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Abstract. This study aims to develop an algorithm by integrating multi-resolution anal-
ysis (MRA) and principal curves (PC) for monitoring multivariate processes. This may
pave the way for handling nonlinear data by means of principal curves in process moni-
toring area. We succeed in utilizing PC technique for monitoring without the assistance
of neural networks, a traditional tool to deal with nonlinear model in papers, and get
ideal results. The methodology proposed is tested with a mathematical example and a
simulated benchmark process: the continuous stirred tank reactor (CSTR). The results
demonstrate that, compared with traditional principal component analysis (PCA), PC,
nonlinear PCA and multiscale PCA, the proposed approach can extract the nonlinearity
and decorrelate the autocorrelated measurements effectively and is, hence, suitable for
multivariate process monitoring.
Keywords: Process monitor, Multiscale analysis, Principal curves, Nonlinear PCA

1. Introduction. Process monitoring and fault diagnosis are crucial tasks in industrial
processes, which have attracted increasing attention from both academia and industry
during the past decade. One of the most widely adopted techniques is principal component
analysis. Though PCA is the optimal linear method with respect to minimizing the
mean squared prediction error (SPE), sometimes traditional PCA is inadequate if two
factors have to be considered in practice. One is nonlinearity. Most industrial process
data are nonlinear, and if conventional PCA is used, minor components do not always
consist of noise but important information. The other is autocorrelated data and wavelet
decomposition is usually used to deal with such an issue.

The purpose of this paper is to propose a methodology by combining MRA of wavelet
and nonlinear strategy of principal curves to handle practical process data with dynamic
and nonlinear characteristics. Besides, some improvements are also made such as utilizing
principal curves to establish nonlinear model without the assistance of neural networks
(NN) for the training procedure of NN is tedious and the results can be instable. The
results of both mathematical and simulated problems are presented to illustrate the ef-
fectiveness of this combinational method.
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2. Past Related Research about Nonlinear PCA and Multiscale Analysis.

2.1. Nonlinear PCA. To extract nonlinear features from process data, various tech-
niques have been proposed among which two approaches are typical. One is kernel method
using statistical learning theory. Data are mapped into a higher dimension space where
the relationship is linear, so its essence is still linear PCA. As stated by Lee (2004), Kernel
PCA (KPCA) did not consider reconstruction steps of the data in feature space; thus, it
raised a problem while applied directly to process monitoring since the value of SPE can
not be obtained [1].
The other approach is to find the best representation of data’s inner structure directly;

for example, principal curves proposed by Hastie (1984) are smooth 1-D curves that pass
through the middle of a p-D data set [2]. They minimize the distance from itself to the
points, and provide a nonlinear summary of the data. Figure 1 illustrates the difference
between linear PCA and PC.
Based on PC technique, Dong and McAvoy (1996) proposed a method for process

monitoring [3]. Neural networks were adopted in his approach to calculate the predicted

Figure 1. The first linear principal component and principal curve
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values. In fact, neural network can be utilized independently to model nonlinear principal
components [4]. A feedforward structure with a bottleneck layer is employed typically in
NN model to extract the nonlinearity. Zhao and Xu (2005) found that such networks were
so sensitive that the obtained results significantly differed from the underlying system [5],
and the same conclusion can be drawn in Section 4 of this paper.

2.2. Multiscale analysis based on wavelets. Wavelet based multi-resolution analysis
is usually utilized to extract features from industrial data while multiscale PCA (MSPCA)
is considered the framework of later MRA based process monitoring [6]. It uses wavelet
decomposition to decorrelate the autocorrelated data, and also uses linear PCA to reduce
the cross-correlation among the multivariate data. Besides, the methods of how to com-
bine wavelet decomposition and PCA are various. Ganesan et al. presented a summary
of these methodologies as shown in Figure 2 [7]. In this study, method 1 is adopted to
illustrate the effectiveness of multiscale principal curves (MSPC).

3. Main Methods. As mentioned above, conventional PCA is best suited for the anal-
ysis of steady state data with uncorrelated measurements. However, in practice, the
dynamics of typical chemical or manufacturing processes cause the measurements to be
autocorrelated and linear PCA is no longer appropriate. Consequently, a two-step proce-
dure is proposed in this study to deal with such a problem as shown in Figure 3.

