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Abstract. There have been many research efforts on the lower-dimensional transforma-
tion of high-dimensional points. However, a lot of real data such as time-series sequences
and streaming data can be modeled as an MBR (Minimum Bounding Rectangle) rather
than a point in a high-dimensional space. To store and search those high-dimensional
MBRs in a multidimensional index, we need to transform a high-dimensional MBR itself
to a low-dimensional MBR directly. To tackle the problem, we first present a new notion
of lower-dimensional MBR transformation. The lower-dimensional MBR transformation
should construct a low-dimensional MBR by containing all the low-dimensional points to
which an infinite number of high-dimensional points in the MBR are transformed. As the
naive solutions for DFT (discrete Fourier transform) and DCT (discrete Cosine trans-
form), we then propose DFTnaive and DCTnaive, respectively, which use all the vertex
points on a high-dimensional MBR. These naive solutions, however, require a huge num-
ber of transformations as the dimension increases. To solve this problem, we further pro-
pose DFTadv and DCTadv, which use only two points (a lower-left and an upper-right
points) rather than all the vertex points on an MBR. By presenting related theorems,
we also formally prove that all the proposed solutions perform the lower-dimensional
MBR transformation correctly. Experimental results show that our advanced solution
outperforms the naive solution by up to 13,100 times, when the dimension is 16, and
the improvement becomes larger as the dimension increases. These results indicate that
the proposed notion of lower-dimensional MBR transformation provides a very practical
framework for a variety of time-series data applications.
Keywords: Lower-dimensional MBR transformation, High-dimensional MBR, Discrete
Fourier transform (DFT), Discrete Cosine transform (DCT)

1. Introduction. Time-series data are sequences of real numbers representing values at
specific time points – examples are stock prices, exchange rates, weather data, financial
data, network traffic data, etc. Finding data sequences similar to a given query sequence
from the database is called similar sequence matching or time-series matching [1, 7, 22].
Time-series matching has been widely used in many practical applications including im-
age matching, handwritten recognition, speech recognition, query by humming, privacy-
preserving data publication, and biological sequence matching [10, 13, 16, 20, 26, 27].
Our solution can be used for such practical applications as it can improve the overall
performance of time-series matching.
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A lower-dimensional transformation is defined as an operation of transforming a high-
dimensional point to a low-dimensional point [1, 21]. This lower-dimensional transforma-
tion is widely used in many applications such as data mining [11], pattern recognition
[29], and GIS (Geographic Information System) [9]. It transforms a high-dimensional
point with hundreds or thousands of dimensions to a low-dimensional point with one to
six dimensions. Storing high-dimensional points in a multimensional index [3] causes the
high dimensionality problem (called dimensionality curse) [4] and requires excessive index
space. To avoid these problems, we generally use the lower-dimensional transformation
to reduce dimensionality of points to be stored in the index [7, 24].
In this paper we tackle the problem of transforming a high-dimensionalMBR (Minimum

Bounding Rectangle) to a low-dimensional MBR. An n-dimensional MBR is defined as
a minimum-sized hyper-rectangle that contains an n-dimensional object or multiple n-
dimensional points [2, 3, 8], and it is represented as a lower-left point and an upper-right
point. There have been many research efforts on the lower-dimensional transformation
of a high-dimensional point, but to our knowledge there has been no research result on
that of a high-dimensional MBR itself. However, a lot of real data such as time-series
sequences and streaming data can be modeled as an MBR rather than a point in a high-
dimensional space. The followings are representative motivating examples of practical use
of such high-dimensional MBRs.

• The highest and lowest prices (or the bid and ask prices) of a stock item can be
represented as a high-dimensional sequence with upper and lower values, and the
sequence can be modeled as a high-dimensional MBR. We often want to find some
stock items showing a similar trend with one’s own interesting stock item, which
is also modeled as a high-dimensional MBR. Searching and grouping stock items
having similar trends have been important tasks in stock data analysis [19, 30].

• Temperatures can be represented as a high-dimensional sequence with the highest
and lowest values and also be modeled as a high-dimensional MBR. For various
temperature data from different seasons or different regions, we may find similar
temperature clusters to group seasons or regions in a meaningful way.

• In rotation-invariant boundary image matching [17, 25], image boundaries can be
modeled as high-dimensional MBRs. We construct a high-dimensional MBR for
a query image and search its similar images from the large image database. In
this process, we can use the lower-dimensional MBR transformation to get a low-
dimensional query MBR and search on the index.

• High-dimensional MBRs are also used in subsequence matching [7, 22], where we
construct an MBR by bounding many high-dimensional subsequences. As in [23],
if we have a lower-dimensional MBR transformation, we can build an index fast or
perform subsequence matching efficiently.

As you can see examples above, high-dimensional MBRs are widely used in many time-
series applications. We here note that, like high-dimensional points, storing high-dimensi-
onal MBRs in an index is also difficult [4], and thus, we need a systematic way that
transforms a high-dimensional MBR to a low-dimensional MBR. Hereafter, we abbreviate
“high-dimensional” to HD and “low-dimensional” to LD.
Transforming an HD MBR to an LD MBR can be done by the following simple way:

1) every possible HD point in the HD MBR is transformed to an LD point, and 2) all the
transformed LD points are included in the LD MBR. This simple method, however, is not
practically applicable since the number of HD points in an MBR is infinite. To solve this
problem, we consider a finite number of points for the lower-dimensional transformation
of an HD MBR. Various transforms including DFT (Discrete Fourier Transform), DCT
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(Discrete Cosine Transform), and Wavelet transform are used as the lower-dimensional
transformation for HD points. Among these transforms, DFT and DCT are widely used
in similar sequence matching [1, 12, 25] and multimedia data retrieval [25, 31]. Thus, in
this paper we provide DFT-based and DCT-based lower-dimensional transformations of
HD MBRs.

