN(k) = fNN(U(k − 1), Y (k − 1)), (4)

where fNN(.) denotes the input-output transfer function of the neural network which
replaces the nonlinear model given in Equation (1). U(k− 1), Y (k− 1) are vectors which
contain m and n delayed elements of u and y respectively starting from the time instant
(k − 1), i.e.,

U(k − 1) = |u(k − 1) u(k − 2) · · · u(k −m)|T ,

Y (k − 1) = |y(k − 1) y(k − 2) · · · y(k − n)|T

Figure 1. Identification by NN of the nonlinear system
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In this work, the multilayer feed forward neural network architecture [23], [24] has
been adopted to approximate the nonlinear system. The neural network structure of
neural network model (NNM) has a two-layer perceptron network and one output variable
yNN(k). Therefore, the structure is: <n+m,N,1 with (n +m) inputs, one hidden layer (N
is the number of nonlinear neurons) and one linear neuron as output.

Note that it is a known fact that a feedforward neural network with one hidden layer
is a universal approximator [23]. Indeed, Cybenko has demonstrated that a single hidden
layer is sufficient to uniformly approximate any continuous nonlinear function [25].

The neural network model (NNM) has the following input/output mapping relationship:

yNN(k) =
N∑
j=1

W o
j ρj(W

u
j U(k − 1) +W y

j Y (k − 1) + bj) + b, (5)

where
ρj represents the activation function for the jth neuron from the hidden layer;
W u

j represents the weight vector (row vector) for the jth neuron with respect to the
inputs stored in U(k − 1);

W y
j represents the weight vector (row vector) for the jth neuron with respect to the

inputs stored in Y (k − 1);
bj represents the bias for the jth neuron from the hidden layer;
W o

j represents the weight for the output layer corresponding to the jth neuron from the
hidden layer;

b represents the bias for the output layer.
To determine the mathematical model of the nonlinear system, the weights are updated

by using the cost function defined in (3). The weights can be recursively adjusted in order
to reduce the cost function J(k) to its minimum value by the gradient descent method.
The weights are updated using:

W (k + 1) = W (k)− µ
∂J(k)

∂W (k)
,

where µ is a positive learning rate.
Once the learning phase of NNM has been completed, the trained model can be used

to obtain a j-step-ahead prediction by using Equation (5).

B. Neural Network model predictive control: Predictive control is based on the prediction
of the future behavior of the process to be controlled. This prediction is obtained by a
recursive prediction of the neural network predictor. Thus, the nonlinear model of the
process is represented by the neural network with constant weights.

Figure 2. Recursion prediction of the future process outputs by neural networks
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The output of the neural network model (NNM) at the k time instant is

yNN(k) =
N∑
j=1

W o
j ρj(W

u
j U(k − 1) +W y

j Y (k − 1) + bj) + b, (6)

where

U(k − 1) = |u(k − 1) u(k − 2) · · · u(k −m)|T ,

Y (k − 1) = |y(k − 1) y(k − 2) · · · y(k − n)|T

A sequential algorithm based on the knowledge of the current and past values of u and y
with the neural network model gives the j-step-ahead neural network predictor. Figure 2
represents the construction of the j-step-ahead predictor and it is modeled by the equation:

yNN(k + j) =
N∑
j=1

W o
j ρj(W

u
j U(k + j − 1) +W y

j Y (k + j − 1) + bj) + b, (7)

where

U(k + j − 1) = |u(k + j − 1) u(k + j − 2) · · · u(k + j −m)|T ,

Y (k + j − 1) = |y(k + j − 1) y(k + j − 2) · · · y(k + j − n)|T .

The predictive control algorithm will use the neural network predictor shown in Figure
2 to calculate the future control signal.
In predictive control, the objective function to minimize over a finite prediction hori-

zon is a function based on the error between the NNM predicted output, the predicted
reference trajectory and the weighted control signal:

J(U, k) =
1

2

N2∑
j=N1

(yref (k + j)− yNN(k + j))2 + λ

Nu∑
j=1

u(k + j − 1)2 (8)

The optimal control signal is found by minimizing the cost function J with respect to
U(k) over the prediction horizon using Equation (7). One of the most common rules used
in NNMPC to update the control action is the deceasing gradient rule [26], in which the
actualization is made in the direction of the negative gradient of the function. In this
work a modified decreasing gradient is used and it can be expressed in the form:

U(k + 1) = U(k)− η

(∣∣∣∣∂J(U, k)∂U(k)

∣∣∣∣2 + δI

)−1
∂J(U, k)

∂U(k)
(9)

where ∂J(U,k)
∂U(k)

is the gradient of the cost function, η is a small positive step size, and δ is

a small positive constant chosen to ensure the existence of the inverse. The structure of
the ANN predictive control is depicted in Figure 3.