Figure 2. Methods of combining wavelet decomposition and PCA
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Figure 3. Two steps to deal with autocorrelation and nonlinearity

First, multi-resolution analysis is used to decorrelate the autocorrelation in modeling
data by which the coefficients D&A are obtained. Then principal curves analysis step
is employed to extract nonlinear features of D&A respectively. So PCs of each scale are
obtained and these are the final process monitoring models. As far as online process
data are concerned, we can acquire coefficients D&A in the same manner. Then, by
interpolating (this paper) or NN method of Dong and McAvoy [3], the predicted values
of coefficients and fault detection variable (such as SPE) at each scale can be calculated
for process monitoring.

3.1. Decorrelating the autocorrelation by multi-resolution analysis. According
to wavelet theory, any function can be described by a wavelet set which provides a mapping
of the original function from time domain to frequency domain. The following is a wavelet
mother function Ψ:

Ψs,u(t) =
1√
s
Ψ

(
t− u

s

)
(1)

where s, u are the dilation and translation parameters. To deal with such situations that
the measurements are discretely available, parameters s, u can be dyadically discretized
as: s = 2j, u = 2jk, j, k ∈ Z and Equation (1) can be rewritten as:

Ψj,k(t) = 2−j/2Ψ(2−jt− k) (2)

Multivariate signal S can be decomposed successively onto scaling functions Φ and
wavelet functions Ψ respectively. The projections onto Φ are the coarse approximation
(A) of the original signal known as scaling coefficients. On the other hand, the projections
onto Ψ are called wavelet coefficients, capturing the details (D) of the signal lost when
moving from an approximation at one scale to the next. The decomposition step can be
carried out repeatedly as in Figure 4.
Still, there exist nonlinearities in industry data and now they are in wavelet coefficients,

for example, in cA3, cD3, cD2, cD1 of Figure 4. Hence, adopting linear PCA directly is
improper, i.e., nonlinear PCA methods should be considered.

3.2. Extracting nonlinear features by principal curves. As mentioned, KPCA is
regarded as a typical strategy to extract nonlinearities; however, Maulud et al. (2006)
found that KPCA required a large matrix computation if the input observations were
large [8]. In addition, it is not trivial to find a good kernel for a given problem under
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Figure 4. Successive wavelet decomposition

most situations, so it does not yield good results always. In this study, PC is chosen as
PCA’s nonlinear extension due to its excellent performance of representing data’s inner
structure. Dong’s experiments proved the effectiveness of such a method except that PCs
of original data rather than wavelet coefficients were calculated in his study [3].

Principal curves are nonparametric, nonlinear generalizations of the first principal com-
ponents. A 1-D curve f is a vector of functions of a single variable λ which provides an
ordering along f , and it is usually the arc length along the curve.

Let Xc ∈ Rm be a continuous random vector, then f(λ) is a principal curve of Xc if it
does not intersect and is self consistent. That is:

E[Xc|λf (Xc) = λ] = f(λ) (3)

where λf is defined as a projection index of Rm → R:

λf = sup
λ

{
λ : ‖Xc − f(λ)‖ = inf

µ
‖Xc − f(µ)‖

}
(4)

Self consistency means that each point on the curve is the conditional mean of the
points that project there. Next, let d(x, f) denote the Euclidean distance from a point x
to its projection on f :

d(x, f) = ‖x− f(λf (x))‖ (5)

And the expectation of the sum of the squared error is defined as:

D2(Xc, f) = Ed2(Xc, f) (6)

In practice, the distribution ofXc is unknown. For example, a finite data setXd ∈ Rm×n

should be considered which is a matrix of m observations on n variables. Hastie regarded
the data set as a sample from an underlying probability distribution, and used it to
estimate the principal curves of that distribution. The steps to obtain the Hastie and
Stuetzle’s (HS) principal curve are as follows:

Step 1: Use linear principal components and their corresponding direction vectors as
initial estimates of λf and f 0.

Step 2: Set f i+1(λ) = E[Xd|λf i(X) = λ], then calculate the distance D2(Xd, f
i+1).

