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Abstract. Train energy-efficient operation problem applies the optimal control theory
to optimize the speed profile between successive stations such that the tracking energy is
minimized. Traditional studies show that the optimal speed profile consists of four phases
including maximum acceleration, cruising, coasting and maximum braking. Based on
the assumption that the resistance coefficients are random variables as the disturbances
arising from the weather and locomotive conditions, this paper proposes a stochastic train
energy-efficient operation model, and proves that the coasting phase should be replaced
by a quasicoasting phase for the optimal speed profile. An efficient iterative algorithm is
designed to solve the optimal switching strategy among different phases, and a numerical
example is illustrated to show that the stochastic optimization approach can further save
energy by 3.68% compared with the traditional studies.
Keywords: Optimal train control, Energy-efficient operation, Stochastic optimization

1. Introduction. Energy and environmental concerns have made energy conservation
a hot problem in railway transportation. Generally speaking, train energy conservation
technique includes energy-efficient operation (Liu and Golovitcher [20], Howlett et al.
[12]), energy-efficient scheduling (Ghoseiri et al. [6], Yang and Li [27], Park et al. [25]),
improvement of traction efficiency and reduction on auxiliary power (Bergendorff [3]),
while energy-efficient operation is one of the most important approaches, which applies
the optimal control theory to optimize the speed profile between successive stations such
that the energy consumption for tracking the speed profile is minimized. Literatures
on this research may go back to the late 1970s, for example, Kokotović and Singh [17]
formulated a nonlinear second-order optimal control model to minimize the electrical en-
ergy consumption by controlling the armature current. Milroy [21] firstly proposed the
minimization problem of mechanical energy consumption in his PhD thesis. He showed
that an energy-efficient speed profile for short trip has three phases including maximum
acceleration, coasting and maximum braking. Furthermore, Lee et al. [18] discovered
cruising as the fourth phase for longer trip. Howlett [8] produced the first theoretical
confirmation that an optimal speed profile should use an maximum acceleration-cruising-
coasting-maximum braking phase sequence, which reformulates the problem to optimize
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the switching strategy among different phases. Although these researches have very re-
stricting assumptions on line gradient, speed limit and traction efficiency, their theoretical
results lay the foundation for modern train control theory (see Asnis et al. [1] and Howlett
[8]). A research with variable gradient was carried out by Golovitcher [7], which proved
that the cruising phase must be interrupted by an acceleration phase for each steep uphill
section and by a coasting phase for each steep downhill section. A study on variable trac-
tion efficiency was given by Cheng and Howlett [5], and a case with different gradients
and speed limits segments was investigated by Baranov [2]. Recently, Khmelnitsky [15]
presented a complete study on train energy-efficient operation problem, in which variable
gradient, variable traction efficiency and arbitrary speed limit were all considered.
All above researches were based on the assumption that the traction force is a continuous

variable, i.e., we can choose any value between zero and the maximum. However, for some
typical diesel-electric locomotive (see Howlett [10]), the traction force is proportional to
the rate of fuel supply, and the rate is determined by a limited number of discrete settings,
then only a finite number of traction forces are available. A systematic study on discrete
energy-efficient operation problem was given by the Scheduling and Control Group at the
University of South Australia (see Howlett [11] and Vu [26]). For example, Howlett [11]
considered an energy-efficient operation problem with a generalized motion equation. The
author considered both the continuous control problem and the discrete control problem.
For the continuous problem, the Pontryagin maximum principle was used to find the
necessary conditions of the optimal strategy. For the discrete problem, the Kuhn-Tucker
equation was used to find the key equations that determine the optimal switching strategy.
Note that the modern traction systems may produce any traction force within power and
adhesion restrictions; therefore, the continuous control model is practical and sufficient
enough for most applications.
Automatic train operation (ATO) technique basically consists of high-level control and