We first present the notion of lower-dimensional MBR transformation that transforms
an HD MBR itself to an LD MBR directly. We then propose two DFT-based lower-
dimensional MBR transformations. The first one is a naive solution, called DFTnaive,
which transforms every vertex point on an HD MBR to an LD point using DFT and
constructs an LD MBR by bounding all the transformed LD points. We formally prove
that DFTnaive performs the lower-dimensional MBR transformation correctly. However,
DFTnaive has a critical problem that it requires a huge number of lower-dimensional
transformations since the number is proportional to O(2n), where n is the dimension of
an HD MBR, which is too large and practically useless. Thus, as the second solution,
we propose DFTadv, an advanced version of DFTnaive. DFTadv uses only two points
(a lower-left and an upper-right points) rather than all vertex points on an MBR. We
also formally prove correctness of DFTadv. Through analysis, we show that the number
of transformations required in DFTadv is only O(1), which is drastically reduced from
O(2n) of DFTnaive. After then, we propose two DCT-based lower-dimensional MBR
transformations. Like DFT-based solutions, we first present DCTnaive that uses all
vertex points on an MBR, and then explain DCTadv that uses only a lower-left and an
upper-right points on an MBR.

Through analysis and experiments, we show superiority of the proposed DFTadv and
DCTadv. By deriving the numbers of transformations required in DFTnaive and DFTadv
and those in DCTnaive and DCTadv, we analytically explain significant superiority of DF-
Tadv and DCTadv. According to the analysis, DFTnaive and DCTnaive with exponential
complexity are practically useless, while DFTadv and DCTadv with constant complexity
are very practically useful for time-series matching applications. Moreover, experimental
results on real stock data show that, compared with DFTnaive and DCTnaive, DFTadv
and DCTadv significantly reduce the execution time by up to 13,100 and 11,600 times,
respectively, when the dimension is 16. More importantly, the performance improvement
becomes larger as the dimension increases.

The rest of this paper is organized as follows. Section 2 describes existing work re-
lated to lower-dimensional transformations. Section 3 defines the lower-dimensional MBR
transformation. Section 4 proposes DFT-based and DCT-based lower-dimensional MBR
transformations. Section 5 presents the results of performance evaluation. Section 6
summarizes and concludes the paper.

2. Related Work. Various transforms including DFT, DCT, and Wavelet transform are
used as the lower-dimensional transformation of HD points. DFT is most widely used in
many applications, especially in similar sequence matching [1, 7, 12, 20]. DCT is used
in applications on multimedia data [25, 31] or stream data [14]. Wavelet transform is
also used as the lower-dimensional transformation in [5, 27]. Besides these transforms,
PAA (Piecewise Aggregate Approximation) [15] and SVD (Singluar Value Decomposition)
[18] were introduced as the lower-dimensional transformation. All these transformations,
however, focused on transforming HD points (sequences) or HD images to LD ones, and
they cannot be directly applied to the lower-dimensional MBR transformation.

In this paper, we handle the lower-dimensional MBR transformation for DFT and DCT.
Table 1 summarizes the notation to be used throughout the paper. Based on the notation
in Table 1, we first present the definition of DFT. DFT transforms an n-dimensional
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Table 1. Summary of notation

Symbols Definitions

X An HD point. (= {x0, x1, . . . , xn−1}).

XT An LD point transformed from the HD point X by the transformation T .
(= {xT

0 , x
T
1 , . . . , x

T
m−1})

[L,U ]
An HD MBR of which lower-left and upper-right points are L and U , respectively.
(= [{l0, l1, . . . , ln−1}, {u0, u1, . . . , un−1}])

[L,U ]T An LD MBR transformed from the HD MBR [L,U ] by the transformation T .
= [Λ,Υ] (= [{λ0, λ1, . . . , λn−1}, {υ0, υ1, . . . , υn−1}])

X ∈ [L,U ] The point X is contained in the MBR [L,U ]. (i.e., for every i, li ≤ xi ≤ ui)

point X to a new n-dimensional point Y (= {y0, y1, . . . , yn−1}) in a complex number
space, where each yi is defined as the following Equation (1) [28]:

yi =
1√
n

n−1∑
t=0

xt cos(−2πit/n) +
1√
n

n−1∑
t=0

xt sin(−2πit/n) · j, 0 ≤ i ≤ n− 1. (1)

DFT concentrates most of the energy into the first few coefficients, and thus only a few
coefficients extracted from the transformed point Y are used for the lower-dimensional
transformation [1, 7]. Definition 2.1 shows the traditional lower-dimensional transforma-
tion using DFT.

Definition 2.1. The DFT-based lower-dimensional transformation is defined as an oper-
ation of transforming an n-dimensional point X to an m(� n)-dimensional point XDFT

of {xDFT
0 , xDFT

1 , . . . , xDFT
m−1}, where each xDFT

i is obtained by Equation (2). In Equation
(2), 0 ≤ i ≤ m− 1.

xDFT
i =

{
1√
n

∑n−1
t=0 xtcos(−2πbi/2ct/n), if i is even;

1√
n

∑n−1
t=0 xtsin(−2πbi/2ct/n), if i is odd.

