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Abstract. Scheduling for multicore computer systems is a challenge since subsets of
cores may share resources, such as a cache. Performance for workloads may therefore
vary depending on which tasks are scheduled to run on the same subset of cores. There
is therefore a need for contention-aware scheduling. Our study involves implementation
of an optimal multicore scheduler which has perfect prediction of negative consequences
of all combinations of tasks scheduled on the hardware platform we are using. It uses
an Integer Program. We show that it is indeed optimal for our workloads, supporting
its authors’ claims. We also implemented a scheduler which uses a combination of a
machine learning model (M5 Prime) and Linear Programming to schedule tasks on CPU
cores and compared it to a state-of-the-art scheduler known as Distributed Intensity (DI).
Some workloads exhibited moderate improvements in unfairness, but not much in run-
time. A scheduler based on another machine learning model was implemented, this time
a Multilayer Perceptron (MLP). To do this, we had to generate workloads for the Opti-
mal Scheduler, store its decision for various types of workloads, and train a Multilayer
Perceptron model on this data. We then implemented a scheduler with the Multilayer
Perceptron model, which tries to mimic the decision of the Optimal Scheduler. Our re-
sults show that our scheduler is better than DI in 7 out of 9 test workloads (mostly by
10%), and approximately equal to the Optimal Scheduler in 6 out of 9 test workloads
(exactly equal in 4). The MLP scheduler is faster than the Optimal Scheduler by a wide
margin, and faster than the Linear Programming scheduler.
Keywords: Multicore scheduling, Machine learning, Induction of knowledge, Optimiza-
tion

1. Introduction. The Operating System scheduler assigns tasks to Central Processing
Units (CPUs) [1, 2, 3]. The scheduler decides which tasks will use a particular CPU
next and for how long. Modern CPU designs have shifted from trying to increase clock
speeds of CPUs to incorporating more processor cores on a single CPU chip, providing
facilities for parallel execution of programs, similar to the traditional SMP (Symmetric
Multiprocessing) architectures [4, 5]. Instead of having multiple CPUs, modern computers
have multiple cores on a single CPU, which is cheaper and more energy efficient. With
the advent of multicore systems, the processing elements (cores) share some resources,
for example, the LLC (last level cache), memory controller, memory bus, and prefetch
hardware. Therefore, when two or more tasks are running on cores that share these
resources, there is resource contention; their performance will be degraded, compared with
if each task were to run on its own [6, 7]. Generally, on multicore architectures, competing
tasks face performance degradation when co-scheduled together, on separate cores sharing
resources, while cooperating (communicating) tasks face performance degradation when
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not co-scheduled [8]. Because of this degradation, it is important that when the scheduler
is making its decisions, which task should run on which core, it takes resource contention
into account.
Siddha et al., while Senior Engineers at Intel, the largest computer chip manufacturer,

emphasized the importance of moving to multicore architectures [9]. They highlighted
the importance of scheduling in taking full advantage of multicore architectures, including
the need to identify and predict task needs and minimize resource contention, i.e., the
need for contention-aware scheduling. Without contention aware scheduling, schedulers
cannot make good decisions. Contention-aware scheduling studies fall into two categories:
those targeted at on-line scheduling, where scheduling decisions must be made while
tasks are running, so the scheduler must be very fast; and optimal scheduling, where the
scheduler is not used on-line, but tries to come up with optimal schedules for the purpose
of knowing the best possible schedule, in order to help develop scheduling algorithms
[10]. There have been studies carried out into optimal contention-aware scheduling, but
not many; optimal algorithms have been produced as well as heuristic approximations to
the optimal algorithms [10, 11, 12]. However, these algorithms require a priori knowledge
of performance degradation of tasks when running in various combinations on cores and
are relatively slow; any performance improvement in the execution time of such schedulers
increases their usefulness, which is what we achieve [13, 14]. Also, the heuristic algorithms
do not produce schedules as good as the optimal algorithms. The current state-of-the-
art contention-aware scheduler is the Distributed Intensity (DI) scheduler [6]. It has the
best performance (execution time spent by the scheduler) when generating schedules;
however, the schedules it produces are not very close to the optimal schedules (most
about 10% worse, with our benchmarks). We combine the on-line and optimal scheduling
approaches by developing a scheduler which targets generating optimal schedules while
exhibiting fast execution time. To the best of our knowledge, this approach has not been
used before for contention-aware schedulers. We close the gap between optimal schedulers
and approximations, by implementing and evaluating optimization and machine learning-
based schedulers.
In our study, we implement an optimal contention-aware scheduling solution [14] which

