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Abstract. The iterative multi-step scheme has been applied to circle/arc detection. It
usually includes three main steps: picking initial points, finding correspondent searching
points with predefined geometric properties, and obtaining candidate circles/arcs. A suc-
cessful iteration for finding a candidate circle/arc depends on picking valid initial points
and finding valid correspondent searching points, and the “valid” means those points
must lie on the same target circles/arcs. That is, the iteration is redundant if initial
points or searching points are invalid. In this paper, an efficient circle/arc detection
method (MCD) based on a mirror-checking algorithm is proposed: we first randomly pick
two initial points and construct two corresponding patterns by collecting neighbor points
around the initial points. Then, we use the proposed mirror-checking algorithm to check
whether the two patterns are mirrored. If they are not mirrored, we will ignore the initial
points and find new ones to avoid redundant iteration; otherwise, a candidate circle can
be obtained from the mirrored patterns. Instead of finding searching points within a pre-
defined geometric region, the searching point is picked from the mirrored patterns. Based
on the initial and searching points, the verification process is utilized to confirm whether
the candidate circle is the target circle. From the experimental results, the proposed algo-
rithm can efficiently reduce redundant iterations and executing time. In the meanwhile,
we plug the proposed mirror-checking algorithm to the effective voting method (MEVM)
and semi-random detection method (MSRD). The experimental results show that it can
speed up the two methods and sift redundant iterations efficiently.
Keywords: Mirror-checking algorithm, Multi-step method, Circle/Arc detection, Ge-
ometry property

1. Introduction. The Hough transform (HT) is one of the most useful technologies for
circle/arc detection in machine vision [1-10]. It transforms every point in the spatial
domain into n voting cells of the parameter space. That is, the HT converts the shape
detection problem into peak detection in the parameter (or voting) space. However, the
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main drawback of the HT is that it requires heavy loads for the 1-to-nmapping processing.
That makes itself more difficult be applied to real-time systems.
Instead of using 1-to-n mapping scheme, many n-to-1 mapping methods have been

proposed to reduce the loads for efficient circle/arc detection [11-30]. They use an n-
to-1 mapping scheme to avoid spurious voting which happened in the 1-to-n mapping
processing. The n-to-1 mapping scheme uses n points to decide the increment of one
corresponding cell of the voting space. This can reduce the heavy loads of the HT. The
randomized Hough transform (RHT) randomly picked three points (3-tuple) to obtain a
candidate circle [24,25]. Since the probability of random picking 3-tuple points on the
same circle at the same time is low, many RHT-based algorithms have been proposed to
increase the sampling probability, such as picking the n-tuple points from the same group
[15,22], and applying filtering to de-noising [16,23]. However, it still has the spurious
voting problem while n-tuple points are not on the same target circle. A non-HT-based
method, the efficient randomized circle detection algorithm (RCD), used the n-to-1 map-
ping method to detect circles without using the voting space or voting procedure [11]. It
used a three step strategy: first, random picking 4-tuple points (seeds); second, determin-
ing a candidate circle with a distance criterion; finally, verifying the candidate circle with
novel voting strategies [12,13]. However, in a noisy case, we can see that it is critical for
random picking 4-tuple points on the same circle simultaneously.
A simple way to increase the probability of random picking seeds is to divide the first