(2)

DCT-based lower-dimensional transformation also uses the first few coefficients of an
n-dimensional point Y to which an n-dimensional point X is transformed by DCT [5].
Definition 2.2 shows the traditional lower-dimensional transformation using DCT [28].

Definition 2.2. The DCT-based lower-dimensional transformation is defined as an oper-
ation of transforming an n-dimensional point X to an m(� n)-dimensional point XDCT

of {xDCT
0 , xDCT

1 , . . . , xDCT
m−1 }, where each xDCT

i is obtained by Equation (3). In Equation
(3), 0 ≤ i ≤ m− 1.

xDCT
i =

2 · c(i)
n

n−1∑
t=0

xt cos

(
(2t+ 1)iπ

2n

)
, where c(i) =

{√
2/2, if i = 0;

1, if i = 1, 2, . . . ,m− 1.
(3)

In the previous work [23], we have presented a concept of MBR-Safe transformation
and proposed mbrDFT as its example implementation. In subsequence matching [7, 22],
we need to construct HD MBRs bounding multiple subsequences and convert those HD
MBRs to LD MBRs for a multidimensional index. In [23], we have used mbrDFT for
subsequence matching to improve the performance of obtaining query or data MBRs.
The previous work, however, focused on only subsequence matching with DFT. Thus, we
can say that the lower-dimensional MBR transformation to be proposed is a generalized
version of [23] since it can be used for any MBR-based time-series applications, and it
also handles both DCT as well as DFT. To show the generality of the proposed MBR
transformation, we perform the experiments on subsequence matching in Section 5.
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We introduce two recent applications of time-series matching to which we can apply
lower-dimensional MBR transformations. First, Choi et al. [6] have presented a novel
approach that published time-series data by preserving their distance orders as well as
their privacy. They have tried to get mining results with relatively higher accuracy while
not disclosing privacy of individual time-series. Similar to HD points [6, 26], we may need
to preserve privacy of HD MBRs, and in this case, we can use Choi et al.’s research result
to publish HD MBRs with preserving privacy and distance orders. Second, we can use
the MBR transformation to boundary image matching [17, 25], where we have solved the
image matching problems in the time-series domain rather than the image domain. As
we mentioned in Section 1, in rotation-invariant boundary image matching [17], we can
model image boundaries as HD MBRs. More precisely, we construct HD MBRs for query
or data images, store data MBRs in an index, and identify data images similar to the
query MBRs using the index. In this process, we can use the lower-dimensional MBR
transformation to get LD MBRs from HD MBRs for query or data image time-series.

3. Problem Definition. The lower-dimensional MBR transformation is an operation
of constructing an LD MBR by containing every LD point to which every possible HD
point in the HD MBR is transformed. Here, the number of possible HD points contained
in the HD MBR is infinite. We formally present the concept of lower-dimensional MBR
transformation and its correctness as follows:

Definition 3.1. For an n-dimensional point X and an n-dimensional MBR [L,U ], if a
transformation T satisfies the following Equation (4), then we say T performs the lower-
dimensional MBR transformation correctly.

X ∈ [L,U ] ⇒ XT ∈ [L,U ]T (4)

Definition 3.1 means that, to guarantee correctness of the lower-dimensional MBR
transformation, an LD MBR [L,U ]T to which an HD MBR [L,U ] is transformed should
contain every LD point XT to which every possible X in [L,U ] is transformed.

Figure 1 shows the traditional lower-dimensional transformation of an HD point and the
proposed lower-dimensional MBR transformation. As shown in the figure, the traditional
transformation maps a point in an HD space to a point in an LD space; in contrast,
the lower-dimensional MBR transformation maps an MBR in an HD space to an MBR
in an LD space. Next, Figure 2 shows an example of a correct lower-dimensional MBR
transformation. As depicted in the figure, if an arbitrary point X is contained in [L,U ]
(i.e., X ∈ [L,U ]), the transformed point XT is also contained in the transformed MBR
[L,U ]T (i.e., XT ∈ [L,U ]T ). Thus, we can say T performs the lower-dimensional MBR
transformation correctly.

High-dimensional space Low-dimensional space

Traditional lower-dimensional transformation

Lower-dimensional MBR transformation
(We tackle this problem.)

Figure 1. Traditional lower-dimensional point and MBR transformations
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Figure 2. An example of a correct lower-dimensional MBR transformation

4. Lower-Dimensional MBR Transformations. In this section we propose lower-
dimensional MBR transformations for the most widely used DFT and DCT, respectively.
Section 4.1 proposes DFTnaive and DFTadv by extending the traditional DFT to the
lower-dimensional MBR transformation. Section 4.2 also proposes DCTnaive and DC-
Tadv by extending DCT in a similar way.

4.1. DFT-based lower-dimensional MBR transformations. As we mentioned in
Section 1, the simple transformation method, which constructs an LD MBR by trans-
forming an infinite number of HD points in an HD MBR and by containing all the trans-
formed LD points, is not practically applicable. Thus, we first present a DFT-based naive
approach that uses a finite number of vertex points on an HD MBR. Definition 4.1 shows
a formal definition of the DFT-based naive approach.

Definition 4.1. For an n-dimensional MBR [L,U ], DFTnaive is defined as an oper-
ation that constructs an m(� n)-dimensional MBR by performing DFT-based lower-
dimensional transformations on all 2n vertex points on [L,U ].