we try to equal using less time-intensive processing. The optimal solution uses Integer
Programming. This approach assumes knowledge of various performance values for vari-
ous combinations of core assignments. It serves as a benchmark. We also implement the
DI scheduler, as presented in [6], and our own approach, which combines the DI approach
with Linear Programming. We implement predictive models based on Machine Learn-
ing which, given a set of tasks running on a chip, can predict the degradation in task
performance for each task. The results were not so good, compared with DI. We then
implemented a scheduler based on another machine learning model, this time a Multilayer
Perceptron [15, 16]. To do this, we had to generate workloads for the Optimal Scheduler.
Once the Optimal Scheduler did its work, the Multilayer Perceptron was used to learn, for
each type of workload, the assignment of tasks to cores. Generating workloads involved
analyzing the metrics associated with the workloads available in order to generate new
performance figures for new workloads. We then implemented a scheduler with the Mul-
tilayer Perceptron model, named MLP, which tries to mimic the decision of the Optimal
Scheduler. Our results are very promising. The MLP scheduler is better than DI in 7 out
of 9 test workloads, and approximately equal to the Optimal Scheduler in 6 out of 9 test
workloads. The MLP scheduler produces schedules very close to the optimal scheduler
and much better schedules than DI. Also, it has much faster execution time than the
optimal scheduler, and relatively close scheduler execution time to DI.
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The rest of this paper is organized as follows: Section 2 discusses related work on
scheduling, Section 3 discusses the Optimal Scheduling algorithm and Distributed Inten-
sity (DI), Section 4 discusses our implementation environment, Section 5 describes our
Linear Programming-based Scheduler (ModLP), Section 6 describes the Multilayer Per-
ceptron Scheduler (MLP), Section 7 presents the results of our experiments, including a
discussion on our workloads, and on the results themselves, and Section 8 concludes.

2. Related Work. The closest work to ours is that done by Blagodurov et al. [6]. In
their study, the authors investigated the best approaches to classifying threads, based
on performance metrics obtained via CPU counters on modern Chip Multiprocessors
(CMPs). These include metrics such as Cycles Per Instruction (CPI), Instructions Per
Cycle (IPC), and Misses Per One Thousand Instructions (MPI), used to estimate number
of cache misses. The classification approaches are used to classify threads when they com-
pete for resources. Based on the classification study, the authors developed a scheduling
algorithm known as Distributed Intensity (DI). Their results showed that its performance
was close to the Integer Programming-based optimal solution. In our work, we investigate
how task degradation could be predicted using machine learning approaches. We then
selected the best model for use in a scheduler that combines DI with linear programming,
and also to generate workloads to train a Multilayer Perceptron Scheduler.

Rai et al. [17, 18] carried out studies on characterizing and predicting L2 cache behav-
ior. They used machine learning algorithms to build models which could then be used
for characterizing and predicting. The machine learning algorithms they used were Lin-
ear Regression, Artificial Neural Networks, Locally Weighted Linear Regression, Model
Trees, and Support Vector Machines. The methods generate regression models, which in-
volves fitting a model that relates a dependent variable y to some independent variables,
x1, x2, . . . , xn. The model is expressed in the form of an equation:

y = f(x1, x2, . . . , xn)

The class variable to be predicted was named “solo run L2 cache stress”. The attributes
(independent variables) used were

i. L2 cache references per kilo instructions retired.
ii. L2 cache lines brought in (due to miss and prefetch) per kilo instructions retired.

