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Abstract. One fundamental constraint of wireless sensor network (WSN) is the ratio
of the power consumption to the energy supply. Recent studies have shown that building
WSN nodes with solar-energy harvesting capability is an effective approach to length-
ening the lifetime of node. Meanwhile, the partial dynamic reconfiguration (PDR) is
a productive approach in intensive applications such as video and encryption processes.
For PDR, time and energy must be invested before an application can be running. Thus,
this method is different from the software approach. Therefore, in an energy-harvesting
system, the scheduling of tasks in the form of software or hardware is important. In
this paper, a novel methodology that schedules dynamic reconfigurations for a WSN node
with an energy-harvesting is presented. This method is based on statistical data on tasks
and available energy. To demonstrate this approach, an HW reconfigurable WSN node
is prototyped. Four typical applications are used as test cases and are divided into basic
scheduling units. In the experiments, the efficiency of reconfigurable hardware is first
demonstrated. The novel scheduling strategy is then used to identify the most valuable
application for the reconfigurable hardware. Our experiments demonstrate that more than
50% energy cost can be saved compared with the software-based solution.
Keywords: FPGA, WSN, Scheduling strategy, Energy efficiency, PDR

1. Introduction. Most current applications in outdoor environments run on batteries
given their convenience and relatively low cost. However, battery-powered applications
are not suitable for long-term use, despite the numerous studies on the various techniques
that lengthen the nodal lifetime [1]. The capture of environmental energy such as solar,
vibration and wind is referred to as energy harvesting. Systems that obtain their energy
supply through energy harvesting have a regenerative energy source. These systems are
fundamentally different from battery-based systems and thus have different design criteria.
The power supply of these systems can be unlimited. Figure 1 shows the considerable
variability of available energy. However, this energy may be predictable, depending on
the characteristics of the energy sources.

For wireless sensor networks (WSN), energy harvesting is a novel approach to over-
coming energy issues. Solar energy harvesting is a very dependable source of energy,
particularly in an open environment. The perpetual operations can be supported by
energy-harvesting functions [3,4]. Various prototype systems with different regenerative
sources are available. A previous report [5] presented the history and survey of different
types of energy-harvesting systems. In another study [6], a system with vibration energy-
harvesting capability was presented. In other studies [7,8], the systems for solar power
utilization were described and named as Prometheus and Heliomote in papers. To cope
with the variability of available energy in energy-harvesting systems, advanced scheduling
strategies have also been studied. A previous study [8] utilized dynamic voltage scaling to
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Figure 1. Typical global horizontal solar radiation in one day [2]

address the scheduling issue. An online scheduling approach was also developed to solve
this problem [9].
Meanwhile, for WSNs, the use of a reconfigurable HW is an effective approach to im-

proving the processing capacity of nodes. Reconfigurability can generally be classified as
either static or dynamic. In the static configuration, reconfiguration occurs only when the
field-programmable gate array (FPGA) chip is not running. Several studies have been con-
ducted on the utilization and benefit of static reconfigurability through the development
of ad-hoc reconfigurable devices [10,11]. To accommodate different networking protocols,
reconfigurability was also utilized for the PicoRadio low-power sensor networks [12]. In
a previous study [13], a dedicated elliptic curve cryptography (ECC) was developed for
WSN nodes. Two systems were built to compare the software-based approach and the
reconfigurable HW approach. The FPGA-based ECC implementation requires energy
that is three orders of magnitude lower than that used in a low power micro controller
implementation. Although these studies demonstrate the benefit of reconfigurable hard-
ware, only static reconfiguration was investigated. In dynamic reconfiguration, when one
part of the chip is under reconfiguration, the I/Os and remaining logic remain running.
This characteristic allows the regular update of HWs at anytime and saves memory and
configuration time compared with static reconfiguration. A number of studies have been
conducted on utilizing the PDR approach. In previous papers [14,15], the use of the partial
dynamic reconfiguration (PDR) function in the automotive industry and video processing
was investigated. In another study [16], a scalable processor architecture central process-
ing unit (SPARC CPU) was incorporated with the PDR function. A piece of remarkable
work on WSNs was presented in a previous paper [17]. In this paper, an FPGA-based
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WSN node was remotely configured while the node was running. Configuration files were
transmitted to the nodes using the Zigbee protocol. The power consumption at differ-
ent nodal working stages was determined and then analyzed. In this study, the power
consumption of data transfers was clearly overwhelming. Therefore, the configuration file
was in the node pre-stored. During reconfiguration, only the related control signals were
transmitted to enable the reconfiguration process.