low-level control: the former optimizes the reference speed profile for the purpose of en-
ergy conservation, comfortability and punctuality, while the latter studies the control
technique for tracking the reference speed profile precisely. Energy-efficient operation is
a kind of high-level control problem, which mainly concerns the optimization on speed
profile. As the development of ATO technique, recent researches on energy-efficient op-
eration mainly focus on the reduction of computation time for satisfying the requirement
of on-board control. For example, Liu and Golovitcher [20] considered a continuous con-
trol problem with constant traction efficiency and arbitrary speed limit. The authors
developed an analytical solution method that gave the sequence of optimal controls and
equations to find the switching points. Ke and Chen [13] designed a genetic algorithm to
determine the energy-efficient speed profile with restrictions on gradient, speed limit and
minimum headway. The application of genetic algorithm on train control problem was
also studied by Chang and Sim [4] and Yang et al. [28]. Howlett [12] provided another
analytical method for solving continuous control problem with more than one steep slopes,
which first divided the route into small parts such that each part contains at most one
steep slope, then solved the precise switching points for each part by using a local energy
minimization principle. Li et al. [19] designed a bisection algorithm based on the analyti-
cal solution approach for train energy-constraint operation problem, which minimizes the
trip time under certain energy consumption constraint. In addition, dynamic program-
ming algorithm (Ko et al. [16]), sequential quadratic programming algorithm (Miyatake
and Matsuda [22] and Miyatake and Ko [23]) and ant colony optimization algorithm (Ke
et al. [14]) were also designed to solve the energy-efficient speed profile.
Since the operation strategy will be used by many trains over a long period of time,

during which the resistance coefficients will vary due to the disturbances of weather,
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route and locomotive conditions, it is impossible to predict their values precisely when
we formulate the energy-efficient operation model. For example, Morten and Spencer [24]
pointed out that an old British diesel multiple unit train has aerodynamic resistance coef-
ficient 0.000044, which is significantly greater than 0.000020 for a new train. However, the
existing literatures and approaches usually ignore these uncertain disturbances and for-
mulate deterministic models with standard parameter value representing good conditions,
which may increase the energy consumption when the resistance coefficient deviates the
standard value. In this paper, we propose an expected energy consumption minimization
model with stochastic resistance coefficient for overcoming the uncertain disturbances.

The rest of this paper is organized as follows. In Section 2, we review the traditional
optimal control model for train energy-efficient operation problem. In Section 3, a sto-
chastic model is proposed by minimizing the expected energy consumption. We analyze
the optimality conditions by applying the Pontryagin maximum principle, which tells us
that the optimal speed profile consists of maximum acceleration, cruising, quasicoasting
and maximum braking. In Section 4, we design a numerical algorithm to solve the optimal
switching strategy. In Section 5, we present a numerical example to compare the stochas-
tic model with the deterministic model on energy consumption, which implies that the
stochastic model can further save energy by 3.68% in average. In Section 6, we conclude
the paper.

2. Train Energy-Efficient Operation. Suppose that a train runs on a section with
no line gradients and speed limits. Since Howlett and Pudney [9] has proved that the
motion of a distributed mass train can be reduced to the motion of a point mass train,
the motion equation can be written as

dv(s)

ds
=

f(s)− (a+ cv2(s))

v(s)
, ∀ 0 ≤ s ≤ S (1)

where s denotes the train position, S denotes the length of the section, v denotes the
train speed, a+ cv2 denotes the resistance force per unit mass, and f denotes the external
force per unit mass. Note that the external force applied to the train includes both the
traction force and the braking force, which are denoted as its positive part and negative
part, respectively.

For any feasible speed profile v satisfying the motion Equation (1), it is easy to prove
that the total trip time taken for tracking it is∫ S

0

1/v(s)ds. (2)

Now, we consider the speed profile with the minimum trip time. Let v1 be the solution
for s ≥ 0 to differential equation

dv(s)

ds
=

(
F (v(s))− (a+ cv2(s))

)
/v(s)

with v(0) = 0, and let v2 be the solution for s ≤ S to differential equation

dv(s)

ds
= −

(
B(v(s)) + (a+ cv2(s))

)
/v(s)

with v(S) = 0. Then the minimum time speed profile is proved to be v(s) = min{v1(s),
v2(s)}, and the minimum trip time can be calculated by Equation (2). Generally speaking,
the given trip time T is larger than the minimum value Tmin. Therefore, it is possible that
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there are more than one feasible speed profile satisfying the time constraint. Among all
these speed profiles, the one which minimizes the energy consumption∫ S

0

max{f(s), 0}ds (3)

is called the energy-efficient speed profile. The train energy-efficient operation model is
formulated as follows:

min

∫ S

0

max{f(s), 0}ds

s.t.