This shows the stress put by a program on the L2 cache.
iii. L2 cache lines brought in (due to miss and prefetch) per kilo L2 cache lines referenced.

This shows the re-referencing tendency of a program.
iv. Fractional L2 cache occupancy of a program. This gives a rough estimate of fraction

of space occupied by a program in the L2 cache while sharing with another program.

Rai et al. [19] extended their work by developing a machine learning based meta-
scheduler. The used their predictive models mentioned in the previous paragraph to aid
scheduling decisions, achieving a 12% speedup over the Linux CFS scheduler. Their meta-
scheduler divides tasks into two groups: those with high solo run L2 cache stress and low
solo run L2 cache stress. This serves to reduce cache contention and competition for
shared resources, thereby improving performance. Our work combines Machine Learning
not just to predict degradation in performance, but to assign tasks to cores. We base our
solutions on the optimal solution, and achieve schedules as good as, or very close to, the
optimal solution. We do not use as many statistics for prediction as Rai et al., making
our method compatible with a wider range of CPU architectures.

Apon et al. [20] studied the use of a Stochastic Learning Automata (SLA) for assigning
tasks to parallel systems. The automaton keeps track of various possible states (for
example, number of tasks executing, number of tasks waiting), possible actions (number
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of processors assigned to tasks), a matrix with probabilities of choosing actions from
each state, responses on whether an action was “good”, “bad”, or “neutral”, and an
updating scheme for updating probabilities in the matrix. Their results showed substantial
improvement of the SLA approach, with varying probabilities, compared with a fixed
assignment scheme.
Illikkal et al. [21] developed a rate-based approach to resource management of CMPs.

They make use of rate-based Quality of Service (QoS) methods to decrease resource
contention. They make use of hardware Voltage and Frequency (V/f) Scaling and Clock
Modulation/Gating. V/f involves changing the frequency of a core in order to reduce
power consumption, while Clock Modulation involves feeding the clock to the processor
for short durations. The core is active only for these durations. The time the core is
halted translates to reductions in cache space and memory bandwidth requirements of
the task running on the core. Tasks on the other cores then experience less contention
for the shared resources. These could have higher priority, for example, hence the need
for reduced contention. Illikkal et al.’s results showed their approach to be flexible and
effective at ensuring QoS.
Hoh [22] made use of a vector-based approach to co-schedule tasks which were dis-

similar in their use of CPU resources. Each task had a vector associated with it, which
included elements for various CPU performance counters, such as number of all instruc-
tions completed, number of floating point instructions, number of special (e.g., graphic)
instructions, number of L2 cache cycles, etc. When selecting a task, the task with the
greatest vector difference from the average is selected. Their approach was integrated
into the Linux Kernel 2.6.26 Completely Fair Scheduler. Performance tests showed that
Hoh’s approach was slightly worse than the vanilla Linux kernel when only 2 tasks were
running, due to his method’s overhead, while it was much better than the vanilla kernel
when more than 2 tasks were running.
Klug et al. [23] implemented a scheduling system which forces pinning of tasks to

specific CPU cores. After a time constant, their autopin system changes the pinning so
various pinning combinations are tried. Once the best pinning combination is discovered,
the tasks use it until they terminate. Experiments conducted with SPEC OMP bench-
marks show substantial improvements over default Linux scheduler pinning behavior. The
autopin approach will not be so useful if application behavior changes significantly after
an ideal pinning combination has been discovered.
Our work tries to make use of Machine Learning and Optimization to develop an

innovative and efficient solution for multicore scheduling, equal to or very close to the
optimal, and succeeds.