Intuitively speaking, since the vertex points on an MBR are representatives of all the
possible points contained in the MBR, DFTnaive that considers all the vertex points will
perform the lower-dimensional MBR transformation correctly. Theorem 4.1 guarantees
correctness of DFTnaive.

Theorem 4.1. For an n-dimensional point X and an n-dimensional MBR [L,U ], DFT-
naive satisfies the equation of X ∈ [L,U ] ⇒ XDFT ∈ [L,U ]DFTnaive . That is, DFTnaive
performs the lower-dimensional MBR transformation correctly.

Proof: Since X ∈ [L,U ], lt ≤ xt ≤ ut holds for every t (0 ≤ t ≤ n − 1). We now
proceed the proof by two cases: 1) the first case where i in xDFT

i is even, and 2) the second
one where i is odd.
1) The case where i in xDFT

i of XDFT is even: Among vertex points on the MBR [L,U ],
there exist two vertex points P and Q that are constructed by the following Equation (5).
In Equation (5), θ = −2πbi/2ct/n.

pt =

{
lt, if cos θ ≥ 0;

ut, if cos θ < 0;
, qt =

{
ut, if cos θ ≥ 0;

lt, if cos θ < 0;
, where 0 ≤ t ≤ n− 1. (5)

Then, pDFT
t ≤ xDFT

t ≤ qDFT
t holds by Equation (2) in Definition 2.1. The detailed reason

is as follows. If cos θ is positive, ltcos θ ≤ xtcos θ ≤ utcos θ holds since lt ≤ xt ≤ ut.
Similarly, if cos θ is negative, utcos θ ≤ xtcos θ ≤ ltcos θ holds. Thus,

∑n−1
t=0 ptcos θ, which

is obtained by adding ltcos θ if cos θ is positive and utcos θ if cos θ is negative, is less than
or equal to

∑n−1
t=0 xtcos θ. It means that 1√

n

∑n−1
t=0 ptcos θ (= pDFT

i ) is less than or equal to
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1√
n

∑n−1
t=0 xtcos θ (= xDFT

i ). Analogously,
∑n−1

t=0 qtcos θ, which is obtained by adding utcos θ

if cos θ is positive and ltcos θ if cos θ is negative, is greater than or equal to
∑n−1

t=0 xtcos θ.

Thus, 1√
n

∑n−1
t=0 qtcos θ (= qDFT

i ) is greater than or equal to 1√
n

∑n−1
t=0 xtcos θ (= xDFT

i ).

Therefore, pDFT
i ≤ xDFT

i ≤ qDFT
i holds for every case where i in xDFT

i is even.
2) The case where i in xDFT

i of XDFT is odd: Among vertex points on the MBR [L,U ],
there exist two vertex points R and S that are constructed by the following Equation (6).
In Equation (6), θ = −2πbi/2ct/n.

rt =

{
lt, if sin θ ≥ 0;

ut, if sin θ < 0;
, st =

{
ut, if sin θ ≥ 0;

lt, if sin θ < 0.
, where 0 ≤ t ≤ n− 1. (6)

Then, rDFT
t ≤ xDFT

t ≤ sDFT
t also holds by the similar steps described in the case 1) above.

Here, since PDFT , QDFT , RDFT and SDFT are contained in the LD MBR [L,U ]DFTnaive

by Definition 4.1, XDFT is also contained in [L,U ]DFTnaive , i.e., XDFT ∈ [L,U ]DFTnaive is
satisfied. Therefore, the equation of X ∈ [L,U ] ⇒ XDFT ∈ [L,U ]DFTnaive holds. Also, we
note that the left-point of [L,U ]DFTnaive can be obtained from pDFT

i (i is even) and rDFT
i

(i is odd), and the right-point from qDFT
i (i is even) and sDFT

i (i is odd). �
DFTnaive, however, has a critical problem that it requires a huge number of transfor-

mations as the dimension increases. For an n-dimensional MBR, DFTnaive requires 2n

DFT-based lower-dimensional transformations since the number of vertex points on the
n-dimensional MBR is 2n. Thus, DFTnaive cannot be practically used for HD MBRs
with tens to thousands of dimensions. To solve this problem, we next propose DF-
Tadv that drastically reduces the number of transformations compared with DFTnaive.
Shortly speaking, DFTadv considers P , Q, R and S only, which are introduced in the
proof steps of Theorem 4.1. It means that DFTadv uses a lower-left and an upper-right
points rather than all vertex points by extending the traditional definition of DFT to
the lower-dimensional MBR transformation. Definition 4.2 presents a formal definition of
DFTadv.

Definition 4.2. For an n-dimensional MBR [L,U ], DFTadv is defined as an operation
that constructs an m(� n)-dimensional MBR of which lower-left and upper-right points
are Λ and Υ, respectively, in Equation (7). In Equation (7), θ = −2πbi/2ct/n and
0 ≤ i ≤ m− 1.

λi =

{
1√
n

∑n−1
t=0 at cos θ, if i is even;

1√
n

∑n−1
t=0 bt sin θ, if i is odd.

, υi =

{
1√
n

∑n−1
t=0 ct cos θ, if i is even;

1√
n

∑n−1
t=0 dt sin θ, if i is odd.

,

where


at = lt, ct = ut, if cos θ ≥ 0;

at = ut, ct = lt, if cos θ < 0;

bt = lt, dt = ut, if sin θ ≥ 0;

bt = ut, dt = lt, if sin θ < 0.