∫ S

0

1/v(s)ds = T

dv(s)

ds
= (f(s)− (a+ cv2(s)))/v(s), 0 ≤ s ≤ S

−B(v(s)) ≤ f(s) ≤ F (v(s)), 0 ≤ s ≤ S

v(s) ≥ 0, 0 ≤ s ≤ S, v(0) = v(S) = 0,

(4)

where the third constraint denotes the traction and braking capacity, and the last one
denotes the boundary speed conditions. In this model, the control variable is f(s) and
the state variable is v(s).
According to the Pontryagin maximum principle, it has been proved that the energy-

efficient speed profile essentially consists of four phases including maximum acceleration,
cruising, coasting and maximum deceleration (see Howlett et al. [12]). Then the opti-
mal train control problem is transformed into a nonlinear optimization problem which
determines the switching strategy.

3. Stochastic Model. Generally speaking, it is impossible to predict the resistance
coefficients precisely due to the disturbance of weather, route and locomotive conditions.
However, the existing literatures and approaches usually ignore these uncertain factors
and formulate deterministic model with standard coefficient values representing good
conditions, which may increase the energy consumption when the resistance coefficients
deviate the standard values. For example, in Morten and Spencer [24], the authors pointed
out that an old British diesel multiple unit train has aerodynamic resistance coefficient
0.000044, which is significantly greater than 0.00002 for a new train. For an old train, if we
take a = 16.6, S = 40 km, T = 700 s, F = 0.8/(1+0.005v) N and B = 0.4/(1+0.003v) N,
the energy consumption for tracking the energy-efficient speed profile is 9223 kJ. However,
if we treat it as a new train by taking c = 0.00002, then the tracking energy increases to
11979 kJ.
For dealing with the uncertainty on resistance coefficient, we estimate it as a random

variable ξ with density function φ(x) = (x − l)/(u − l) for all x ∈ [l, u]. A speed profile
is said to be feasible if and only if for each x ∈ [l, u], there is a feasible value f(s, x)
satisfying the motion equation

dv(s)

ds
= (f(s, x)− (a+ xv2(s)))/v(s), ∀ 0 ≤ s ≤ S.

Denote e = (l + u)/2. In order to make it possible to track a common speed profile for
all x ∈ [l, u], it is clear that f(s, x) and f(s, e) should satisfy the following equation

f(s, x)− (a+ xv2(s)) = f(s, e)− (a+ ev2(s)), (5)
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which implies that f(s, x) = f(s, e) + (x− e)v2(s). Take x to be the minimum value l, it
follows from the braking capacity constraint f(s, l) ≥ −B(v(s)) that

f(s, e) ≥ −B(v(s)) + (u− l)v2(s)/2. (6)

On the other hand, take x to be the maximum value u. It follows from the capacity
constraint f(s, u) ≤ F (v(s)) that

f(s, e) ≤ F (v(s))− (u− l)v2(s)/2. (7)

Now, let us consider the expected energy consumption. First, it is clear that the energy
consumption for tracking the feasible speed profile v(s) with resistance coefficient x is

E(v, x) =

∫ S

0

max{f(s, e) + (x− e)v2(s), 0}ds.

Since x varies randomly, E(v, x) is also a random variable. We take its expected value
to measure the total energy consumption. It follows from the Fubini’s theorem that the
expected energy consumption is∫ u

l

∫ S

0

max{f(s, e) + (x− e)v2(s), 0}φ(x)dsdx

=

∫ S

0

∫ u

l

max{f(s, e) + (x− e)v2(s), 0}φ(x)dxds.

Based on above analysis, the stochastic energy-efficient operation model can be formulated
as follows: 

min

∫ S

0

∫ u

l

max{f(s, e) + (x− e)v2(s), 0}φ(x)dxds

s.t.

∫ S

0

1/v(s)ds = T

dv(s)

ds
=

f(s, x)− (a+ xv2(s))

v(s)
, 0 ≤ s ≤ S

f(s, e) ≤ F (v(s))− (u− l)v2(s)/2, 0 ≤ s ≤ S

f(s, e) ≥ −B(v(s)) + (u− l)v2(s)/2, 0 ≤ s ≤ S

v(s) ≥ 0, 0 ≤ s ≤ S, v(0) = v(S) = 0

(8)

where the control variable is f(s, e), and the state variable is v(s).
In what follows, we analyze the optimality conditions of the stochastic model. First,

we discuss the integral ∫ u

l

max{f + (x− e)v2, 0}φ(x)dx. (9)