3. Main Results: Adaptive Neural Network Model Predictive Control . In the
last years, numerous adaptive control techniques have been proposed to replace the con-
ventional classical methods [24]. The ability to adapt to variations in plant dynamics
and environment automatically has made such adaptive controllers increasingly impor-
tant for various applications. Before they can be implemented, mathematical modeling
of the plant has to be done. This task is sometimes difficult and laborious. In addi-
tion, inaccuracy in the modeling of the plant could lead to degraded performances of
the controllers. Artificial neural networks are trainable dynamical systems that estimate
input-output functions, and are sensitive to parameters variations (a steady state error
will be induced in mismatched case). Thus, to eliminate this induced steady-state error
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Figure 3. Neural network model predictive control
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Figure 4. Adaptive neural network model predictive controller

a new neural network block (adaptive mechanism) is added to the scheme in order to
update the weights of the neural network model online. The proposed neural network
structure of this adaptive neural network controller is shown in Figure 4.

This scheme uses two sub-networks (NNI) as a neural model and (NNP) as a neural
predictor. The sub-network (NNI) represents the neural model obtained in the identi-
fication phase. This sub-network (NNI) is used to update the weights when there are
uncertainties or parameters variations of the plant. The error between the output y(k)
and the neural model yNN(k) is used to update the weights of the neural model. The
obtained new weights are used by the neural network predictor block and the optimization
block in order to calculate the predictive control action to be applied to the process.
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4. Numerical Examples. In this work two examples have been used to check the effec-
tiveness of the proposed algorithm. Moreover, for simplicity a one step-ahead predictive
control with λ = 0 has been adopted. Thus, the cost function to minimize is

J =
1

2
e(k + 1)2

where e(k + 1) = yref (k + 1) − yNN(k + 1), yNN(k + 1) =
∑N

i=1W
o(i)σ(v(i)) + bo and

v(i) =
∑n

l=1W
y(i, l)y(k − l + 1) +

∑m
l=1W

u(i, l)u(k − l + 1) + b(i).
By using the chain rule, we can easily determine the gradient as

p(k) = − ∂J(k)

∂u(k)

= − e(k + 1)
∂e(k + 1)

∂u(k)
= e(k + 1)

∂yNN(k + 1)

∂u(k)

= e(k + 1)
N∑
i=1

W o(i)σ(v(i))W u(i, 1)

where σ
(
v(i) = dσ

dv(i)

)
is the derivative of the activation function with respect to v(i).

The updated control signal is

u(k + 1) = u(k) + η
p(k)

p(k)2 + δ

4.1. Example 1: NNMPC. The nonlinear model of the plant, which is taken from the
benchmark models used in [27], was considered in this work and is given by

y(k + 1) =
y(k)y(k − 1) (y(k) + 1)

1 + y(k)2 + y(k − 1)2
+ bu(k) (10)

where y is the measured output of the plant and u is the applied control input.
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Figure 5. Output response and the control signal in the mismatched case
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Figure 6. The applied control signal in matched case

The reference model is given by

yref =

{
3.5 for 0 ≤ t < 400
1.5 for 400 ≤ t < 800.

The structure of the neural network is <3,8,1. For the learning method, the Levenberg-
Marquardt method has been used. During the learning phase the parameter b is set to
1.5. The neural model (Figure 1) has been trained using a selection of training patterns
with a learning rate set to µ = 0.05. Afterwards, this neural model is used to derive the
predictive controller of the plant as it is shown in Figure 3. Note that, one-step-ahead
predictive controller is used in this simulation (h = 1) and the parameters of the modified
gradient descent method algorithm are δ = 0.01 and η = 0.05. Figure 5 shows the good
tracking performance achieved by the controller in matched case (b = 1.5). The applied
control signal is depicted in Figure 6.