step into two sub-steps: picking initial points and finding searching points. That is,
the new scheme includes three steps: picking ni initial points, finding ns correspondent
searching points with predefined geometric properties, and obtaining a candidate circle.
Chiu and Liaw (2005) proposed the effective voting method for circle detection (EVM)
[14]. They picked two initial points (i.e., ni = 2) to vote for only one candidate circle while
the searching point (i.e., ns = 1) is found from a pseudo circle. Zhang and Cao (2008) and
Jiang (2009) used only one point as the initial point (i.e., ni = 1) and found the searching
points (i.e., ns = 2) with the predefined geometric properties; however, their iteration for
finding searching point is explosively increasing in noisy case [18,26]. Shang et al. (2009)
proposed a semi-random detection based on right triangles inscribed in a circle (SRD);
they used two random picked points as initial points (i.e., ni = 2) and found searching
points by following the vertical direction [20,21]. Any three of the points can be treated
as a right triangle inscribed in a circle, and the found circle is treated as a candidate
one. Chiu et al. (2010) proposed the fast randomized Hough transform (FRHT) to only
pick one initial point (i.e., ni = 1) and utilized the symmetric conception for finding the
two searching points (i.e., ns = 2) within a window region [27]. If above three points are
valid, a reliable target circle can be obtained with the most votes. A successful iteration
for finding a candidate circle/arc depends on picking valid initial points and finding valid
correspondent searching points, and the “valid” means the initial and searching points
are on the same target circle/arc. On the contrary, above methods encounter the same
redundant problem that the iteration is redundant while initial points or searching points
are not valid. Although Chiu et al. proposed the fast randomized method for efficient
circle/arc detection (FRECD) and demonstrated that the initial point cannot be valid
[28], it still needs to find valid searching points within a pseudo circle. Unfortunately, the
number of redundant iterations is increased in a noisy or complex background case.
In this paper, a mirror-checking algorithm for efficient circle/arc detection method

(MCD) is proposed: We first randomly pick two initial points and construct two corre-
sponding patterns by collecting neighbor points around the initial points. We then use
the proposed mirror-checking algorithm to check whether the two patterns are mirrored
to each other. If they are not mirrored, we will ignore the initial points and find the new
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ones to avoid redundant procedure. If they are mirrored, the following searching points
are picked from the mirrored patterns, instead of finding within a predefined geometric
region. Finally, we use the initial and searching points to obtain a candidate circle, and
the verification process is utilized to confirm whether the candidate circle is the target
circle. From the experimental results, the proposed MCD based on mirror-checking algo-
rithm can efficiently reduce redundant iterations and executing time. In the meanwhile,
we plug the proposed mirror-checking algorithm to the effective voting method (MEVM)
and semi-random detection Method (MSRD). The experimental results show that it can
speed up the two methods and sift redundant iterations efficiently. We may conclude that
the proposed method provides the following truly significant and novel contributions:

1) Instead of finding searching points within a predefined geometric region, the searching
point(s) are picked while obtaining the valid initial points.

2) A mirror-checking algorithm is applied to check whether the initial points are valid.

The rest of this paper is organized as follows. Section 2 is the proposed mirror-checking
algorithm for efficient circle/arc detection (MCD). Section 3 shows the experimental re-
sults and discussions. Finally, some conclusions are addressed in Section 4.

2. The Mirror-Checking Algorithm for Efficient Circle/Arc Detection (MCD).

2.1. Summary of geometric properties. In Figure 1, there are four points Pa, Pb,
Pd, and Pe on a circle, and their coordinates are (xa, ya), (xb, yb), (xd, yd) and (xe, ye),
respectively. In order to simplify the explanation of the proposed algorithm, we summarize
some well-known geometric properties of a circle as follows:
Property I:

We can find symmetric point pairs with respect to a middle-perpendicular line. For
example, in Figure 1, we can find the symmetric point Pe(xe, ye) from the point Pd(xd, yd)
with respect to L⊥ab. Given Pa, Pb and Pd, the coordinate (xe, ye) can be obtained by
following steps:

1) In Figure 1, there is a middle-perpendicular line L⊥ab with respect to the line PaPb,
and the line equation can be denoted as (general form):

Ax+By + C = 0. (1)

Figure 1. The illustration of the proposed method (MCD). In this case,
Pd ∈ D.