Iterate until the relative change in the distance is below some threshold.
Figure 5 is an example to calculate PC by iterating. The original data are obtained by

generating points with independent noise N(0, 0.01) around an ellipse with major radius
2 and minor radius 1. The principal curves are estimated using HS’s algorithm with the
smoother cubic spline and span value 0.7. After 35 iterations, the final PC is reached as
shown in the last diagram of Figure 5.

While using HS’s method, the only control parameter that needs to be specified is
the span value which is the fraction of all the data points that are considered to be in
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Figure 5. The estimated principal curves for simulated data of step 1, 5
and 35
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the neighborhood. The shape of final curves can be influenced by this value more or
less corresponding to varying data, so determining the value involves a trade off between
smoothness and high fidelity to original data.

3.3. Multiscale principal curves method for process monitoring. Multiscale prin-
cipal curve integrates the ability of PC to extract the nonlinear relationship of variables
with that of wavelets to decorrelate the autocorrelation among the measurements.

When the PC approach is introduced to process monitoring, neural network is thought
to be indispensable. This is partly due to its powerful approximation character and
majorly because of the fact that people need not only the principal curve but also the
projection points of new measurement on the curve. Plenty of research has been done
mainly focusing on modification or improvement of the neural network. For instance,
Harkat et al. (2003) proposed an enhanced HS’s algorithm together with radial basis
function (RBF) network [9]. In this study, we abandon the NN method based on three
facts:

(1) The neural networks are sensitive and sometimes unreasonable results can be obtained.
(2) The neural network training process can be time-consuming and tedious, i.e., the time

is unpredictable.
(3) In our strategy, principal curve algorithm is used following multiscale analysis, so if

NN is incorporated, the whole procedure of modeling will be: MS-PC-NN, and it is
excessively time expensive.

The method proposed is similar to interpolating during model calculating procedure as
shown in Figure 6. To be exact, if data set Xd is finite, the principal curve can be regarded
as a polyline l and the target of monitoring is to search for a point (predicted value) in it
which is the nearest one to the measured data Y . Complexity of this procedure is O(N)
where N denotes the number of endpoints in l. That is to say, the complexity depends
on the scale of original data set for establishing model.

Figure 6. Data point Y and the predicted point of Y

In Figure 6, endpoints {A,B,C,D,E} form the polyline l (principal curve), and Y
is the measurement data point, we can find that Y ′ is the most nearest point in l to
Y . In most cases, Y ′ is the vertical projection point of Y . The method of searching
for Y ′ can be first determining the distances from Y to each sub-line and then selecting
the minimum one. This method seems cumbersome but its complexity is inflexible and
the computing time can be effectively guaranteed if the number of endpoints is proper.
Experiment results show that this approach exhibits nearly same performance with that
of NN as illustrated in Figure 7, and the related models are based on data in Figure 5.
PC’s span value is also 0.7. For NN, a back propagation (BP) network with the hidden
layer size 13 is employed and the transfer function (TF) of layer 2 is logarithmic sigmoid.

Further, the steps of MSPC methodology are illustrated in Figure 8 and the following
algorithm.

Building process monitoring model:
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Step 1: Normalize the normal data to zero mean and unit variance. As these data will
be used for decomposition, the number of measurements should be the integer power of
2.
Step 2: For each column (variable) in data matrix obtained in step 1, compute wavelet

decomposition.
Step 3: For each scale, compute the 1st principal curve, and the 2nd, . . . principal

curves if necessary.
Step 4: For each scale, calculate the SPE control limit. The detailed calculating method

is introduced in next section.
Calculation of process monitoring:

Figure 7. The predicted values for elliptic data via NN model & interpo-
lating method

Figure 8. Integration of the wavelet and principal curves



MULTIVARIABLE STATISTICAL PROCESS MONITORING METHOD 1789

Step 1: Standardize the process data of dyadic length 2n using means and standard
deviations obtained in above step 1.

Step 2: For each column in data matrix got in step 1, compute wavelet decomposition.
Step 3: For each scale, compute the projection points in PCs acquired in above step 3.
Step 4: For each scale, calculate the SPE values.
For real time monitoring, a moving window technique should be introduced. It updates

the process data by including the most recent sample and abandoning the most distant
one. After wavelet decomposition, the last coefficients at each level should be picked out;
therefore, SPE values can be figured out.

