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Abstract. This paper proposes a new energy-to-peak filter (EPF) with a finite impulse
response (FIR) structure for linear systems with disturbance. The filter is referred to as
an energy-to-peak FIR filter (EPFF). The energy-to-peak performance criterion is min-
imized in filters that show linearity, FIR structure, and quasi-deadbeat property. The
EPFF can be obtained by solving a convex optimization problem represented by linear
matrix inequalities (LMIs). A numerical example is given to illustrate the validity of the
proposed EPFF.
Keywords: Energy-to-peak filter, Finite impulse response (FIR), Quasi-deadbeat con-
dition, State estimation, Linear systems

1. Introduction. The celebrated Kalman filter and its applications have undergone ex-
tensive investigation over the past four decades. However, the Kalman filtering scheme is
no longer applicable when information regarding external noise is not precisely known. In
these cases, alternative approaches can include energy-to-energy (H∞) filtering [1, 2, 3, 4]
and energy-to-peak (L2 − L∞ or l2 − l∞) filtering [3, 4, 5, 6, 7, 8, 9, 10, 11], but only
infinite impulse response (IIR) filters [12, 13, 14, 15, 16, 26] have been introduced for
these types of filtering problems. Nevertheless, undesirable signals from past information
can accumulate inside IIR filters, so that they may diverge for systems with modeling
uncertainties and numerical errors [17, 18, 19].

Filters with finite impulse response (FIR) structure are preferable for nonmodel signal
models used in signal processing, because this structure eliminates the accumulation of
undesirable effects. The guaranteed stability, the robustness to numerical error and tem-
porary uncertainties, and perfect signal reconstruction (such as a linear phase property)
are well-known desirable properties of the FIR structure. Signal models have been rep-
resented by general state-space models and several trials have applied the FIR structure
to the design of filters including the recursive limited memory filter [20], the optimal FIR
filter [21], and unbiased FIR filters [22, 23]. Recently, some robust FIR filters with distur-
bances and their application to output feedback controls were proposed in [24, 25, 26] and
[27, 28], respectively. However, as far as we are aware, no results have yet been published
on FIR filters that take into consideration the energy-to-peak performance criterion, even
though energy-to-peak filtering is widely used in many practical applications such as elec-
trical circuits, navigation systems, and communication systems, and in estimation of civil
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structures. Therefore, the energy-to-peak FIR filtering problem still remains unresolved
and challenging.
In this paper, a new FIR filter is proposed, based on the energy-to-peak performance

criterion. This filter is referred to as an energy-to-peak FIR filter (EPFF) and can be
obtained by solving a convex optimization problem via linear matrix inequalities (LMIs).
The proposed FPFF is both quasi-deadbeat and optimal by design for the energy-to-peak
performance criterion. The ‘by design’ refers to the fact that both the quasi-deadbeat
property and optimality are simultaneously built into the proposed EPFF during its
design.
This paper is organized as follows. In Section 2, the EPFF in an LMI form is proposed

for discrete-time state-space models. In Section 3, a numerical example is given. Finally,
conclusion is stated in Section 4.

2. New Energy-to-Peak FIR Filter Design. Consider a linear discrete-time state-
space model:

xk+1 = Axk +Gwk, (1)

yk = Cxk +Dwk, (2)

where xk ∈ <n, yk ∈ <q, and wk ∈ <p are the state, the output, and the disturbance,
respectively. On the horizon [k−N, k] where N is the horizon size, outputs are expressed
in terms of the state xk at the time k as follows:

Yk−1 = C̄Nxk + (ḠN + D̄N)Wk−1, (3)

where

Yk−1
4
= [yTk−N yTk−N+1 · · · yTk−1]

T , (4)

Wk−1
4
= [wT

k−N wT
k−N+1 · · · wT

k−1]
T , (5)

and C̄N , ḠN and D̄N are obtained from

C̄N
4
=


CA−N

...
CA−2

CA−1

 ,

ḠN
4
=


CA−1G CA−2G · · · CA−NG

0 CA−1G · · · CA−N+1G
0 0 · · · CA−N+2G
...

...
. . .

...
0 0 · · · CA−1G

 , (6)

D̄N
4
=

[
diag(

N︷ ︸︸ ︷
D, D, · · · , D)

]
.

The EPFF can be expressed as a linear function of the finite outputs Yk−1 on the horizon
[k −N, k] as follows:

x̂k
4
=

k−1∑
k−N

Hk−iyi

= HYk−1, (7)
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where the gain matrix H is defined as

H
4
= [HN HN−1 · · · H1]. (8)

From (3), the EPFF (7) can be rewritten as

x̂k = HC̄Nxk +H(ḠN + D̄N)Wk−1. (9)

We require that the EPFF (7) is independent of any a priori information about the horizon
initial state xk−N . Furthermore, the EPFF (7) must satisfy

x̂k = xk for wi = 0 (k −N ≤ i ≤ k − 1). (10)

This constraint will be called the quasi-deadbeat constraint [25], which is obtained by
setting

HC̄N = I. (11)

For a given level γ > 0, the gain matrix H of the EPFF is determined using the optimiza-
tion problem based on the following energy-to-peak (l2 − l∞) performance criterion:

inf
H

sup
wk

‖ek‖2l∞
‖wk‖2l2

< γ2, (12)

subject to the constraint (11), where ‖ek‖2l∞ = supk≥0{eTk ek} and ‖wk‖2l2 =
∑∞

k=0w
T
k wk.

Before deriving the EPFF, we introduce the following lemma:

Lemma 2.1. [3, 5] Let γ > 0. Then, for the system

xk+1 = Axk +Buk, (13)

zk = Cxk, (14)

the following two conditions are equivalent:

(1) The first is as follows:

sup
uk

‖zk‖2l∞
‖uk‖2l2

< γ2. (15)

(2) There exists a P = P T > 0 such that[
APAT − P B

BT −I

]
< 0,[

γ2I C
CT P

]
> 0.