3. The Optimal Scheduling Algorithm and a Relatively Near-Optimal Sched-
uling Algorithm.

3.1. Optimal scheduling. Jiang et al. [14] carried out a study on optimal scheduling
of tasks on a multicore system. Their optimal solution is based on Integer Programming.
It solves a partition problem, in which n jobs are in m = n

u
sets, where m is the number

of chips, each having u cores. Each set is as large as the number of cores in a chip. The
objective function is

min

(nu)∑
i=1

d(Si) · xSi



MULTICORE SCHEDULING 1515

The constraints are

xSi
∈ {0, 1}, 1 ≤ i ≤

(
n

u

)
;∑

k:1∈Sk

xSk
= 1;

∑
k:2∈Sk

xSk
= 1; . . . ;

∑
k:n∈Sk

xSk
= 1.

xSi
is a binary variable, 1 if Si is one of the sets in the final partition result or 0 if it is

not. |Si| = u.

d(Si) =
∑
j∈Si

dj,Si−{j}

d(Si) is the sum of degradations of all the tasks in Si, when they co-run on a single chip,
as opposed to running alone on the same chip. Co-run degradations are obtained by
measuring the CPI (Cycles Per Instruction) when a task runs alone, and when it runs
together with the other tasks in its set. We use the inverse (Instructions Per Cycle)
instead. This Integer Programming formulation of the multicore scheduling problem has
been shown to be optimal.

3.2. Relatively near-optimal scheduling. The algorithm known as DI (Distributed
Intensity) gives results relatively close to the Optimal Scheduler, with very low runtime
costs [6]. It uses a particular metric for tasks: MPI (Last Level Cache Misses Per One
Thousand Instructions). These are measured when a task runs on its own, with no other
tasks running on cores on the same chip. Tasks with high MPI are cache intensive, so
the idea is to schedule them on chips with cores running other non-cache intensive tasks;
basically, to distribute the load. This is done by sorting the tasks to be scheduled in a
list based on MPI, then picking the first and last to run on a chip, the second first and
second last to run on another chip, etc. In our study, we implement DI and try to beat
its performance, and actually succeed.

4. Implementation Environment. We carried out all our experiments in an operat-
ing system scheduling simulator known as AKULA [7, 13]. AKULA presents various
classes in an object-oriented framework which are used to implement custom schedulers
and to modify the simulation environment. It has two ways of running simulations. One
is bootstrapping, which involves logging performance of benchmarks running in various
combinations on a multicore platform. For example, if the architecture being used com-
prises two sets of four cores each, with the 4 cores sharing resources such as the Last
Level Cache (LLC), and there are eight benchmarks, then there are 8 ways of running
the workload one benchmark at a time on a set of 4 cores, there are 28 ways of running 2
benchmarks on a set of 4 cores, there are 56 ways of running 3 benchmarks on the set of 4
cores, and there are 70 ways of running 4 benchmarks on a set of 4 cores. All these com-
binations must be evaluated by running the actual benchmarks and logging performance,
using a tool in AKULA called the profiler.

Once the profiler has done its work and a scheduling algorithm has been implemented
in AKULA, the scheduler can be tested using bootstrapping, which will keep track of
the progress each task makes per clock tick, depending on which other tasks are running
with it in the same set of cores sharing critical resources, based on performance data
obtained by the profiler. When a task has made up to 100% progress, it terminates. This
means that the task has run for enough ticks to simulate its required execution time; the
simulator will thus change the status of the task to completed and remove it from the set
of tasks still competing for CPU time.

Another way of running a simulation in AKULA is to attach benchmarks tasks to actual
hardware cores using an appropriate utility. Thus, the scheduler runs in user space on an
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operating system, but is still able to control placement of tasks on cores. In our paper,
we make use of the boostrapping approach to evaluating our scheduling algorithms. The
architecture we used for our experiments consists of two sets of four cores each, with each
set sharing the Last Level Cache.