1442 S.-H. CHIU, C.-C. CHEN, C.-Y. WEN ET AL.

2) Supposing Pd(xd, yd) and Pe(xe, ye) form a symmetric point pair with respect to L⊥ab,
we can rewrite Equation (1) as:

A

(
xd + xe

2

)
+B

(
yd + ye

2

)
+ C = 0. (2)

Since L⊥ab and PdPe are perpendicular, their slopes are negative reciprocals of each
other:

yd − ye
xd − xe

·
(
−A

B

)
= −1. (3)

3) The coordinate (xe, ye) of point Pe can be computed from Equations (2) and (3):{
xe = xd − 2·A(A·xd+B·yd+C)

A2+B2

ye = yd − 2·B(A·xd+B·yd+C)
A2+B2

(4)

Property II:
Given Pa and Pb, the middle-perpendicular line, L⊥ab, also can be obtained from the

definition of the parametric form: {
x = xm + vx · l
y = ym + vy · l

, (5)

where l ∈ [0, 1] denotes the scale factor, and (xm, ym) =
(
xa+xb

2
, ya+yb

2

)
denotes the coordi-

nate of point m between Pa and Pb, and (vx, vy) = (xb − xa, ya − yb) denotes the direction
vector of L⊥ab. We can denote any point on L⊥ab with Equation (5).

2.2. The mirror-checking algorithm. Given a W×H edge image with M edge points,
we denote D as a set of all edge points:

D = {Pi = (xi, yi)|i = 1, 2, . . . ,M}, (6)

where Pi denotes the edge point with coordinate of (xi, yi).
In Figure 1, let Pa and Pb be two initial points, we create two w × w windows, Wa

and Wb, whose centers are Pa and Pb, respectively. According to Property I, all edge
points within Wa are scanned one by one (except Pa). If we get a point, Pd, we will
use Equation (4) to check if its correspondent symmetric point, Pe ∈ D, exists within
Wb. If Pe is found, we store the Pd point to the set D, where D ⊆ D. After all points
within the Wa region (except Pa) are scanned and checked by using Equation (4), we will
treat the two initial points, Pa and Pb, are valid and provide enough symmetric level if
the cardinality of the D, |D|, is bigger than a predefined threshold Ts (in this paper, we
set Ts = w/2); otherwise, the two points, Pa and Pb, are invalid while |D| is less than a
predefined threshold Ts.

2.3. The proposed method (MCD). In Figure 1, the proposed efficient method for
circle/arc detection (MCD) is illustrated and described as follows:

Step 1: Initialization: Let IP (IV ) be the iteration times of picking (valid) initial points,
and IP = IV = 0 initially. Ti is the predefined iteration times that we can tolerate.
Let N be the current detected circle number, and N = 0 initially. Tn is the target
circle number.

Step 2: Initial point selection: We randomly pick two edge points from D, and the two
points are denoted as Pa and Pb, respectively. In the meanwhile, we perform
IP = IP + 1, where IP denotes the iteration times of picking initial points from
the set D.
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Step 3: Mirror mapping for initial point selection (the mirror-checking algorithm): In this
step, the picking Pa and Pb are applied to the mirror-checking algorithm to check
whether the two random picking initial points are valid (see Section 2.2). If the
two points are treated as valid, we perform IV = IV + 1 and forward to Step 4;
Otherwise, we empty the set D and go back to Step 2.

Step 4: Obtaining a candidate circle: If IV = Ti, we stop the whole procedure. According
to Property II, any point Pc(xc, yc) on the middle-perpendicular line, L⊥ab, can
be represented by using Equation (5):{

xc = xm + vx · l
yc = ym + vy · l

, (7)

where xm = (xa + xb)/2, ym = (ya + yb)/2 and (vx, vy) = (xb − xa, ya − yb) can be
obtained from the two initial points (Pa and Pb). We pick a point Pk from the set
D. Assuming that the Pk, Pa and Pb lie on the same circle which is centered at

Pc(xc, yc), we can obtain an equation
∣∣PcPa

∣∣2 =
∣∣PcPk

∣∣2 (where | • | denotes the
Euclidean distance of two points.):

[(xm + vxl)− xa]
2 + [(ym + vyl)− ya]

2

= [(xm + vxl)− xk]
2 + [(ym + vyl)− yk]

2 ,
(8)

Therefore, the scale factor l can be obtained by solving Equation (8) as:

l =
(x2

k + y2k)− (x2
a + y2a)− 2[xm(xk − xa) + ym(yk − ya)]