For simplicity, we denote z = (u−l)v2/2. If f < −z, it is easy to prove that f+(x−e)v2 ≤
0 for all x ∈ [l, u] and the integral is 0. If f > z, it is easy to prove that f +(x− e)v2 ≥ 0
for all x ∈ [l, u] and the integral is f . Otherwise, we have u ≥ e − f/v2 ≥ l and the
integral is ∫ u

e−f/v2
(f + (x− e)v2)/(u− l)dx = (f + z)2 /4z.
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In general, it is easy to conclude the following equation∫ u

l

max{f + (x− e)v2, 0}φ(x)dx

=
(
max{2f,−(u− l)v2}+max{2f, (u− l)v2}

)2
/8max{2f, (u− l)v2}. (10)

Furthermore, according to the Pontryagin maximum principle, for each 0 ≤ s ≤ S, the
optimal control strategy should maximize the following Hamiltonian function

H =
p

v
×
(
f − (a+ cv2)

)
−

(
max{2f,−(u− l)v2}

+max{2f, (u− l)v2}
)2
/8max{2f, (u− l)v2}

where p(s) is the conjugate function satisfying equations

dp

ds
= −dH

dv
,

dv

ds
=

dH

dp
.

The argument breaks down into five cases.
Case 1. p > v. It is easy to prove that the Hamilton function H is increasing with

respect to f , which implies that it attains the maximum value when f = F (v)−(u−l)v2/2.
Case 2. p = v. In this case, it is easy to prove that H attains its maximum value if

and only if f ≥ (u− l)v2/2. Since the Hamiltonian function has no relation with respect
to p, we have dH/dp = 0. It follows from the conjugate condition that dv/ds = 0, which
implies that the train runs with a constant speed. Therefore, we have f = (l + u)v2/2.
Case 3. 0 < p < v. In this case, it is easy to prove that H is a unimodal function. Take

dH/df = 0, it is solved that f = (p/v − 1/2) (u − l)v2. Furthermore, according to the
conjugate conditions dp/ds = up− rp/v2 and dv/ds = (u− l)p− r/v − uv, we have

d(p/v)

ds
= 2u(p/v)− (u− l)(p/v)2.

Then it is solved that

p/v = 2u/(u− l + α exp(−2us)),

f = (2u/(u− l + α exp(−2us))− 0.5) (u− l)v2

where α is a positive real parameter. It follows from p < v that α > (l + u) exp(2us).
Case 4. p = 0. In this case, we have p/v = 0, and H attains its maximum value 0 if

and only if f = −(u− l)v2/2. On the other hand, it follows from the conjugate condition
that dv/ds = 0. Hence, there is another positive force keeping the train a constant speed,
which implies that this phase exists at steep downhill segment only.
Case 5. p < 0. It is easy to prove that H is a decreasing function with respect

to f , which implies that it is maximized if and only if f reaches its minimum value
−B(v) + (u− l)v2/2.
Based on the assumption that the track is flat, the optimal speed profile consists of four

phases. For simplicity, we respectively name them as maximum acceleration, cruising, α-
quasicoasting and maximum braking. Note that the third phase is named as quasicoasting
since it coincides to the traditional coasting phase when l = u. Let v be the optimal speed
profile with cruising point s1, α-quasicoasting point s2 and braking point s3. Then the
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traction strategy should be

f(s, e) =


F (v(s))− (u− l)v2(s)/2, if 0 < s ≤ s1

a+ (l + u)v2(s)/2, if s1 < s ≤ s2

(2u/(u− l + α exp(−2us))− 0.5)(u− l)v2(s), if s2 < s ≤ s3

−B(v(s)) + (u− l)v2(s)/2, if s3 < s ≤ S,

(11)

and the speed profile v should satisfy the following differential equation

dv(s)

ds
=


(F (v(s))− a− uv2(s))/v(s), if 0 < s ≤ s1

0, if s1 < s ≤ s2

u(2(u− l)/(u− l + α exp(−2us))− 1)v(s), if s2 < s ≤ s3

−(B(v(s)) + a+ lv2(s))/v(s), if s3 < s ≤ S.

(12)

Note that if the resistance coefficient is fixed to be a crisp number, that is, l = u, then
Equation (12) coincides to the traditional equation for energy-efficient speed profile.