For a certain task, although dynamic reconfigurable HWs can deliver better perfor-
mance with less energy consumption compared with software based solutions, this result
may not be obtained when reconfigurations are frequently needed, given that reconfig-
urable HWs shave different cost models. In this case, an optimized scheduling strategy is
needed for a PDR-based system. Therefore, under an energy-harvesting environment, the
scheduling of tasks between the processor and the reconfigurable HW becomes vital. This
topic was first examined in an energy harvesting WSN node [18], with the assumption that
enough energy is always available to carry out the reconfigurations. Furthermore, a novel
approach that is based on the statistical analysis of the tasks and the available energy
was proposed to reduce missing task deadlines [19]. Although the method demonstrated
a reduction in deadline misses by more than 57%, the scheduling algorithm requires large
amounts of calculations, thereby making the method unsuitable for embedded applica-
tions. For WSN implementation, the proposed strategy aims at reducing the computing
complexity and improving the efficiency.

2. Problem Formulation. A good example that illustrates the necessity of this study
is described in this section.

Two kinds of given resources are available: processors and FPGAs with reconfiguration
costs of 0 and 5. The related energy cost is described in Table 1. Assume that two task
lists, task1 and task2, are available, with each list containing four tasks. These two lists
can be described as task1{1, 1, 1, 1} and task2{1, 2, 1, 2}, depending on the task type. If
every task is executed using a reconfigurable hardware, the total energy cost of the two
task lists can be calculated as Cost1 = 5+2+ 2+ 2 = 11 and Cost2 = 5+8+ 5+ 8 = 26.
Alternatively, if every task is executed using a software, the energy cost can be calculated
as Cost1 = 5 + 5 + 5 + 5 = 25 and Cost2 = 5 + 4 + 5 + 4 = 18, respectively.

Table 1. Example cost

Task Energy Cost of Energy Cost of Reconfiguration
Type Software Execution Hardware Execution Cost
1 5 2 5
2 4 3 5

In this example, although the reconfigurable HW outperforms the software-based ap-
proach for every task type, the same result is not obtained when reconfiguration frequently
occurs, given that the energy cost for reconfigurations is not negligible. Therefore, an op-
timized scheduling for the PDR approach should be adopted.

3. Method.

3.1. Mathematical description of the problem. In this paper, the aim of optimiza-
tion scheduling is to save on the total energy cost of the tasks. Therefore, the energy cost
of the task must first be modeled.

Let S = (t1, t2, . . ., tn) be a series of tasks that is mapped to a certain resource R. S can
be divided into five suborders, S = S1S2S3S4S5. Of these tasks, S2 and S4 are nonempty
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and only contain task type i. S1, S3 and S5 are also nonempty and contain task types
other than i.
If we assume that the cost of the task series S is C(s), then the cost can be divided

into three parts: software-based, reconfiguration and HW implementation based costs. In
this case, if task type i is implemented by a reconfigurable hardware, then let ρi be the
energy cost of the reconfiguration and L2 and L4 be the hardware based cost for S2 and
S4, respectively. The cost of the task series can then be described as follows:

C(S) =
∑

1 +
∑

2 +
∑

3 +
∑

4 +
∑

5

=
∑

1 + ρi + L2 +
∑

3 + ρi + L4 +
∑

5

= 2ρi +
∑

1 + L2 +
∑

3 + L4 +
∑

5

= 2ρi +X,

(1)

where X =
∑

1 + L2 +
∑

3 + L4 +
∑

5.
In a hardware reconfiguration system, real tasks of the same type do not require re-

configurability. To determine if reconfiguration is feasible, the available energy after a
series of task executions should be estimated. The available energy in the future can be
calculated using the following equation:

Exp(E) = Ecurrent −Rj −Hi,j + Exp(EA) · F − (Exp(Etype 6=j) + Exp(Etype=j)) · F (2)

In Equation (2), i is the task number, j is the task type number, Ecurrent is the current
available energy, Rj is the reconfiguration cost associated with the task type j, Hi,j is the
running cost of task i of type j, Exp(EA) is the additional energy from energy harvesting,
Exp(Etype 6=j) is the estimated energy cost of the next task that does not belong to type
j and is running on software, and Exp(Etype=j) is the estimated cost of running the next
task of type j on the hardware. Both Exp(Etype6=j) and Exp(Etype=j) are scaled based
on the likelihood of their occurrence. F is the number of tasks during the analyzed time
interval.

Exp(Etype=j) =
Nj∑TT
k=1Nk

Hj

Exp(Etype 6=j) =
TN∑

l 6=j, l=1

Nl∑TN
k=1Nk

Sl

(3)

In Equation (3), TN is the number of task types, Nj is the occurring number of tasks
of type j, Sl is the energy cost of the software implemented task l, and Hj is the energy
cost of the hardware implemented task j. Equation (3) is used to calculate the estimated
energy cost of future tasks. To estimate the future available energy, the probability of
future task must first be obtained. The cost can then be calculated by multiplying the
power cost of either the software or hardware implemented task.
The most important characteristic of an energy harvesting system is that the energy

can be added over time. To model the added energy, as described in Equation (4), the
time gap between two tasks (D) and the estimated available power (Pexpected) are used.

Exp(EA) = Pexpected · Exp(D) (4)

To determine the validity of reconfiguration, the Exp(E) in Equation (2) is used. If
Exp(E) is below a threshold or negative, then the associated reconfiguration is considered
as unvaluable.
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To model the energy source and work load, a nonnegative, continuous and bounded
function is designed as a (ρ σ1 σ2) function in Equations (5) and (6), only if any of its
values are finite positive real numbers τ and T .

These equations can be used for the energy modeling of the workload and the additional
energy.

For example, if the energy cost of the workload profile Pc(t) is a (ρc σ1 σ2) function,
then the average rate at which the energy cost is ρc and the maximum and minimum are
bounded by σ1 and σ2, respectively. In a similar manner, the additional energy can be
calculated using the same equation.∫ τ+T

τ

P (t)dt ≤ ρT + σ1 (5)

∫ τ+T

τ

P (t)dt ≥ ρT − σ2 (6)

3.2. Proposed strategy.
Most-used-in-the-future (MUF) strategy

Our scheduling strategy primarily consists of two steps. First, a task window is built
based on the proposed model. If Exp(E) is non-negative or exceeds the threshold value,
then the task can be added into the task window. Second, a most used in the future
(MUF) strategy is adopted to select the most valuable task for reconfigurable hardware
implementation; this strategy can be described by Equation (7).

In the task window, if task type j is implemented, the use of the reconfigurable HW
depends on

Max

( ∑I
l=j,k=1Exp(Ek,l)∑TN

l=1

∑NL
k=1Exp(Ek,l)

)
(7)

where I is the number of tasks that belong to type j, TN is the number of task type, and
NL is the number of tasks of type l.

3.3. Other strategies for evaluation. In this paper, extensive simulations have been
performed to demonstrate the effectiveness of our approach. For comparison, four strate-
gies are used.
All Software

In this case, all test cases are run on software when the energy is sufficient.
All Configurable Hardware

When the energy is sufficient, the all configurable hardware approach always runs the
tasks on hardware.
Random

In the random approach, the tasks have a 50% chance to run on configurable HW. If
the random approach does not run the task on the hardware, then it is run in the form
of software. If the energy needed to perform the reconfiguration is insufficient, then the
approach attempts to run the task on software.
MUF Strategy