(7)

DFTadv in Definition 4.2 is derived from DFTnaive to reduce the number of trans-
formations. To perform the lower-dimensional MBR transformation correctly, DFTadv
makes Λ and Υ of the transformed MBR [Λ,Υ] contain every possible point that can be
generated from the original MBR by the DFT-based lower-dimensional transformation.
Theorem 4.2 shows correctness of DFTadv.

Theorem 4.2. For an n-dimensional point X and an n-dimensional MBR [L,U ], DFTadv
satisfies the equation of X ∈ [L,U ] ⇒ XDFT ∈ [L,U ]DFTadv . That is, DFTadv performs
the lower-dimensional MBR transformation correctly.



1430 M.-J. CHOI, W.-K. LOH AND Y.-S. MOON

Proof: In the proof steps of Theorem 4.1, we derived pDFT
i , qDFT

i , rDFT
i and sDFT

i . We
then note that Equation (7) of DFTadv simply denotes pDFT

i or rDFT
i as λi and qDFT

i or
sDFT
i as υi. Thus, the MBR of DFTadv is the same as that of DFTnaive. It is trivial
because pDFT

i or rDFT
i and qDFT

i or sDFT
i are a lower-left and an upper-right points in

DFTnaive, and λi (= pDFT
i or rDFT

i ) and υi (= qDFT
i or sDFT

i ) are those in DFTadv.
Therefore, DFTadv also performs the lower-dimensional MBR transformation correctly
since we have already shown correctness of DFTnaive in Theorem 4.1. �
Example 4.1 shows an example that DFTnaive and DFTadv perform the lower-dimensi-

onal MBR transformation.

Example 4.1. We want to transform a 4-dimensional MBR [L,U ] to a 2-dimensional
MBR where L = {2.0, 3.0, 4.0, 5.0} and U = {4.0, 5.0, 6.0, 7.0}. According to Defini-
tion 4.1, DFTnaive performs total 16 DFT-based lower-dimensional transformations for
16 4-dimensional vertex points, {2.0, 3.0, 4.0, 5.0}, {2.0, 3.0, 4.0, 7.0}, {2.0, 3.0, 6.0, 5.0},
. . . , {4.0, 5.0, 6.0, 5.0} and {4.0, 5.0, 6.0, 7.0}. Thus, it produces the corresponding 16 2-
dimensional points, {7.0,−1.0}, {8.0,−1.0}, {8.0,−2.0}, . . . , {10.0,−1.0} and {11.0,
−1.0}. After then, DFTnaive constructs a 2-dimensional MBR [{7.0,−2.0}, {11.0, 0.0}]
by containing all the 2-dimensional points. On the other hand, according to Definition 4.2,
DFTadv obtains a 2-dimensional MBR [Λ,Υ] directly by computing Λ as {7.0,−2.0} and
Υ as {11.0, 0.0} through only two transformations of Equation (7). Note that the 2-
dimensional MBR by DFTnaive is the same as that by DFTadv. In summary, we sig-
nificantly reduce the number of transformations from 16 to two while obtaining the same
2-dimensional MBR. This reduction ratio will increase exponentially proportional to the
dimension. For example, if we handle 16-dimensional MBRs instead of 4-dimensional
ones, the number will be reduced from 65,536 (= 216) to two. Likewise, DFTadv drasti-
cally reduce the number of transformations, and based on this reduction it improves the
performance significantly as we can see in Section 5. �
Even though both DFTnaive and DFTadv perform the lower-dimensional MBR trans-

formation correctly, there is a big difference in the number of transformations between
DFTnaive and DFTadv. DFTnaive requires O(2n) transformations for an n-dimensional
MBR since it uses all vertex points on the MBR. Thus, for k MBRs, DFTnaive requires
O(k · 2n) lower-dimensional transformations. This exponential complexity, however, is
never applicable to actual time-series applications. On the other hand, DFTadv uses just
two transformations (Λ and Υ) for an n-dimensional MBR, and thus, it requires only
O(k) lower-dimensional transformations for k MBRs. This constant complexity makes
DFTadv practically applicable to real time-series matching applications. Figure 3 shows
a graph that depicts the numbers of transformations required in DFTnaive and DFTadv,
where we set k to 10,000 and change n from four to 512 by multiples of two. As shown
in the figure, as the dimension increases, the difference in the number of transformations
between DFTnaive and DFTadv becomes drastically larger. Note that the Y axis in the
figure has the exponential scale. For example, if the dimension is 16, the ratio between
two transformations is 65,536 (= 216), but the ratio reaches 2512 if the dimension is 512.
This difference in the number of transformations will affect the real execution time, and
we will confirm this performance difference in Section 5.
Here, we note that DFTnaive satisfies the equation of X ∈ [L,U ] ⇒ XDFT ∈ [L,

U ]DFTnaive , but does not satisfy its inverse, i.e., the equation of X /∈ [L,U ] ⇒ XDFT /∈
[L,U ]DFTnaive . It means that, even if an HD point X is not contained in an HD MBR
[L,U ], the transformed LD point XDFT can be contained in the transformed LD MBR
[L,U ]DFTnaive . Also, the inverse means that its contrapositive (i.e., XDFT ∈ [L,U ]DFTnaive

⇒ X ∈ [L,U ]) is not satisfied. That is, even if XDFT is contained in [L,U ]DFTnaive ,
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Figure 3. Numbers of transformations required in DFTnaive and DFTadv

the original X cannot be contained in the original MBR [L,U ]. This property is due to
that the DFT-based lower-dimensional transformation is not a lossless transformation,
i.e., DFTnaive incurs information loss1 [1, 7]. That is, it is because we cannot restore
an exact original HD point from the transformed LD point which already loses some
information. DFTadv also has the same property since its MBR is the same as that of
DFTnaive. However, both DFTnaive and DFTadv are optimal (i.e., they construct the
smallest MBR) among the DFT-based lower-dimensional MBR transformations. Since
the proof of optimality can be easily done by Theorems 4.1 and 4.2, we omit the details.