2[vx(xk − xa) + vy(yk − ya)]
. (9)

For example, in Figure 1, we pick a point Pd from the set D. The scale factor l
can be obtained by using Equation (9):

l =
(x2

d + y2d)− (x2
a + y2a)− 2[xm(xd − xa) + ym(yd − ya)]

2[vx(xd − xa) + vy(yd − ya)]
. (10)

We also obtain the coordinate of Pc(xc, yc) and the correspondent radius rc as:

rc =
∣∣PcPa

∣∣ = ∣∣PcPd

∣∣ . (11)

We go to Step 5. While all elements of the set D are checked and treated as
invalid, we empty the set D and go back to Step 2.

Step 5: Verification: The circumference of edge points on the candidate circle can be
described as:

D′ =

{
Pj

∣∣∣∣∣∣∣∣√(xj − xc)2 + (yj − yc)2 − rc

∣∣∣∣ ≤ εr

}
, (12)

where D′ ⊆ D and εr is a tolerant threshold value (we set εr = 1 in this paper).
We can regard the candidate circle as the target circle while:

|D′| ≥ 2πrcTr, (13)

where |D′| is the cardinality of D′, and Tr ∈ [0, 1] is the predefined existing rate
of the target circle. If the candidate circle is confirmed as the target circle by
Equation (13), we remove all elements of D′ out of D; in the meanwhile, we let
the current detected circle number N = N + 1 and empty the set D; otherwise,
we go back to Step 4. If N = Tn, we stop the whole procedure; otherwise, we go
back to Step 2.
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3. Experiments and Discussions.

3.1. Analysis of the computation. In the iterative procedure, we use IP to denote the
iteration times of picking initial points. As two initial points are picked (e.g., Pa and Pb

in Figure 1), the points within the created w × w window (e.g., Wa) are orderly checked
by using Equation (4). Therefore, the iteration for the mirror-checking procedure is:

IP × (w2 − 1), (14)

where (w2 − 1) denotes the maximum number of points (except the center point) in the
created window region.
While the valid initial points are obtained by using the proposed mirror-checking al-

gorithm, the IV is used to denote the iteration times. Then, the points in the set D are
treated as searching points for obtaining candidate circles. Therefore, the iteration for
obtaining a candidate circle is:

IV × (w2 − 1), (15)

where (w2 − 1) denotes the maximum cardinality of D. The total iteration times (T ) of
the MCD required is the sum of Equations (14) and (15):

T (MCD) ≈ IP × (w2 − 1) + IV × (w2 − 1)

≈ (IP + IV )× w2.
(16)

Given a W ×H image with total M edge points, we suppose there are N points on a
circle; i.e., the point on the circumference is:

N = 2πr. (17)

In this paper, the value of w is set as 20, which is much smaller than N . We have the
relationship:

W ·H > M > N > w. (18)

We use p to denote the probability of picking a valid point on a target circle, where p
is approximated as:

p =
N

M
. (19)

For the MCD, the probability of random picking initial points of Pa and Pb on the same
target circle is:

PMCD =
N

M
· N − 1

M − 1
≈

(
N

M

)2

≈ p2. (20)

In general, the minimum iteration for picking valid initial points at least once (i.e., IV = 1)
is:

IP =
1

p2
. (21)

Therefore, the total iteration times of the MCD required in Equation (16) is rewritten as:

T (MCD) ≈ (IP + 1)×
(
w2 − 1

)
≈

(
w

p

)2

, (22)

where w is set as 20 in this paper, and (w2 − 1) denotes the total pixel number in the
window region (except the center point).
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3.1.1. Computation comparison with the RCD. For the RCD, the probability of randomly
picking four initial points on the same target circle is:

PRCD =
N

M
· N − 1

M − 1
· N − 2

M − 2
· N − 3

M − 3
≈ p4. (23)

After an initial picking, a distance criterion is then utilized to check whether a candidate
circle; therefore, the minimum iteration times (IP ) for RCD to pick four valid initial points
at least once is:

T (RCD) =
1

PRCD

=
1

p4
. (24)

We compare the iteration times of the MCD and RCD by using Equations (22) and (24),
and the ratio of T (MCD) and T (RCD) is obtained by:

T (MCD)

T (RCD)
≈ (p · w)2 . (25)

In this paper, w is set as 20. In other words, the proposed MCD will consume less
computation iterations while p is decreasing. In general, while p is less than 1

20
, the MCD

provides better performance than the RCD in computation iteration requirement.