4. Algorithm. In this section, we design a numerical algorithm to solve the optimal
switching strategy. First, we uniformly divide the section intoN parts. Denote4s = S/N
and pi = i×4s for all i = 0, 1, 2, · · · , N .

Trip time. For each feasible switching strategy (s1, s2, s3) with sj ∈ {p1, p2, · · · , pN},
according to Equation (12) and the boundary condition v0 = vN = 0, it is easy to solve
the values {vi, i = 1, 2, · · · , N}. Then the trip time may be approximated as

N−1∑
i=1

4s/vi →
∫ S

0

1/v(s)ds. (13)

Energy consumption. Denote ni = si/∆s for i = 1, 2, 3. According to Equation (5),
the energy consumption during the maximum acceleration, cruising and quasicoasting
phases can be respectively approximated as

n1−1∑
i=1

(
F (vi)− (u− l)v2i /2

)
∆s →

∫ s1

0

F (v(s))− (u− l)v2(s)/2ds

n2−1∑
i=n1

(
a+ (l + u)v2i /2

)
∆s →

∫ s2

s1

a+ (l + u)v2(s)/2ds

n3−1∑
i=n2

max{2u/(u− l + α exp(−2upi))− 0.5, 0}(u− l)v2i∆s →∫ s3

s2

max{2u/(u− l + α exp(−2us))− 0.5, 0}(u− l)v2(s)ds

Braking point. For any given cruising point s1 and quasicoasting point s2, since both
the braking curve and the quasicoasting curve are strictly decreasing but have different
gradients for all position s, the intersection point is unique which is just the braking point
(see Figure 1).
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Figure 1. Speed profile with given cruising point and quasicoasting point

Cruising point. Now, we consider the feasible values of cruising point. First, it is
possible that the cruising point is so small that even through the quasicoasting phase is
omitted, the trip time still exceeds the given value. Hence, the lower bound of cruising
point sl1 should be the one satisfying T (s, s2, s2) = T where s2 is the intersection point
of the cruising line and the braking curve (see Figure 2). Second, it is possible that the
cruising point is so large that even though the cruising phase is omitted, the trip time is
still smaller than the given value. Hence, the upper bound of cruising point su1 should be
the one satisfying T (s, s, s3) = T where s3 is the intersection point of the quasicoasting
curve and the braking curve.

Figure 2. The lower and upper bounds for cruising point

Quasicoasting point. For any given cruising point s1, the quasicoasting point satisfying
the time constraint is unique. Suppose that there are two feasible quasicoasting points
s2 and t2. Without loss of generality, we assume s2 < t2. If we use s3 and t3 to denote
the braking points, and use v and v′ to denote the speed profiles, then it is easy to prove
that t3 < s3 and v(s) < v′(s) for any s ∈ [s2, s3] (see Figure 3), which contradicts to the
trip time constraint. Therefore, the quasicoasting point is unique once the cruising point
is fixed, and it can be solved by using the dichotomy algorithm.

Final algorithm. Based on above analysis, we design an iterative algorithm to solve the
switching strategy.

Algorithm 4.1. For any α > 0, the algorithm for calculating the optimal switching
strategy is summarized as follows.

Step 1. Calculate the lower bound sl1 and upper bound su1 for cruising point;
Step 2. Set i = sl1/∆s and k = i;
Step 3. Calculate the quasicoasting point s2 with cruising point pi;
Step 4. Calculate the braking point s3 with cruising point pi and quasicoasting point s2;
Step 5. Calculate the expected energy consumption Ei;
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Figure 3. Speed profile with given cruising point

Step 6. If Ei < Ek, set k = i;
Step 7. Set i = i+ 1. If pi ≤ su1 , go to Step 3;
Step 8. Calculate the quasicoasting point s2 and braking point s3 with cruising point pk;
Step 9. Return the optimal switching strategy (pk, s2, s3) and the expected energy con-
sumption Ek.

5. Numerical Example. In order to illustrate the efficiency of the proposed model and
algorithm, we present a numerical example in this section which is performed on a personal
computer with processor speed 2.4 GHz and memory size 2 GB. The parameters are set
as follows:

• traction capacity F (v) = 0.8/(1 + 0.005v) N;
• braking capacity B(v) = 0.4/(1 + 0.003v) N;
• operation distance S = 40000 m;
• mechanical resistance coefficient r = 0.01606;
• aerodynamic resistance coefficient ξ ∼ U(0.000020, 0.000044).