Still, there are some important decisions to make in practice. One is the number of
wavelet decomposition level and this topic has been studied abundantly during the past
decades [8]. In this paper we select it mainly according to experience. The second is the
number of PCs at each scale. Ideally, the number should be selected to provide maximum
feature representation of a signal. If the number is too small, the predicted signal will
probably have much noise, but if it becomes large, the computation will be exhaustive.
A good choice is to determine the number by increasing it gradually until the cumulative
percent variance (CPV) rises slowly. Besides, how to regulate the parameter span is of
interest. A suggestion given in Dong’s study is to decrease it gradually from a higher
value to a lower one [3]. In this study, we use a fixed value strategy in all examples.

4. Experiments.

4.1. A mathematical example. This example consists of three variables with an un-
derlying dimensionality of one.

x1 = sin(t) + e1;
x2 = −2t2 + 4t+ e2;
x3 = t3 − 2t2 + e3;
t = [t1, t2, . . ., t512] ∈ [0, 1.022]

(7)

where e1, e2, e3 are independent noise N(0, 0.0002). The sample number 512 equals 2
to the 9th power so it can be wavelet decomposed conveniently. These data are used as
normal condition. The fault conditions come by making small changes at x3 in two places:

Fault 1: x3 = x3,normal ∗ 1.3; t = t257
Fault 2: x3 = 1.1t3 − 2.15t2 + e3; t = [t385, t386, . . ., t512]

(8)

t257 is in the middle of whole time and there exists a sudden change. t385 ∼ t512 are at
the last quarter of the whole samples which deviate from normal values. Figure 9 shows
the normal and fault samples.

In result of linear PCA, both faults are not obvious as in Figure 10 due to the nonlinear
nature of the experiment data though two principal components capture 99.91% of the
variation. If one or three principal components are selected, even worse results can be
obtained.

We calculate the 95% control limit using Box’s algorithm introduced in Nomikos’s study
[10]. Because the prediction errors (PE) are normally distributed, the SPE (squared PE)
can be regarded as a chi-squared distribution of g.χ2

h where parameters g, h depend on
the distribution parameters µ, σ as follows:

g =
σ2

2µ
(9)

h = 2
(µ
σ

)2

(10)
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µ, σ are the estimated mean and standard deviation of the chi-squared distributed SPE
values, and h is the free degree of χ2 distribution. In this paper, we calculate all the
confidence limits for SPE using the same method. SPE charts such as Figure 10 are
presented in this study for it is an effective statistical method for detecting process faults.
When PC is adopted, it outperforms traditional PCA remarkably (Figure 11). We can

observe a spike at point 257 (Fault 1) and many SPE values exceed the 95% limitation
during the last quarter of the time axis (Fault 2). Here Verbeek’s (2002) algorithm is used
to find the 1st PC with the segment number 14 and the smoothing parameter 0.0018 [11].
Because it explains 99.98% of the variation, no more PCs are needed.

Figure 9. Data of normal condition and fault conditions

Figure 10. The SPE of linear PCA model
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Figure 11. The SPE of PC model

As can be seen in upper subfigure of Figure 12, Kramer’s method is adopted where a
BP network is involved and the sizes of layer 2-4 are 7, 1 and 7. The TFs of layer 2, 4 are
logarithmic sigmoid and TFs of layer 3, 5 are linear. After 153 times training, the network
converges and the result is fairly good compared with PCA and PC. However, we got two
kinds of results in experiments which illustrated the low reliability of this method: The
training times can range from dozens to more than 2000, and sometimes unreasonable
results can be observed as in lower subfigure of Figure 12.

Using Haar wavelet for three-level decomposition, we find that MSPCA can detect
Fault 2 in approximation level as in A3 subfigure of Figure 13. The false alarms at first
several points in A3 subfigure are caused by boundary effect of wavelet decomposition. We
addressed this problem in Liu (2009) recently [12]. MSPCA is not so sensitive to Fault 1,
a 30% sudden fluctuation, and it is because the artificially constructed data have not the
autocorrelation nature, i.e., the performance of MSPCA is no better than conventional
PCA with this kind of fault.