4.2. DCT-based lower-dimensional MBR transformations. In this subsection, we
present DCT-based lower-dimensional MBR transformations. Like DFT, we first present
a DCT-based naive solution that uses a finite number of vertex points, and then propose
an advanced solution that uses a lower-left and an upper-right points only. Definition 4.3
shows a formal definition of the DCT-based naive approach.

Definition 4.3. For an n-dimensional MBR [L,U ], DCTnaive is defined as an oper-
ation that constructs an m(� n)-dimensional MBR by performing DCT-based lower-
dimensional transformations on all 2n vertex points on [L,U ].

Theorem 4.3 guarantees correctness of DCTnaive.

Theorem 4.3. For an n-dimensional point X and an n-dimensional MBR [L,U ], DCT-
naive satisfies the equation of X ∈ [L,U ] ⇒ XDCT ∈ [L,U ]DCTnaive . That is, DCTnaive
performs the lower-dimensional MBR transformation correctly.

Proof: Since X ∈ [L,U ], lt ≤ xt ≤ ut holds for every t (0 ≤ t ≤ n− 1). Among vertex
points on the MBR [L,U ], there exist two vertex points P and Q that are constructed by

the following Equation (8). In Equation (8), θ = (2t+1)iπ
2n

.

pt =

{
lt, if cos θ ≥ 0;

ut, if cos θ < 0;
, qt =

{
ut, if cos θ ≥ 0;

lt, if cos θ < 0;
, where 0 ≤ t ≤ n− 1. (8)

By the same proof steps in Theorem 4.1, we can show that 2·c(i)
n

∑n−1
t=0 pt cos θ (= pDCT

i )

is less than or equal to 2·c(i)
n

∑n−1
t=0 xt cos θ (= xDCT

i ), and 2·c(i)
n

∑n−1
t=0 qt cos θ (= qDCT

i ) is

greater than or equal to 2·c(i)
n

∑n−1
t=0 xt cos θ (= xDCT

i ). Therefore, pDCT
i ≤ xDCT

i ≤ qDCT
i

holds for every i. Here, since PDCT and QDCT are contained in the LD MBR [L,U ]DCTnaive

1DFT itself is lossless, but the DFT-based lower-dimensional transformation that takes a few coeffi-
cients after DFT incurs information loss.
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by Definition 4.3, XDCT is also contained in [L,U ]DCTnaive , i.e., XDCT ∈ [L,U ]DCTnaive is
satisfied. Therefore, the equation of X ∈ [L,U ] ⇒ XDCT ∈ [L,U ]DCTnaive holds. Also, we
note that the left-point of [L,U ]DCTnaive can be obtained from pDCT

i , and the right-point
from qDCT

i . �
Like DFTnaive, however, DCTnaive has a critical problem of incurring a huge number

of transformations. Thus, we next propose DCTadv that drastically reduces the number
of transformations over DCTnaive. The advanced DFTadv also uses a lower-left and an
upper-right points only, and its LD MBR is the same as that of DCTnaive. Definition 4.4
shows a formal definition of DCTadv.

Definition 4.4. For an n-dimensional MBR [L,U ], DCTadv is defined as an operation
that constructs an m(� n)-dimensional MBR of which lower-left and upper-right points

are Λ and Υ, respectively, in Equation (9). In Equation (9), θ = (2t+1)iπ
2n

and 0 ≤ i ≤
m− 1.

λi =
2·c(i)
n

∑n−1
t=0 at cos θ, υi =

2·c(i)
n

∑n−1
t=0 bt cos θ,

where

{
at = lt, bt = ut, if cos θ ≥ 0;

at = ut, bt = lt, if cos θ < 0.
(9)

Theorem 4.4 shows correctness of DCTadv.

Theorem 4.4. For an n-dimensional point X and an n-dimensional MBR [L,U ], DC-
Tadv satisfies the equation of X ∈ [L,U ] ⇒ XDCT ∈ [L,U ]DCTadv . That is, DCTadv
performs the lower-dimensional MBR transformation correctly.

Proof: In the proof steps of Theorem 4.3, we derived pDCT
i and qDCT

i . We then note
that Equation (9) of DCTadv simply denotes pDCT

i as λi and qDCT
i as υi. Thus, the

MBR of DCTadv is the same as that of DCTnaive. Therefore, DCTadv also performs the
lower-dimensional MBR transformation correctly since we have already shown correctness
of DCTnaive in Theorem 4.3. �
Like the difference in the number of transformations between DFTnaive and DFTadv,

there is also a big difference between DCTnaive and DCTadv. That is, for k MBRs,
DCTnaive requires O(k · 2n) transformations, which is exponential and never applicable
to real applications; in contrast, DCTadv requires only O(k) transformations, which is
constant and easily applicable to real applications. We will also confirm the performance
difference in Section 5. Like DFTnaive and DFTadv, the equations of X /∈ [L,U ] ⇒
XDCT /∈ [L,U ]DCTnaive and X /∈ [L,U ] ⇒ XDCT /∈ [L,U ]DCTadv are not satisfied. This
property is due to that DCTnaive and DCTadv also incur information loss [5].