First, we calculate the minimum trip time by accelerating the train with the maximum
traction force and then decelerating the train with the maximum braking force. Let v1
be the solution for s ≥ 0 to differential equation

dv(s)

ds
=

(
0.8/(1 + 0.005v(s))− (0.01606 + 0.000044v2(s))

)
/v(s)

with v(0) = 0, and let v2 be the solution for s ≤ 200 to differential equation

dv(s)

ds
= −

(
0.4/(1 + 0.003v(s)) + (0.01606 + 0.000020v2(s))

)
/v(s)

with v(40000) = 0. Then the speed profile with minimum trip time is min{v1, v2}, and
the minimum trip time is calculated to be Tmin = 598.9 s.

Now, we compare the stochastic model with the deterministic model on energy con-
sumption with trip time T ∈ {610, 630, 700, 800, 900}. First, we perform Algorithm 4.1
to calculate the expected energy consumption with α ∈ {0.0022, 0.003, 0.004, 0.005, 0.01,
0.02, 0.05}. Furthermore, we calculate the energy-efficient speed profiles for the determin-
istic model with fixed aerodynamic resistance coefficient c ∈ {0.000020, 0.000025, 0.000030,
0.000032, 0.000035, 0.000040, 0.000044}, and then calculate the expected energy consump-
tion for tracking the energy-efficient speed profile under stochastic environment. The
computational results are shown by Table 1. It is concluded that

• Generally speaking, a shorter time makes it necessary to accelerate the train to
a higher speed with a larger energy consumption. In Table 1, it is shown that the
energy consumption is decreasing with respect to the trip time for both deterministic
model and the stochastic model.
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Table 1. A comparison between stochastic model and deterministic model

T = 610
D-model

c× 1000 0.020 0.025 0.030 0.032 0.035 0.040 0.044

Energy 16882 14721 13271 12439 11913 11856 11601

S-model
α 0.0022 0.003 0.004 0.005 0.01 0.02 0.05

Energy 11314 11380 11445 11484 11560 11598 11620

T = 630
D-model

c× 1000 0.020 0.025 0.030 0.032 0.035 0.040 0.044

Energy 16285 13925 12291 11413 10852 10652 10369

S-model
α 0.0022 0.003 0.004 0.005 0.01 0.02 0.05

Energy 10032 10080 10141 10179 10254 10290 10312

T = 700
D-model

c× 1000 0.020 0.025 0.030 0.032 0.035 0.040 0.044

Energy 14407 11590 9812 9021 8416 8012 7667

S-model
α 0.0022 0.003 0.004 0.005 0.01 0.02 0.05

Energy 7377 7398 7437 7467 7526 7555 7573

T = 800
D-model

c× 1000 0.020 0.025 0.030 0.032 0.035 0.040 0.044

Energy 12565 9694 7636 7092 6446 5936 5579

S-model
α 0.0022 0.003 0.004 0.005 0.01 0.02 0.05

Energy 5350 5358 5381 5403 5447 5469 5481

T = 900
D-model

c× 1000 0.020 0.025 0.030 0.032 0.035 0.040 0.044

Energy 11263 8344 6592 5918 5292 4722 4351

S-model
α 0.0022 0.003 0.004 0.005 0.01 0.02 0.05

Energy 4165 4169 4184 4200 4235 4251 4261

• For stochastic model, the expected energy consumption corresponding to the optimal
speed profile is strictly increasing with respect to α, which tells us that we should
select α as small as possible. On the other hand, its value makes small influence on
the expected energy consumption. Take T = 630 for example (see Figure 4), if α
increases from 0.0022 to 0.05, the variation on energy consumption is only 2.72%.

• For deterministic model, the expected energy consumption is roughly decreasing
with respect to the resistance coefficient c, which tells us that the largest resistance
coefficient should be recommended to the deterministic model for the purpose of
energy saving.

• The stochastic expected value programming model takes a good performance on en-
ergy conservation than the deterministic model with the expected resistance coeffi-
cient c = 0.000032. It follows from Table 2 that the stochastic model with α = 0.0022
can further save energy by 18.71% in average.

• Compared with the deterministic model, the stochastic model is efficient on energy
conservation. Take α = 0.0022 for the stochastic model and c = 0.000044 for deter-
ministic model, the energy consumptions are shown by Table 3. It is calculated that
the stochastic model can reduce the energy consumption by 3.68% in average.