Figure 14 presents the results of MSPC. We choose wavelet type and the related pa-
rameters such as number of decomposition level just as in Figure 13. MSPC can detect
Fault 1, a sudden change, in the highest scale D1 and Fault 2, a mean bias, in approx-
imation scale A3. The results agree with Misra’s [13] conclusion very well. Further, the
performances of methods mentioned above are summarized in Table 1.

As shown in Table 1, if relevant parameters such as wavelet type, decomposition levels
and PC numbers are fixed, the experiment results of PCA and MSPCA keep unchanged.
Kramer’s method tends to have low robustness as in Figure 12. As for PC and MSPC,

Table 1. Fault detection performance of various methods

Methods Fault 1 Fault 2 Robustness of results
PCA Not obvious Partly (17.19%) Absolutely no change
PC Can detect Partly (28.13%) Pretty good
NLPCA (Kramer) Can detect Partly (34.38%) Inferior
MSPCA (Bakshi) Not obvious Partly (68.75%) Absolutely no change
MSPC (this paper) Can detect Can detect (100%) Pretty good



1792 X. SHI, Y. LV, Z. FEI AND J. LIANG

Figure 12. The SPE of Kramer’s NLPCA model

Table 2. Detection rate of Fault 2 with MSPC method

Detection rate Times (100 in all)
100% (16/16) 62
93.75% (15/16) 26
87.5% (14/16) 8
81.25% (13/16) 3
75% (12/16) 1

experiments show that the reliability is pretty good. For example, we tested MSPC
method 100 times, and the detection rate of Fault 2 had 5 different values: 100%, 93.75%,
87.5%, 81.25% and 75%. Most of the values (88%) are the top two: 100% and 93.57%.
100% in Table 1 is the best result and the detailed detection rate of Fault 2 can be seen in
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Figure 13. The SPE of MSPCA model

Figure 14. The SPE of MSPC model

Table 2. The average rate obtained from Table 2 is 96.56% and it surpasses all the other
methods evidently.

Experiments also demonstrate that if the segment number and smoothing parameter
are regulated slightly while using Verbeek’s algorithm, different curves can be acquired;
therefore, different monitoring model and results are obtained. That is to say, some
model determining (parameter selection) should be done to achieve ideal results. In this
experiment, parameters are set according to Verbeek’s theory [11].
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Figure 15. Process flow diagram of CSTR system

4.2. CSTR process. The nonisothermal CSTR process has a first order reaction and
the reaction temperature is under feedback control (Figure 15). It was first proposed
by Marlin (1995) and has been widely employed as a benchmark in fault detection and
diagnosis [14]. In this paper, two kinds of faults, step changing and drift, are studied
to test MSPC methodology. The dynamic behavior of the process can be observed in
appendix of Yoon’s paper [15].

4.2.1. Fault of step change. The sampling period is one minute and the fault condition
is set by inserting a mean bias of 1.6 degree at TO from point 257 to the end point 512
(Figure 16).
Nine variables are selected to construct detection model as shown in Table 3.
Figure 17 is the SPE chart obtained using linear PCA. In the first half (256 points) of

whole samples, 14 points are falsely alarmed with the false alarm rate (FAR) 5.47% while

Figure 16. The normal and fault condition of TO
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Table 3. Nine involved variables

Variables Description Unit
FA Flow rate of reactant A m3/min
FC Flow rate of cooling water m3/min
CA Outlet concentration of the product kmole/m3

T Outlet temperature K
CAS Inlet concentration of solvent flow kmole/m3

CAA Inlet concentration of solute A kmole/m3

TO Inlet temperature K
FS Flow rate of the solvent m3/min
TC Cooling water temperature K

Figure 17. The SPE of linear PCA model

in the second 256 points, 33 fault samples fail to be detected, i.e., the miss alarm rate
(MAR) is 12.89%. One principal component is chosen according to cross validation and
it captures 11.57% of the variation. One principal component in such a system is proper
for linear PCA. That is to say, if the number of components is increased, worse results
can be found.