5. A Linear Programming-Based Multicore Scheduler. In order to develop a Lin-
ear Programming-based multicore scheduler, we need to have a model which, given some
performance figures of tasks, can predict the degradation in performance (a sort of cost
function). We experimented with several prediction models, including Multilayer Per-
ceptron, Linear Regression, and M5 prime. The Multilayer Perceptron had a correlation
coefficient of 0.7616 (1 would show perfect correlation between predicted output and ac-
tual output). The Linear Regression model had a correlation coefficient of 0.8332, and the
M5 Prime model had a correlation coefficient of 0.9906. Since the M5 Prime had the best
prediction results, it was chosen to implement our own scheduling algorithm, based on
Linear Programming. We focus on a specific case of a two-chip platform, with each chip
having four cores, giving eight cores in total. The problem is formulated as an Assignment
Problem [24, 25], one of assigning tasks to agents (in this case, tasks to cores). Figure 1
illustrates the assignment problem.

Figure 1. An assignment problem graph: Vertices A-H are the tasks, each
of which have to be assigned to one of two sets of cores, I and J. Each edge
has a weight, which is the cost of assignment to a particular set of cores.
In our model, the cost is also dependent on other assignments.

The optimization problem is formulated as follows:

Min
m∑
i=1

n∑
j=1

d(xij)

Subject to
m∑
i=1

xij = 1, ∀j = 1, 2, . . . n

n∑
j=1

xij = 4, ∀i = 1, 2, . . .m

xij is 1 when task j is scheduled on core i, and is 0 otherwise. d(xij) is the degradation
of the task when run in its “home” set. This degradation is a prediction obtained using
an M5 Prime model. The first constraint states that the sum of all xij for a particular j
is 1, meaning that any given task is only assigned to one set of cores (there are two sets
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of 4 cores each). The second constraint states that the sum of all xij for a particular i is
4, meaning that a set of 4 cores is assigned exactly 4 tasks.

The home set is obtained by sorting the 8 tasks in the workload according to their
MPI (cache Misses Per One Thousand Instructions) metrics. This method was used by
Blagodurov et al. in [6] in the DI scheduling algorithm. The reasoning is that tasks with
high MPI should be scheduled with tasks with low MPI, since the high MPI tasks are
cache-hungry and will get in each others way if scheduled together. When the 8 tasks
in the workload are sorted by their MPIs, the 1st and the last can be removed from the
sorted set and assigned to cores, until there are no tasks left in the sorted set. This means
that the sum of all MPIs is distributed evenly among the chips. Our scheduling system
thus combines DI with Linear Programming.

6. A Multilayer Perceptron-Based Multicore Scheduler. We borrow an idea from
a study carried out by Kirschner on learning from optimizaton models [26]. In his study, he
employed the use of machine learning algorithms to learn how optimization methods work,
in order to generate rules and models that could then be used to carry out scheduling for
processing of chemicals, without the long time delays when regular optimization methods
are used. Our work differs in the nature of the problem, multicore scheduling as opposed
to chemical process scheduling, the optimization method to be learned from (we use
Integer Programming), and also in the Machine Learning tools used; we use M5 Prime
and Multilayer Perceptron models while Kirschner used Decision Trees, Nearest Neigbor,
Bagging, Boosting, and Winnow. We used M5 Prime to generate artificial workloads
to train the Multilayer Perceptron model. The following sequence of steps was used to
develop the Multilayer Perceptron multicore scheduler.

i. Use available workload to generate prediction model based on M5 Prime and MPI
metric.

ii. Fit log normal distribution to original figures.
iii. Generate new MPI and runtime length figures for new tasks (i.e., new workloads)

using the log normal distribution. We generated 165 workloads with 8 tasks each.
iv. Run Optimal scheduler on the new workloads and log the various scheduling decisions

(assignment of tasks to cores for each workload).
v. Train Multilayer Perceptron (MLP) on this new core assignment data and save the

model. The training data consisted of 1320 instances; each instance specifies how
one task is scheduled when seven other tasks are also competing to be scheduled.

vi. Implement scheduler in AKULA simulator to make use of the MLP model to assign
tasks to cores for test workload.

vii. Capture various performance metrics.