In the mismatched case, for k ≥ 300 the parameter b is set to 1. The same neural
network controller is used and the simulation result is illustrated in Figure 7. This figure
depicts the tracking performances. The variation of the parameter b induces a steady state
tracking error. Hence, we conclude that the neural network predictive control is sensitive
to parameters variations when the identification phase is performed offline (batch form).

4.2. Adaptive neural network model predictive control for Example 1: ANN-
MPC. The same example seen previously is tested with the same parameters and the
structure of the neural network model. The error e(k) = y(k)− yNN(k) is used to update
the weights of the neural model (NNM) (see Figure 4). These weights are used by the
neural predictor (NNP). The neural prediction equation is utilized by the optimization
block (modified gradient descent algorithm) to determine the predictive control signal.
The simulation results are shown in Figure 8. The output of the system is close to the
desired signal although the parameter value b is unknown after k = 300 (set to b = 1 and
the neural network has been trained with b = 1.5). Thus, the adaptive neural predictive
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Figure 7. Output response in the mismatched case (b = 1 for k ≥ 300)
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Figure 8. Output response and the control signal in the mismatched case

controller has achieved best tracking error performance with regards to neural predictive
control (Figure 7).

4.3. Example 2. In this second part, another highly nonlinear model (NARMA), utilized
in [28] as a benchmark, is used in this work to check the robustness of the NNMPC with
regards to an unknown model. The NARMA model is given by

y(k + 1) = sin(y(k − 1)) + u(k) (b+ cos(u(k)y(k)))
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Figure 9. Output response and the control signal in the mismatched case
(Example 2)

Note that parameter b is unknown and variable. In this mismatched case, parameter b is
taken as

b =

{
7 for 0 ≤ t < 400
1 for 400 ≤ t < 800

and the reference is

yref =

{
1 for 0 ≤ t ≤ 500
−1 for 500 ≤ t ≤ 800.

The neural network structure and all parameters are the same as in the first example and
only the learning parameter has been increased to µ = 0.1 in order to reduce oscillations
in the start up. Figure 9 shows the good tracking performance achieved by the proposed
controller in spite of the unknown parameters of the process. Note that in Figure 9,
oscillations have appeared in the startup due to the initial weights of neural networks
which were chosen randomly. Consequently, the adaptive neural predictive controller has
achieved a good tracking performance in spite of the unknown model with parameters
variations.

4.4. Convergence of the algorithm. Feedforward neural networks are universal ap-
proximators, which means that any continuous nonlinear function can be approximated by
feedforward neural networks [25]. In this work the adaptive neural network predictive con-
trol algorithm converges to the desired reference signal if the dynamic of the identification
algorithm and predictive control algorithm have different rates of convergence. Indeed, in
the first part of the first example, we deduced that uncertainties and/or parameters vari-
ations induce a steady state error in the tracking performance. To eliminate this steady
state error an adaptive mechanism is introduced in the scheme to ensure the convergence
of the tracking performance to zero. Thus, the dynamic of the identification algorithm
must be very high compared to the dynamic of the control process. Consequently, we used
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in the first example, the Levenberg-Marquardt algorithm for identification which is very
fast with regards to the gradient method used for control processing. In the second ex-
ample, both identification and control processing have used the gradient descent method.
However, the learning rate of the identification algorithm has been increased to ensure
rapid convergence of the tracking error to zero and to reduce the oscillations around the
reference signal.

5. Conclusions. In this paper, an online adaptive model predictive control of nonlinear
system using neural networks is presented. First, it is shown that the neural network
predictive controller is sensitive to parameters variations or/and uncertainties. Indeed,
unsatisfactory tracking performances have been obtained when the parameters are un-
known or variable. To enhance the robustness of this neural model predictive control
algorithm with respect to parameter variation or/and uncertainties a sub-neural model
identification is added to the structure scheme and weights are updated online. The pro-
posed new scheme is simple, robust against parameters uncertainties, and does not need
to estimate parameters uncertainties or to subtract the predicted error from the output.
Simulation results have shown that good tracking performance has been obtained al-

though parameters variations are unknown and/or the mathematical model of the process
is unknown to the neural network predictive controller. Additional research should be
oriented firstly towards the application of the adaptive neural networks predictive con-
trol on other systems models, especially NARMAX models where an exogenous signal is
introduced that may complicate the adaptive mechanism based on the modeling error.
Secondly, it should also be oriented towards the real-time implementation of this proposed
control algorithm to processes that are subject to parameters variations.
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