3.1.2. Computation comparison with the EVM. When using the EVM to detect circles,
we need to re-sample the M edge points with an interval d along the y-direction. When
we set d as one (all edge points should be considered), the needed iteration is maximum
and approximated as:

T (EVM) ≈
(
M
d

) (
M
d
− 1

)
2

≈ M2

2
. (26)

We compare the iteration times of the MCD and EVM by using Equations (22) and (26).
The ratio of T (MCD) and T (EVM) is obtained by:

T (MCD)

T (EVM)
≈

(
w

p

)2

·
(

2

M2

)
= 2

(w

N

)2

. (27)

According to Equation (18), we can see that the proposed MCD will consume less iteration
times than that of the EVM.

3.1.3. Comparison with the SRD. To detect circle by using the SRD, the probability of
picking valid initial points is:

PSRD =

(
2r

H

)
·
(

2

W
· 2− 1

W − 1

)
≈ 4 · r

H ·W 2
, (28)

where
(
2r
H

)
denotes the probability of picking a valid line which is crossing to the target

circle, and
(

2
W

· 2−1
W−1

)
denotes the probability that initial points are picked from the same

target circle. Therefore, the minimum iteration times (IP ) for the SRD to pick valid initial
points at least once is:

IP (SRD) =
1

PSRD

=
H ·W 2

4 · r
. (29)

Following the vertical direction of initial points, the iteration times of searching points is
the height of image size; i.e., H. Therefore, the total iteration time of the SRD is:

T (SRD) ≈ IP (SRD) ·H ≈ (W ·H)2

4 · r
. (30)
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We compare the iteration times of the MCD and SRD by using Equations (22) and
(30). The ratio of T (MCD) and T (SRD) is:

T (MCD)

T (SRD)
≈ 4r ·

(
w

N

M

W ·H

)2

. (31)

According to Equation (18), the proposed MCD will consume much less computation
iteration than that of the SRD.
In what follows, several synthetic and realistic images are used to test and compare

the performance of the methods (RCD, EVM, SRD and the proposed MCD). Table 1
shows the parameter settings of the four methods in our experiments. All of experiments
are performed on Vista Operation System with Intel Core 2 Duo CPU (2.20 GHz) and
executed (C++ programming) by using Borland C++ Builder 6.0.

Table 1. The parameter setting of the three methods. The “×” denotes
that the parameter is not needed. The w, Ts, Tr and εr denote window size,
scores threshold, existing rate and detection error, respectively.

Methods w Ts(= w/2) Tr εr
RCD × × 0.7 1
EVM × × 0.7 1
SRD × × 0.7 1

MCD (proposed) 20 10 0.7 1

3.2. Synthetic image experiments. Figure 2(a) shows a 256× 256 circle image. The
radius and circumference of the circle are 37 and 232 pixels, respectively. That is, there
are 232 edge points on the circle. We impose different levels of salt and pepper noise on the
image. The levels (n%) range from 100% (i.e., adding 232 noise points) to 2000% (i.e.,
adding 4640 noise points). For example, Figures 2(b) and 2(c) are 1000% and 2000%
noisy images of Figure 2(a), respectively. The thresholds Ti (the maximum iteration
times that we can tolerate) and Tn (the excepted number of target circles) are set to be
∞ and 1, respectively. Figure 3 illustrates the average execution time (obtained from 100
simulations, tave) of the four methods for detecting the target circle in Figure 2(a) and its
noisy images (please be noted that the execution time of mirror-checking algorithm of the
MCD is already considered). It is clear to see that the execution time of the RCD and
EVM are much longer than those of the SRD and MCD. After 200% noise imposed, the
proposed MCD provides significant better performance than the SRD in tave required. As
2000% noises are imposed, the proposed MCD (tave ≈ 0.007 seconds) is much faster than
SRD (tave ≈ 0.5 seconds), EVM (tave ≈ 10 seconds), and RCD (tave ≈ 12 seconds).
Figure 4(a) shows a 256 × 256 image with six target circles. There are totally 2154