7. Results.

7.1. Workloads. The benchmark statistics in the workloads were obtained from the
AKULA software release [7]. The actual benchmarks are from the SPEC CPU2006 bench-
mark suite [27]. We selected 9 benchmarks, based on the availability of performance fig-
ures in AKULA, and also since they represent a good mix of shared-resource-intensive
and shared-resource-non-intensive applications [28]. They are gcc, mcf, gobmk, libquan-
tum, gamess, milc, namd, povray and lbm. The 9 benchmarks were combined together
in 9 different ways, giving the 9 workloads which we used for our experiments (see Ta-
ble 1). Each workload has 8 benchmarks. For the purpose of evaluating performance of
computer-bound workloads, the same number of tasks are used as there are cores. In
actual compute-bound environments, this is normally the case [6].
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Table 1. Workload composition

# Constituent Applications
1 gcc, lbm, mcf, milc, povray, gamess, namd, gobmk
2 gcc, lbm, mcf, milc, povray, gamess, namd, libquantum
3 gcc, lbm, mcf, milc, povray, gamess, gobmk, libquantum
4 gcc, lbm, mcf, milc, povray, namd, gobmk, libquantum
5 gcc, lbm, mcf, milc, gamess, namd, gobmk, libquantum
6 gcc, lbm, mcf, povray, gamess, namd, gobmk, libquantum
7 gcc, lbm, milc, povray, gamess, namd, gobmk, libquantum
8 gcc, mcf, milc, povray, gamess, namd, gobmk, libquantum
9 lbm, mcf, milc, povray, gamess, namd, gobmk, libquantum

Table 2. Average degradation and unfairness performance figures for var-
ious workloads and optimal, DI, ModLP, MLP1 and MLP2 schedulers (best
figure is Bold; average degradation not compared with optimal)

Avg Degradation Unfairness
Workload Optimal DI ModLP MLP1 MLP2 Optimal DI ModLP MLP2

1 15.44928 15.89507 18.14677 15.89507 15.36548 209.85335 195.45571 168.94460 201.54266
2 9.06622 10.34547 13.64042 10.34547 9.12833 133.95346 132.30041 147.66707 132.92729
3 21.65493 24.58019 24.59467 24.58019 21.65493 171.26594 168.86807 169.19926 171.26594
4 21.72809 24.77222 24.61435 24.77222 21.72809 170.77428 167.87780 169.13020 170.77428
5 21.62507 24.54359 24.60900 24.54359 21.62507 171.64460 169.47427 169.16689 171.64460
6 16.53802 18.04719 18.55790 18.04719 16.95042 186.27800 189.81524 170.80955 188.04769
7 16.22186 16.37744 18.48113 16.37744 18.74328 189.71004 190.12294 165.65228 207.81127
8 14.37630 14.61350 16.58507 14.61350 14.75016 207.00794 205.57945 176.72302 207.48043
9 18.19894 20.43654 22.21250 20.43654 18.19894 186.29819 187.96851 156.25516 186.29819

Table 3. Average degradation percentage improvement for DI, ModLP,
and MLP2, for all workloads

Avg Degradation Percentage Improvement
Workload DI Over Optimal ModLP Over DI MLP2 Over DI MLP2 Over Optimal

1 –2.89% –14.17% 3.33% 0.54%
2 –14.11% –31.85% 11.76% –0.69%
3 –13.51% –0.06% 11.90% 0.00%
4 –14.01% 0.64% 12.29% 0.00%
5 –13.50% –0.27% 11.89% 0.00%
6 –9.13% –2.83% 6.08% –2.49%
7 –0.96% –12.85% –14.45% –15.54%
8 –1.65% –13.49% –0.94% –2.60%
9 –12.30% –8.69% 10.95% 0.00%

7.2. Schedulers. We tested the 5 different schedulers described so far in this paper.

i. Optimal. Based on Integer Programming model and knowledge of degradations for
all combinations of tasks running on sets of 4 cores on our test platform.

ii. DI. Distributed Intensity scheduler used by Blagodurov et al. [6].
iii. ModLP. DI used as a starting point followed by Linear Programming optimization.