As shown in Figure 18, the result of PC, 30 points in the former half are falsely alarmed
and 236 samples of the latter half violate the 95% warning limit. The FAR and MAR
are listed in Table 4. Here, HS’s method is utilized with the smoother cubic spline and
span value 0.1 to find the 1st PC and it explains 15.84% of the variation, while the 1st

linear principal component captures only 11.57%. Experiments show that if the number
of principal curves is increased, the CPV value will become larger gradually but the MAR
and FAR will first remain almost unchanged and then increase.

In the MSPC’s SPE chart, Figure 19, 31 of 32 points at A3 scale violate 95% limitation
and 1 false alarm takes place. Haar wavelet together with the same parameters as in
Figure 13 is adopted. HS’s method is used to find PCs and the related parameters such
as span value and PC number are determined as in experiment of common PC. Further,
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Figure 18. The SPE of PC model

Figure 19. The SPE of MSPC model (A3 scale)

the performances of methods mentioned above are summarized in Table 4. We can see
MSPC performs fairly well compared with conventional PCA and PC.
As MSPC decorrelates the autocorrelated measurements on the one hand, and extracts

the essential feature of model data on the other hand, it can capture 34.12% of the
variation at A3 scale and has the best detection performance as in Table 4.
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Table 4. Fault detection performance of various methods

Methods False Alarm Rate Missed Alarm Rate CPV
PCA 5.47% 12.89 % 11.57%
PC 11.72% 7.81 % 15.84%

MSPC 3.13% 3.13% 34.12%

4.2.2. Fault of drift type. Now we test the fault condition caused by increasing concen-
tration of solute A (CAA) gradually with step size 0.012 kmole/m3 from point 257 to the
end point 512 (Figure 20).

Also, nine variables in Table 3 are selected to build detection model and we can get the
following results (Figure 21 and Table 5). MSPC can detect the ramp fault earlier than
traditional PC and PCA, and also PC exhibits better performance than that of PCA (for
example: 257 < 335 < 492). As pointed out by Hsu, early detection of process faults is
important for ensuring plant safety and retaining high yield of product [16].

FAR and MAR of MSPC method are 12.5% and 9.37% respectively. They are both the
lowest one of three tested methods. As stated above, the result of PCA model remains
unchanged in repeated experiments if the principal component number is fixed. For PC
and MSPC method, we choose the same span value and smoother function as in step
change experiment.

Figure 20. The normal and fault condition of CAA

Table 5. Fault detection performance of various methods

Methods
False Alarm Missed Alarm Point (after it Point (after it Point (after it

Rate Rate MAR < 15%) MAR < 10%) MAR < 5%)
PCA 12.11% 33.2% 492 495 496
PC 13.28% 21.48% 335 385 412

MSPC 12.5% 9.37% 257 297 305
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Figure 21. The SPE of PCA, PC & MSPC
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While using HS’s method, different curves can be obtained if the span value deviates
from the optimal one. The value should be decided deliberately for increasing it tends to
increase the smoothness of the fits, while decreasing it causes interpolating the data. A
good balance should be found to get ideal monitoring performance. We decide the value
mainly based on experience. Nevertheless, principal curves are representation of data’s
inner structure and unreasonable results are either not possible or will rarely occur in
experiments. On the other hand, once the span and smoother is determined, satisfactory
results can always be obtained in practice.

5. Conclusions. This study presents an approach by combining the attractive properties
of PC and multiscale analysis. Thus the two typical issues of industrial data, nonlinearity
and autocorrelation, are solved by the resulting MSPC methodology. Because PC-NN
method proposed by Dong has a complicated net structure and a long time is needed to
train such a network to reach the convergence, we acquire the predicted value by searching
for the nearest point in PCs instead of incorporating neural networks.

The proposed approach is applied to artificial data and CSTR process. Faults of step
change, sudden fluctuation and ramp are tested. The experiment results are consistent
with theory analysis. The advantage of current MSPC method is verified compared with
traditional approaches.

Future directions of this work include the improvement of procedure of finding PCs. For
example, span is an important parameter which influences the converging rate remarkably.
How to regulate it dynamically may be an issue of interest. In addition, we should widen
the fault types to include such as precision degradation to inspect this method thoroughly
and we think this may be of great value though the procedure is more time consuming.
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