edge points on circumferences of six circles. Again, we impose different levels of salt
and pepper noise on the image. The levels (n%) range from 20% (i.e., adding 430 noise
points) to 200% (i.e., adding 4308 noise points). Figures 4(b) and 4(c) show the noise
imposed images of Figure 4(a) by 100% and 200% (i.e., adding 2154 and 4308 noise points),
respectively. The thresholds Ti (the maximum iteration times that we can tolerate) and
Tn (the excepted number of target circles) are set to be ∞ and 6, respectively. Figure 5
illustrates the average execution time (tave) of four methods for detecting the circles in
Figure 4(a) and its noisy images (please be noted that the time of mirror mapping of the
MCD is already considered). It can be seen that the execution time of the MCD is much
faster than the other ones. As 200% noises are imposed, the execution time (tave) of the
proposed MCD is 0.049 seconds. As shown in Figure 6, n% = 200%, the MCD performs
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(a) (b)

(c) (d)

Figure 2. A synthetic image (single target circle): (a) an origin image
with a circle; (b) imposing 1000% noise on the original image; (c) imposing
2000% noises on the original image; (d) the detection result of (c) by using
the proposed MCD, and the average execution time (tave) obtained from
100 simulations is about 0.007 seconds.

(a)

(b)

Figure 3. The experimental result of average execution time (seconds) of
Figure 2: (a) RCD and EVM; (b) the SRD and the proposed MCD. The
noise levels (n%) range from 100% to 2000%, and the average execution
time (tave) is obtained from 100 simulations.
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(a) (b)

(c) (d)

Figure 4. A synthetic image (six target circles): (a) an image with six
circles; (b) imposing 100% salt and pepper noise on (a); (c) imposing 200%
salt and pepper noise on (a); (d) the detection result of (c) by using the
MCD, and the execution time obtained from 100 simulations is about 0.049
seconds.

(a)

(b)

Figure 5. The experimental result of average execution time of Figure 4:
(a) RCD; (b) the SRD, EVM and the proposed MCD. The noise levels (n%)
range from 20% to 200%, and the average execution time (tave) is obtained
from 100 simulations.
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Figure 6. The average iteration times of picking initial points: The noise
levels (n%) range from 20% to 200%, and the average iteration times of IV
and IP are obtained from 100 simulations. For example, in 200% noise level,
the average IV is 11.61 iterations while the average IP is 2186.72 iterations.
It denotes the mirror-checking algorithm can efficiently sift most redundant
iteration while picking invalid initial points.

(a) (b) (c)

Figure 7. A realistic image (480 × 320) testing: (a) a rider wearing a
helmet; (b) the edge image of (a); (c) the detection result of the proposed
MCD. The Tr, Tn and Ti are set as 0.4, 1 and ∞, respectively.

about 2186.72 iteration times (IP = 2186.72) for picking initial points (i.e., Step 2 in
section 2.3); however, only about 11.61 iteration times (i.e., Step 3 in section 2.3) with
valid initial points forward to the following steps (finding the correspondent searching
points and verifying), and that is why the execution time required is much less than the
other ones while noise increasing.