It uses an M5 Prime model for prediction.
iv. MLP1. Multilayer Perceptron with 8 input nodes, 2 output nodes (1 for each chip),

and 1 hidden layer with 5 nodes. The MLP1 model had an accuracy of 77.35%, a
Precision score of 0.777, a Recall score of 0.773, and an F-Measure score of 0.773 on
the training/test data. The accuracy is average for two classes (chip 1 and chip 2).
Precision indicates out of all workloads in the test set classified to run on chip 0, how
many were actually scheduled to run on chip 0 by the optimal scheduler. The same
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applies to chip 1. Recall indicates out of all workloads scheduled to run on chip 0
by the optimal scheduler, how many were actually classified like that by the model.
The F-Measure score is a combination of the two scores, which tries to find a balance
between Precision and Recall [29]. The higher the scores the better, generally.

v. MLP2. Similar to MLP1, but this time the Multilayer Perceptron has only 2 nodes
in the hidden layer. The MLP2 model had an accuracy of 67.5%, a Precision score of
0.679, a Recall score of 0.675, and an F-Measure score of 0.673 on the training/test
data. The scores for MLP2 are lower than for MLP1 but scores are based on a test
set and do not always tell the whole story. On the actual workloads, the MLP2
scheduler made better scheduling decisions.

Table 2 shows the results for the various workloads, for the Optimal, DI, ModLP,
MLP1 and MLP2 schedulers, for average degradation and unfairness. The better figures
are shown in bold. Optimal would have better average degradation for all workloads,
hence is in a separate section for that metric. Degradation is given by:

Degradation = 100× (runtime− solotime)

runtime

Runtime is the time the task takes to run to completion when scheduled with other tasks,
while solotime is the time the task takes to runs when scheduled to run alone. Average
degradation is the average percentage degradation over all tasks. A lower figure is better.
One can see that the MLP schedulers yield better average degradation for all workloads.
MLP2 is better in 7 out of 9 workloads and MLP1 is better in 2 workloads.

For future comparisons, MLP2 is selected as the MLP scheduler of choice, given its
impressive performance in the average degradation metric.

When it comes to fairness, ModLP is better than the other 3 schedulers (even Optimal)
in 5 out of 9 workloads. Because of how the problem is formulated, it does a better job
of balancing the load. The unfairness metric captures by how much systems improve
performance of certain tasks at the expense of other tasks. A lower number is better.
Unfairness is calculated as:

Unfairness = 100×

√∑N
i=1 d

2
i

N
−

∑N
i=1 di
N∑N

i=1 di
N

where di is the degradation of task i and N is the number of tasks. This metric is closely
related to the Coefficient of Variation [30]. We want as little variation in degradation
among the various tasks as possible. Since the ModLP scheduler first sorts the tasks as
in DI, and then balances the load using Linear Programming, utilizing an M5 Prime pre-
diction model to predict the impact of certain scheduling decisions, it has good unfairness
results.

Table 3 gives improvements as percentages; Improvement of Scheduler A over Scheduler
B. Bold percentages indicate equal or better performance. Less than one percent difference
in the negative direction is also considered equal. One can see that DI is only equal to
Optimal in one workload. ModLP is equal to or better than DI in 3 workloads. MLP2 is
better than DI in 7 out of 9 workloads. Out of these, 5 are differences of more than 10%.
This is a significant improvement over DI. MLP2 is also equal to DI in one workload.