5. Experimental Evaluation. In this section we present the results of performance
evaluation. We describe the experimental data and environment in Section 5.1 and present
the results of the experiments in Section 5.2.

5.1. Experimental data and environment. The number of transformations and the
elapsed time for lower-dimensional MBR transformations are not dependent on types of
data sets. Thus, in this paper we use a real stock data set only that consists of 329,112
entries [7, 21]. Each entry of the stock data set contains a bid price and an ask price.
Figure 4(a) shows a part of this stock data set, which is used in the traditional similar
sequence matching [7, 21, 24]2. We generate HD MBRs by dividing the whole stock data

2The previous works [7, 21, 24] constructed a whole sequence by using only one price value (i.e., either
a bid price or an ask price but not both). Thus, we can say that they considered HD points rather than
HD MBRs in similar sequence matching.
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Figure 4. A part of experimental data and an example of an HD MBR

set into multiple smaller sequences (i.e., windows in [7, 21]). That is, we divide a long
whole sequence into multiple smaller sequences with the dimension wanted. Figure 4(b)
shows an example sequence of an HD MBR with the dimension of 128.

In the experiments, we change the dimension n of the HD MBR from four to 512 by
multiples of two (i.e., n = 4, 8, 16, . . . , 256, 512). Since the dimension of the LD MBR
makes no effect on the experimental results, we set it to a fixed value of two as in [1]. As
the experimental methods, we compare DFTnaive and DFTadv as DFT-based solutions
and compare DCTnaive and DCTadv as DCT-based solutions. The hardware platform
for the experiment is a PC equipped with an Intel Pentium IV 3.20 GHz CPU, 1GB RAM,
and a 500.0GB hard disk. The software platform is GNU/Linux Version 2.6.6 operating
system. For the experimental results, we measure the number of transformations and the
elapsed time for each transformation method.

We also perform additional experiments on subsequence matching [7, 22, 23] to show
practical use of the proposed MBR transformation. As we explained in Section 1, subse-
quence matching is one of important time-series matching applications. For subsequence
matching, we use two data sets: one is the stock data of Figure 4, and another is the sine
data used in [23]. We discuss these experimental results in Experiments 3 and 4.

5.2. Experimental results. In this subsection we explain the experimental results for
four MBR transformations. Experiment 1) measures the numbers of transformations and
the elapsed times of DFTnaive and DFTadv by varying the dimension n of the HD MBR.
Experiment 2) performs the same experiment for DCTnaive and DCTadv.
Experiment 1) DFTnaive vs. DFTadv
Figure 5 shows the experimental results of DFTnaive and DFTadv. In the experiment, as
the dimension n of the HD MBR increases, the number k of HD MBRs decreases since k
is set to b329, 112/nc. In the figure, X axis represents the dimension n of the HD MBR,
and Y axis the number of transformations or the elapsed time. Figures 5(a) and 5(b)
show the results for the whole stock data set, and Figures 5(c) and 5(d) those for one
MBR. Note that Y axes in all the four figures have the exponential scale. As shown in
the figures, there is no experimental result of DFTnaive for the cases where n is greater
than 16. It is because DFTnaive requires a huge number of transformations and takes a
too long time if n is greater than 16.

As shown in Figure 5(a), DFTadv significantly reduces the number of transformations
over DFTnaive, and the difference becomes larger as n increases. As we have analyzed
in Section 4, it is because the number of transformations required in DFTnaive is pro-
portional to O(k · 2n); in contrast, that in DFTadv to O(k). Next, in Figure 5(a), the
number of transformations in DFTadv decreases as n increases. The reason is that, as
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Figure 5. Experimental results for DFTnaive and DFTadv

n increases, the number k of HD MBRs decreases since k = b329, 112/nc, but DFTadv
requires only two transformations for each MBR. Figure 5(b) shows that DFTadv also
reduces the elapsed time significantly over DFTnaive. This performance difference is due
to the difference in the number of transformations depicted in Figure 5(a). In Figure 5(b),
we note that there is no change in the elapsed time of DFTadv even as n increases. It
is because, as the dimension n of the MBR increases, the number of transformations of
DFTadv in Figure 5(a) decreases, but the increased dimension requires the more compu-
tation time for DFT. In summary of Figures 5(a) and 5(b), when the dimension n is 16,
DFTadv reduces the number of transformations by up to 32,800 times and the elapsed
time by up to 13,100 times that of DFTnaive. And, this difference between DFTnaive
and DFTadv becomes rapidly larger as the dimension increases.
As shown in the results for one MBR in Figures 5(c) and 5(d), DFTadv also significantly

outperforms DFTnaive. In Figure 5(c), the number of transformations in DFTnaive
rapidly increases in proportion to O(k · 2n) as n increases. In contrast, DFTadv requires
only two transformations for each MBR regardless of n. Thus, Figure 5(c) shows that, as n
increases, the difference in the number of transformations between DFTnaive and DFTadv
becomes larger. By this difference in the number of transformations, DFTadv reduces the
elapsed time over DFTnaive as in Figure 5(d). We note that, in Figure 5(d), the elapsed
time of DFTadv becomes larger as n increases. It is because the DFT transformation
time for one MBR becomes larger as the dimension n of the MBR increases.
Experiment 2) DCTnaive vs. DCTadv
Figure 6 shows the experimental results of DCTnaive and DCTadv. Since the numbers of
transformations required in DCTnaive and DCTadv are identical to those in DFTnaive
and DFTadv, respectively, we omit the numbers, but present the elapsed times only as
the results. Figure 6(a) shows the result for the whole stock data set, and Figure 6(b)
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Figure 7. Efficiency comparison of lower-dimensional transformations in
subsequence matching

that for one MBR. Like DFTnaive, there is no experimental result of DCTnaive for the
cases where n is greater than 16. It is also because DCTnaive takes a too long time if n
is greater than 16.