Using Lemma 2.1, we can present a linear matrix inequality (LMI) problem for the
EPFF.

Theorem 2.1. Assume that {A,C} of the model (1)-(2) is observable and N ≥ n. If the
following LMI problem is feasible:

min
P>0, F

γ2

subject to [
AuPAT

u − P Bu

BT
u −I

]
< 0, (16)[

γ2I (FM +H0)(ḠN + D̄N)
(ḠN + D̄N)

T (FM +H0)
T P

]
> 0, (17)
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where

Au
4
=


0 I 0 · · · 0

0 0 I
. . . 0

...
...

. . . . . .
...

0 0 · · · 0 I
0 0 · · · 0 0

 ∈ <pN×pN , Bu
4
=


0
0
0
...
I

 ∈ <pN×p, (18)

H0 = (C̄T
N C̄N)

−1C̄T
N , and MT is the bases of the null space of C̄T

N , then the optimal gain
matrix of the EPFF is given by

H = FM +H0.

Proof: Based on definitions in (18), the disturbance wk satisfies the following state
model on Wk−1 [24]:

Wk = AuWk−1 +Buwk. (19)

Substituting (11) into (9), we have the following estimation error:

ek
4
= x̂k − xk

= H(ḠN + D̄N)Wk−1. (20)

Equations (19) and (20) are new state-space equations for obtaining the EPFF. Based on
the result of Lemma 2.1, according to the following correspondences:

A ←− Au, B ←− Bu,

C ←− H(ḠN + D̄N), xk ←− Wk−1,

uk ←− wk, zk ←− ek,

the condition (12) is equivalent to the inequality (16) and the following inequality:[
γ2I H(ḠN + D̄N)

(ḠN + D̄N)
THT P

]
> 0. (21)

By minimizing γ2 subject to (11), (16) and (21), we can obtain the optimal gain matrix
H for the EPFF. The equality constraint (11) can be eliminated by computing the null
space of C̄T

N . All solutions to the equality constraint HC̄N = I are parameterized by
H = FM + H0, where F is an arbitrary matrix. Note that C̄T

N C̄N is guaranteed to be
nonsingular if {A,C} is observable for N ≥ n. By replacing H by FM + H0, we can
obtain the LMI condition (17) from (21). This completes the proof.

Remark 2.1. The proposed EPFF can be used in several output feedback control ap-
plications. For example, some modeling methods are applied to model physical dynamic
systems and the states estimated by the proposed EPFF can be then utilized to achieve cer-
tain design objectives by the state feedback control law. Therefore, from the point of view
of control, the proposed EPFF for dynamic systems is important for many applications.

Remark 2.2. Most existing results on energy-to-peak (L2 − L∞ or l2 − l∞) filtering in
the literature were restricted to IIR filters [3, 4, 5, 6, 7, 8, 9, 10, 11]. Unfortunately, with
the existing results, it is not possible to design an energy-to-peak FIR filter for systems
with disturbances. For the first time, this paper presents an energy-to-peak FIR filter
for linear systems with disturbances. The proposed result in this paper opens a new path
for application of the energy-to-peak stability approach to the derivation of FIR filter for
systems with disturbances.
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3. Numerical Example. The validity of the EPFF is illustrated by a numerical example
that provides a comparison between the proposed EPFF and the existing energy-to-peak
filter (EPF) [3, 4] for the following discrete-time state-space model:

xk+1 =

[
0.33 + 3δk 0.01 + δk

0.01 0.9 + 2δk

]
xk +

[
1 0
1 0

]
wk,

yk =
[
1 0

]
xk +

[
1 0

]
wk,

where δk is a model uncertain parameter, which is assumed to satisfy

δk =

{
0.1, 100 ≤ k ≤ 150,
0, otherwise.

(22)

Figure 1 compares the estimation errors of the second state for the case where the ex-

ogenous input wk is given by wk =
[
w1k w2k

]T
, where w1k ∼ (0, 1) and w2k ∼ (0, 1).

This simulation result clearly shows that, due to FIR structure, the estimation error of
the EPFF is remarkably smaller than that of the EPF on the interval where modeling
uncertainty exists. In addition, the convergence of estimation error is much faster than
that of the EPF after temporary modeling uncertainty disappears.

Next, we increase δk slightly when 100 ≤ k ≤ 150. Figure 2 shows the estimation errors
of the second state when δk is given by

δk =

{
0.12, 100 ≤ k ≤ 150,
0, otherwise.

(23)

From Figure 2, it can be seen that the estimation error of the EPF diverges very fast
for higher model uncertain parameter. However, the EPFF is relatively insensitive to the
model uncertain parameter.
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Figure 1. Estimation errors of the EPFF and the EPF when δk is given by (22)
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Figure 2. Estimation errors of the EPFF and the EPF when δk is given by (23)

4. Conclusion. This paper proposed a new energy-to-peak filter called the EPFF that
allows estimation of unknown signals that can be represented by discrete-time state-space
models with disturbance. The EPFF is obtained by solving the LMI problem with the
parametrization of the linear equality constraint. The proposed filter does not require a
priori information of the horizon initial state. The EPFF is linear, with finite outputs on
the most recent horizon and exhibits the quasi-deadbeat property. Furthermore, the FIR
structure of the EPFF is believed to impart a robustness to the proposed filter against
round-off errors or temporary modeling uncertainties, whereas the IIR structure of the
existing EPF may show poor robustness and even divergence phenomena. Therefore, we
can expect that the proposed EPFF will be useful in many signal processing problems.
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