And now, very importantly, MLP2 is equal to Optimal in 6 out of 9 workloads, and
strictly equal (0.00%) difference in 4 workloads. This is very significant because it means
that Optimal scheduling can be done without going through a time-intensive optimization
process such as Integer Programming.
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Figure 2. Average run times for the 4 approaches we studied

Figure 2 shows the average runtimes of the various schedulers evaluated. These are
execution times; how long the scheduler spent doing its work per workload, on average.
Note that the focus is on the scheduler, not the whole software system which includes the
simulator, and which in a live operating system would include other components such as
the memory manager. The Optimal scheduler spent the most time per workload: 33.56ms.
This is because of its use of Integer Programming. ModLP is next, taking 4.41ms per
workload. It is faster than the Optimal because Linear Programming executes faster
than Integer Programming, but it also had to use an M5 Prime model for degradation
predictions. MLP2 is next, taking 2.88ms per workload. It is faster than Optimal and
ModLP because solving the scheduling problem corresponds to simply plugging in the
process MPI figures, after which executing the Multilayer Perceptron involves some matrix
multiplications, while Optimal and ModLP have to execute complex Integer and Linear
Programming algorithms. The fastest scheduler is DI with 0.22ms spent per workload.
DI is very fast because it works with a simple sort mechanism.

7.3. Significance of results. The MLP2 scheduler is better than DI, the state-of-the-
art scheduler, in 7 out of 9 test workloads, mostly by a wide margin, and approximately
equal to the Optimal Scheduler in 6 out of 9 test workloads, exactly equal in 4. The
MLP scheduler produces schedules very close to the theoretical optimum and much better
schedules than DI. Also, it has much faster execution time than the optimal scheduler,
and relatively close scheduler execution time to DI. Given these performance results,
MLP2 could be easily used as a batch scheduler [1, 2, 3]. In this scenario, tasks (jobs) are
submitted for execution in a non-interactive manner; they run to completion once started,
without prompting the user for input. Such systems are found in many High Performance
Computing (HPC) environments, where large servers exist with many processing units
[31, 32]. Current research is focusing on using variants of DI for this purpose, including
cluster environments [32]. These studies have shown that DI is superior to the Linux
operating system scheduler, even for cluster environments. Our scheduler outperforms
DI, with not much additional cost (in terms of run time), so is well suited for this role,
be it on single-machine environments or on cluster nodes. MLP2 could also be modified
for integration into an online scheduler, and at various scheduling points the MLP model
could be used to reschedule tasks. For example, when a task finishes execution, and when
a new task is started. The important issue is that the MLP model should be trained using
training sets representative of the actual workloads which will run on the target machines.
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8. Conclusion. Our results show that the MLP scheduler is better than DI in 7 out
of 9 test workloads, and approximately equal to the Optimal Scheduler in 6 out of 9
test workloads. We show that an MLP scheduler can equal the Optimal scheduler in
the average degradation metric and significantly outperform the DI scheduling approach
(by more than 10% in most cases). Also, an LP scheduler can yield better fairness, thus
providing a promising avenue for further research. Both ModLP and MLP are faster than
the Optimal scheduler by a wide margin, but out of the two, only MLP can match the
Optimal’s scheduling results. MLP is slower than DI, but makes up for that with far
superior scheduling results.
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York, Information Science Reference, 2010.

[30] R. Jain, The Art of Computer Systems Performance Analysis, John Wiley and Sons, Inc., 1991.
[31] D. Feitelson, L. Rudolph and U. Schwiegelshohn, Parallel job scheduling – A status report, in Job

Scheduling Strategies for Parallel Processing, D. Feitelson, L. Rudolph and U. Schwiegelshohn (eds.),
Springer Berlin/Heidelberg, 2005.

[32] S. Blagodurov and A. Fedorova, In search for contention-descriptive metrics in HPC cluster environ-
ment, Proc. of the Second Joint WOSP/SIPEW Intl. Conference on Performance Engineering, New
York, NY, USA, pp.457-462, 2011.