As previously illustrated, in this method, a task window is built based on whether the
energy consumption of all tasks in the window can keep the future energy below a threshold
value. Given the number of tasks to be executed, these tasks are then queued. Only the
task with the highest probability of being executed is performed using reconfigurable HW.
The rest of the tasks are executed on software.
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3.4. Test case and task. To evaluate the applicability of FPGA in a WSN, proper
applications need to be considered. Although WSN environments are dynamic in nature,
the basic tasks performed in a WSN node are quite similar. Typically, they include
sensing a certain phenomenon, gathering the relevant data and transferring pre- or post-
processed information to a base-station or sink node. Several attempts were made to
profile the workload of the generic WSN node [20,21]. For instance, the application of the
WSN node was categorized into six classes [21]. In this paper, considering the nature of
the applications and their availability, finite impulse response (FIR) secure hash algorithm
2 (SHA-2), fast fourier transform (FFT) and advanced encryption standard (AES) have
been selected to evaluate the applicability of FPGA for the WSN node and the proposed
approach.
Of these applications, FIR is a relatively small application. 16-bit input precision and

8-bit coefficients are used in this design. The security of WSN is a critical issue in WSN
application [22] because the WSN nodes are deployed in open areas. AES is widely used
to protect sensitive information over transmissions. In the AES core, a 128-bit key is
chosen. SHA-2, which has better security than MD5, is used to check the integrity. A
hardcore for SHA-2 is used in accordance with a previous study. FFT is a well-known
algorithm in the DSP field and is used to transform time domains to frequency ones. In
this paper, a 16-bit hard core is developed for the 1024-point FFT implementation using
a commercial electronic system level (ESL) tool.
In the four test cases, the input data can be divided into bit-levels. Therefore, the

input data is split into 256-bit blocks as the basic scheduling unit for each application. A
Gaussian distribution is proposed to simulate the harvested energy.

4. Prototype Architecture and Design Flow.

4.1. Proposed node architecture. A sensor node prototype is built to facilitate the
novel scheduling strategy of the reconfigurable HW (Figure 2). Virtex 4 from Xilinx is
selected for the reconfigurable HW because it can facilitate the PDR function and has
the capacity to accommodate large designs. To carry out the experiment all tasks can
be run in using hardware or software. Therefore, a relatively powerful CPU is needed to
execute large applications. In our prototype, an open-source SPARC V8-based processor

Figure 2. Proposed node architecture
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is used with Virtex 4. Although the Leon processor is not initially intended for low-power
implementations, it is chosen for two reasons. First, it is supplied with soft core and
related tools which make it suitable for custom designs. Second, it has the necessary
ability to process the proposed test cases. The configuration memory of the Virtex-4
family consists of frames which are the basic fabric units. The adopted FPGA chip of
the node contains a total of 11070 frames, including 10410 configurable frames and 660
non-configurable frames.

The internal configuration access port (ICAP) carries out the reconfiguration. Through
ICAP, the internal registers and the configuration memory can be read and written. The
ICAP wrapper and the ICAP itself are contained in a module called the ICAP hardware
system. To work with the Leon core, ICAP is integrated with the rest of the WSN node as
a slave to the APB. The ICAP wrapper is the module containing the hardware controllers
that allow the interaction between the software and ICAP.

To enable the ZigBee prototype, the ETRX2 module from Telegesis which is based on
ZigBee and a low-power implementation, is adopted. The module is connected to the
processor through a universal asynchronous receiver transmitter (UART) port.

4.2. Partial design flow. To develop a PDR system, the FPGA chip is first divided
into reconfigurable and fixed regions. This process is referred to as FPGA structuring,
resource arrangement or partitioning [23]. The PDR design and work flow are briefly
introduced in Figure 3. In this design flow, the supported granularity for modeling and
reconfiguration is the first to be considered. The selected reconfiguration granularity is
coarse, given that a full-IP core is loaded into the FPGA when the reconfiguration occurs.
During FPGA reconfiguration, these cores are loaded in the form of placed and routed
designs (partial configuration files) also called hard cores [24]. Virtual architecture (VA)
models can be one-dimensional (1D) and two-dimensional (2D). In this paper, 1D-based
VAs can satisfy the node requirements. When all VA design-related issues have been
addressed, the hard cores are transferred into a set of files which include a user constraint
file (.ucf file) and a communication file (.nmc file). In the constraint file the slot positions
and boundaries are defined. Chip communication is defined as placed macros.