6. Conclusions and Future Research. In this paper, we proposed a stochastic ex-
pected value programming model for the optimal train control problem with uniformly
distributed resistance coefficient. For solving the model, we first applied the Pontryagin
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Figure 4. The relationship between the energy consumption and the pa-
rameter c for deterministic model

Table 2. A comparison between stochastic model and deterministic model
with expected resistance coefficient

Trip time 610 630 700 800 900

Energy consumption for deterministic model 12439 11413 9021 7092 5918

Energy consumption for stochastic model 11314 10032 7377 5350 4165

Energy reduction 9.04% 12.10% 18.22% 24.56% 29.62%

Table 3. A comparison between stochastic model with α = 0.0022 and
deterministic model with c = 0.000044

Trip time 610 630 700 800 900

Energy consumption for deterministic model 11601 10369 7667 5579 4351

Energy consumption for stochastic model 11314 10032 7377 5350 4165

Energy reduction 2.47% 3.25% 4.30% 4.10% 4.27%

maximum principle to analyze the optimality conditions, which tells us that the optimal
speed profile basically consists of four phases including maximum acceleration, cruising,
quasicoasting and maximum braking. Furthermore, we designed a numerical algorithm to
solve the optimal switching strategy. Compared with the deterministic model, we proved
that the stochastic model averagely reduces energy consumption by 3.68% in terms of
performing numerical example.

Although the stochastic model is proved to be advantageous than the deterministic
model on numerical examples, we need to further conduct empirical studies for testing
its effectiveness in real railway system. In this work, the track is assumed to be flat
and no speed limits are considered. In spirit with the works of Liu and Golovitcher [20]
and Howlett [12], we may further study the stochastic model with variable gradients and
arbitrary speed limits.
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[17] P. Kokotović and G. Singh, Minimum-energy control of a traction motor, IEEE Transactions on
Automatic Control, vol.17, no.1, pp.92-95, 1972.

[18] D. H. Lee, I. P. Milroy and K. Tyler, Application of Pontryagin’s maximum principle to the semi-
automatic control of rail vehicles, Proc. of the 2nd Conference on Control Engineering, Newcastle,
Institution of Engineers Australia, pp.233-236, 1992.

[19] X. Li, C.-F. Chien, L. Li, Z. Gao and L. Yang, Energy-constraint operation strategy for high-speed
railway, International Journal of Innovative Computing, Information and Control, vol.8, no.10(A),
pp.6569-6583, 2012.

[20] R. Liu and I. Golovitcher, Energy-efficient operation of rail vehicles, Transportation Research Part
A, vol.37, pp.917-932, 2003.

[21] I. P. Milroy, Aspects of Automatic Train Control, Ph.D. Thesis, Loughborough University, 1980.



TRAIN ENERGY-EFFICIENT OPERATION 3483

[22] M. Miyatake and K. Matsuda, Energy saving speed and charge/discharge control of a railway vehicle
with on-board energy storage by means of an optimization model, IEEJ Transactions on Electrical
and Electronics Engineering, vol.4, no.6, pp.771-778, 2009.

[23] M. Miyatake and H. Ko, Optimization of train speed profile for minimum energy consumption, IEEJ
Transactions on Electrical and Electronics Engineering, vol.5, no.3, pp.263-269, 2010.

[24] W. J. Morten and C. S. Spencer, Estimating emissions from railway traffic, Report for the Project
MEET: Methodologies for Estimating Air Pollutant Emissions From Transport, 1997.

[25] B. H. Park, C.-S. Kim, T. Lim and H.-L. Rho, A new railway line planning model considering
multinomial LOGIT-based traffic assignment, ICIC Express Letters, vol.5, no.8(B), pp.2919-2926,
2011.

[26] X. Vu, Analysis of Necessary Conditions for the Optimal Control of a Train, Ph.D. Thesis, University
of South Australia, 2006.

[27] L. Yang and K. Li, The railway transportation planning problem and its genetic algorithm based
tabu search algorithm, ICIC Express Letters, vol.3, no.3(A), pp.361-366, 2009.

[28] L. Yang, K. Li, Z. Gao and X. Li, Optimizing trains movement on a railway network, Omega, vol.40,
no.5, pp.619-633, 2012.