3.3. Realistic image experiments. Figure 7(a) is a realistic image (480× 320) with a
rider wearing a helmet. Our target is the helmet. In this case, Tr is set as 0.4, and the
average execution time (tave) for the proposed MCD is about 1.22 (±0.85) seconds while
Ti = ∞ (the maximum iteration times that we can tolerate) and Tn = 1. While the MCD
can detect the helmet successfully, EVM and SRD cannot work well. For the RCD, the
probability of picking four initial points on the target helmet is quiet low; the experimental
result of average execution time is much more than that of MCD required. For the EVM,
the initial points are picked from an interval d, and we will find a candidate circle within
a pseudo circle range. That is, while the interval d is improper set, it is difficult to find
a candidate circle. In this case, although it can detect the target arc while d ≤ 5 (while
d > 5, the EVM fails to detect the helmet), the computation time is increasing as d



1450 S.-H. CHIU, C.-C. CHEN, C.-Y. WEN ET AL.

(a) (b) (c)

Figure 8. A realistic image (640×480) testing: (a) a printed circuit board
image; (b) the edge image of (a); (c) the detection result of the proposed
MCD. The Tr, Tn and Ti are set as 0.7, 19 and ∞, respectively.

Table 2. The average numbers of detected target circles, Nave (±S.D.), for
the experiment of Figure 8. The total circle number in the printed circuit
board image is 19, and Ti denotes the maximum iteration times that we
can tolerate.

Methods Ti = 500 Ti = 1, 000 Ti = 2, 000
RCD 0 (±0) 0.05 (±0) 0.12 (±0.03)
EVM 0 (±0) 0.15 (±0.11) 0.17 (±0.23)
SRD 11.03 (±2.27) 15.82 (±1.39) 17.97 (±0.79)

MCD (proposed) 18.16 (±0.67) 18.77 (±0.35) 19 (±0.0)

decreases. The average execution time (tave) for the EVM is about 13.21 (±0.02) seconds
as d = 5. For the SRD, since it applies the geometry of a right triangle inscribed in a
circle to circle detection, it will fail if the length of the target arc is less than a semicircle.
In this case, the arc of the helmet is less than a semicircle, and the SRD cannot detect it.
In many practical applications, we may have no idea how many circles/arcs in an

examined image. It is not easy to set proper Ti and Tn. A good circle/arc detection
method should detect circles/arcs efficiently. That is, it can detect all target circles/arcs
in a limited iterative procedure. Figure 8 shows a 640× 480 printed circuit board image
with 19 target circles (i.e., the accurate Tn = 19). If we let Ti = ∞ (the maximum
iteration times that we can tolerate), all three methods can detect the target 19 circles
successfully (see Figure 8(c)). If we change Ti as a constant value (as in Table 2, we let
Ti = 500, 1,000, and 2,000), we may miss some target circles; i.e., the detected circle
number N is less than Tn. We use Nave to denote the average number of detected target
circles from 100 simulations. We can see the proposed MCD almost finds all circles; in
the meanwhile, the other methods miss some circles. For example, when Ti = 500, the
MCD can find all circles most of time; on the other hand, the SRD misses about 8 circles
and the EVM cannot find any circle.

3.4. Plugging the mirror-checking algorithm with the effective voting method
(MEVM) and semi-random detection method (MSRD). We redo the experiment
testing in Figure 2(a). The noise levels (n%) range from 100% to 2000%. Figure 9
illustrates the average execution time (obtained from 100 simulations, tave). While the
EVM regards all picked initial points as valid and finishes all the following steps, the
MEVM uses the mirror-checking algorithm to avoid redundant computations for finding
correspondent searching points or circle detection while the initial points are invalid.
As shown in Figure 10, as n% = 2000%, the MEVM performs 42,360 iteration times
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Figure 9. The execution time (seconds) of the EVM and MEVM (plugging
the mirror-checking algorithm with them EVM) for testing the image in
Figure 2. The noise levels (n%) range from 100% to 2000%, and the average
execution time (tave) is obtained from 100 simulations.

Figure 10. The experimental result of average iteration times of selecting
initial points of the MEVM (plugging the mirror-checking algorithm with
them EVM). The noise levels (n%) range from 100% to 2000%, and the
average iteration times of IV and IP are obtained from 100 simulations.
For example in 2000% noise level, the iteration of IV is approximated 80.61
times while IP is over 42,360 times. It denotes the mirror-checking algorithm
can efficiently sift most redundant iteration while selecting invalid initial
points.