Figure 3. Design and work flow for the wireless sensor network (WSN)
node with a partial dynamic reconfiguration (PDR) function
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After all related files are defined, the hard cores are then developed. In our work, the
design flow is based on ISE and the Plan Ahead tool. The advantage of this design is a
more efficient routing in most cases as well as the direct production of partial configuration
files.

5. Results and Discussion. To evaluate the time and energy cost of reconfiguration,
the power and timing information are collected during the experiment. The time cost
then is measured using the cycle count of the system. The cycle counts for each hard core
configuration are first collected. The time information is then converted into seconds. The
power consumption of the configuration process is then multiplied to obtain the energy
cost. Table 2 shows that for the HW reconfiguration system, the power and time costs
of reconfiguration are not trivial compared with the task execution. Therefore, the “all
hardware”approach is clearly not the best strategy.

Table 2. PDR energy consumption

Clock cycles Average Power PDR duration PDR Energy
to PDR During PDR (W) (sec) (J)

AES 612,891,596 0.715 12.21 8.73
FIR 26,195,440 0.715 0.52 0.372
FFT 778,036,147 0.715 15.50 11.08
SHA-2 471,378,000 0.715 9.39 6.71

Table 3. Power analysis (mW)

Static Power
Average Average Runtime Application

Runtime Power Power (Reconfigurable Power
(Software) Hardware) Reduction

Leon3
620

Static&Blank
Leon3&AES 629 1267 932 53%
Leon3&FIR 623 681 660 36%
Leon3&FFT 633 2033 1204 60%
Leon3&SHA-2 628 831 723 53%

Table 3 shows the experimental power consumption results. The static power of the
Leon core is approximately 620 mW. When the test cases (except for the FIR case, which
is a relatively small application) are run in the software form, the power consumption is
significantly increased. Compared with the software implementation, the reconfigurable
HW can save 31 mW to 829 mW power for each case. Thus, runtime energy consumption
savings are demonstrated after the adoption of a reconfigurable HW. Considering the
shorter running time of the HW implementation compared with that of the software
implementation, the reconfigurable HW exhibits both time and power advantages over
the software approach.
The energy costs of the different strategies are shown in Figures 4(a)-4(c). The window

sizes are 10, 50, and 100 across all strategies. In these figures, the Y axis represents
the energy cost of the different strategies in J . In the different figures, the hardware and
software energy costs between different task numbers remain the same. The reconfigurable
hardware shows an advantage over all software strategies in terms of the energy cost across
all test cases. With the scheduling strategy, the energy cost can be further reduced. The
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(a) Energy consumption for window size 100

(b) Energy consumption for window size 50

(c) Energy consumption for window size 10

Figure 4. Energy costs of the experiments

MUF strategy shows the highest energy efficiency compared with other strategies; the
energy cost for window 50 is minimal.

6. Conclusions. We have presented a novel scheduling strategy for heterogeneous WSN
nodes under an energy harvesting environment. Theoretical models for an energy har-
vesting node and for heterogeneous power consumption are built and then analyzed. A
novel reconfiguration strategy is then proposed. In this method, a task is first proposed
according to the available energy. The most frequently used task inside a task window
is then implemented using a reconfigurable HW. This method enables the utilization of
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environmental energy with harvesting awareness. The task allocation can be scheduled
according to energy availability. In this approach, energy can be saved because only the
most frequently used tasks are executed using the hardware. To demonstrate the pro-
posed scheduling strategy, a PDR functioned prototype is proposed with the associated
design flow. Four typical applications are used as test cases for evaluation. The benefits
of the reconfigurable HW are demonstrated in our work. By adopting our strategy, the
energy cost of the application can be reduced by up to 50% compared with all software
strategies. In addition, the proposed method can deliver a performance comparable with
those of existing strategies but with less computing complexity.
Energy capture from the environment is a competitive, highly practical approach to

addressing energy constraints. The reconfigurable HW-based heterogeneous system is an
effective method of increasing the processing ability of systems but at lower energy costs.
Further studies on energy-effective communication mechanisms in energy-harvesting en-
vironments will be conducted in the future.
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