The results for DCT solutions in Figures 6(a) and 6(b) are very similar to those for
DFT solutions in Figures 5(b) and 5(d). The reason is that the number of transforma-
tions is not dependent on types of transformations. That is, it is because the numbers of
transformations required in DCTnaive and DCTadv are the same as those in DFTnaive
and DFTadv. However, there is a little difference (3% to 6%) in the elapsed time between
DFTnaive and DCTnaive (or between DFTadv and DCTadv) since the transformation
time by DFT is not exactly same as that by DCT. In summary of Figure 6, when the
dimension n is 16, DCTadv reduces the elapsed time by up to 11,600 times that of DCT-
naive. And, this difference between DCTnaive and DCTadv becomes rapidly larger as
the dimension increases.
Experiment 3) Efficiency of transformations in subsequence matching
In this experiment, we measure the number of transformations and the elapsed time for
those transformations in subsequence matching. Figure 7(a) shows the number of lower-
dimensional transformations, and Figures 7(b) and 7(c) show the elapsed time per MBR
for the naive and advanced transformations. We have fixed the number of subsequences
in an MBR to 256, but we have varied the window size [7, 22] from 128 to 1,024. From
Figure 7(a), we note that the numbers of transformations do not change even as the
window size increases. This is because the numbers are independent of the window size in
both transformations. Additionally, in Figures 7(b) and 7(c) we see DFTadv and DCTadv
significantly reduce the elapsed time over DFTnaive and DCTnaive, respectively. This
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Figure 8. Subsequence matching performance of DFTadv and DFTnaive

result means that our MBR transformations are very suitable as the lower-dimensional
transformation of subsequence matching.
Experiment 4) Efficiency on the whole process of subsequence matching
In this experiment, we confirm that the MBR transformation truly improve the whole
process of subsequence matching. For this, we perform the actual subsequence match-
ing, which includes lower-dimensional transformations, and measure its actual elapsed
time. Figure 8 shows the subsequence matching performance of DFTadv and DFTnaive
for varying the window size from 256 to 1024. As shown in the figures, DFTadv im-
proves the matching performance compared with DFTnaive. However, the performance
improvement of Figure 8 is relatively small compared with other previous experimental
results. This is because the subsequence matching algorithm includes the post-processing
step as well as the index-filtering step [1, 7, 22]. That is, much time is required in the
post-processing step, and thus the overall performance improvement becomes relatively
small. We have performed the same experiment for DCTadv and DCTnaive, but we omit
their experimental results here because the results are very similar to those of Figure 8.
In conclusion, we can say that our MBR transformations are also applicable to actual
subsequence matching applications.

6. Conclusions. To our knowledge, there has been no research result on the lower-
dimensional transformation of HD MBRs while there have been many research efforts on
the lower-dimensional transformation of HD points. However, a lot of real data such as
time-series sequences and streaming data can be modeled as an MBR rather than a point
in an HD space. To store and search those HDMBRs in a multidimensional index, we need
to use the lower-dimensional MBR transformation that converts an HD MBR itself to an
LD MBR directly. In this paper, we proposed a formal approach to the lower-dimensional
MBR transformation.
We can summarize our work as the following four contributions.

• First, we formally defined the notion of lower-dimensional MBR transformation. The
lower-dimensional MBR transformation constructs an LD MBR by bounding every
LD point to which every possible HD point in the HD MBR is transformed.

• Second, as the naive solutions for DFT and DCT, we proposed DFTnaive and DCT-
naive, respectively. DFTnaive and DCTnaive use all the vertex points on an HD
MBR rather than an infinite number of points in the MBR. We formally proved
their correctness in Theorems 4.1 and 4.3, respectively.

• Third, to solve the problem that the naive solutions require a huge number of trans-
formations, we proposed DFTadv and DCTadv as the advanced solutions. DFTadv
and DCTadv use only two points (a lower-left and an upper-right points) rather
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than all vertex points on an MBR. We also formally proved their correctness in
Theorems 4.2 and 4.4, respectively.

• Fourth, through analysis and experiments, we showed superiority of DFTadv and
DCTadv. By formally deriving the number of transformations, we analytically show
that the complexity for performing MBR transformations is drastically reduced from
exponential (O(2n)) to constant (O(1)). We then empirically showed that, compared
with the naive solutions, DFTadv and DCTadv significantly reduced the execution
time by up to 13,100 and 11,600 times, respectively, when the dimension was 16.
More importantly, the larger dimension would cause the more performance improve-
ment.

These results indicate that the proposed notion of lower-dimensional MBR transformation,
DFT-based solutions, and DCT-based solutions provide a useful framework for a variety
of applications that use HD MBRs.
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