(IP = 42, 360, which is obtained from 100 simulations) for initial points selection; however,
about 80 iteration times (IV = 80.61) with valid initial points forward to the following
steps (finding the correspondent searching points and circle detection), and that is why
the execution time required is much less than the EVM while noise increasing in Figure
9.

While the SRD regards all picked initial points as valid and finishes all the following
steps, the MSRD uses the mirror-checking algorithm to avoid redundant computations
for finding correspondent searching points or circle detection while the initial points are
invalid. Figure 11 illustrates the average execution time (obtained from 100 simulations,
tave). With 800% noise imposed, the MSRD provides significant better performance than
the SRD in tave. While the SRD regards all random picked initial points as valid and
finishes all the following steps, the MSRD applies the mirror-checking algorithm to avoid
redundant computations for finding correspondent searching points or circle detection
while the initial points are invalid. As shown in Figure 12, as n% = 2000%, the MSRD
performs 220 iteration times (IP = 220) for initial point selection (i.e., Step 2); however,
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Figure 11. The execution time of the SRD and MSRD (plugging the
mirror-checking algorithm with the SRD) for testing the image in Figure
2(a). The noise levels (n%) range from 100% to 2000%, and the average
execution time (tave) is obtained from 100 simulations.

Figure 12. The experimental result of average iteration times of selecting
initial points of the MSRD (plugging the mirror-checking algorithm with
them SRD). The noise levels (n%) range from 100% to 2000%, and the
average iteration times of IV and IP are obtained from 100 simulations.
For example, in 2000% noise level, the iteration of IV is approximated 2
while IP is over 220 times. It denotes the mirror-checking algorithm can
efficiently sift most redundant iteration while selecting invalid initial points.

only two iteration times (IV = 2) with valid initial points forward to the following steps
(finding the correspondent searching points and verifying), and that is why the execution
time required is much less than the SRD while noise increasing in Figure 11.

3.5. Error analysis of the detected circle/arc. In this section, we make some discus-
sion for the quantization error of circle/arc detection. The error estimation in this thesis
is to use two-norm computation, E, as follows:

E =
√
(xc − x′)2 + (yc − y′)2 + (rc − r′)2, (32)

where (xc, yc, rc) and (x′, y′, r′) respectively denote the detected and target circle param-
eters (center position and its radius) in the image space.
We may manually obtain the ground truth data of the target circle in this sample (see

Figure 2(a)). However, it is a time consuming process and unreliable. On the contrary,
we utilized a coarse-to-fine method to locate the ground truth of the targeted circle [30].
Table 3 shows the ground truth of the targeted circle, and it is accurate to two decimal
places. We utilize the target circle in Figure 2(a) to obtain error estimation while imposing
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Table 3. The ground truth of an artificially made circle, in which the
center position is (168, 90) with 37 radius in the image space.

The information of the target circle x′ y′ r′

Artificially made circle in Figure 2(a) 168 90 37
Ground truth (coarse-to-fine method [30]) 167.41 89.51 36.50

Figure 13. The error estimation of the MCD method, with respect to the
ground truth obtained from the coarse-to-fine method [30]

noise from 100% to 2000%. Figure 13 illustrates the average error (Eave) of the MCD
method from the 100 simulations, and we can see that the error estimation is only around
one pixel with respect to the ground truth.

4. Conclusions. The proposed MCD belongs to the strategy of the multi-step algorithm
and uses initial points for circle detection. It uses a mirror-checking algorithm to sift and
reduce redundant/heavy computation for insufficient searching steps. From the analysis
of computation, we can see that the proposed MCD requires less computation than others,
and the experimental results show that the execution time of the MCD is faster than that
of the RCD, EVM and SRD. Not only the proposed mirror-mapping algorithm can avoid
redundant computing efficiently, but also it can be plugged to the EVM and SRD to
improve the redundant problems. However, a predefined threshold, w/2, is just empirical
set for checking the symmetric level. How to decide a proper threshold for checking
efficiently becomes an important issue. In the future, we will find a statistic/geometric
way to decide a proper checking threshold instead of an empirical setting value.
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