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ABSTRACT. This paper presents an innovative approach to develop a machine wvision-
based quality inspection system for surface variation detection on passive components.
The developed system applies discrete cosine transform (DCT) based image reconstruc-
tion method for automated detection of slight surface variations on capacitor chips. We
first perform the DCT transformation to transform a spatial domain image into the fre-
quency domain. From the energy concentration analysis of the DCT domain, we can
disassemble the frequency matriz into four disassembled matrices. We select the proper
number of larger frequency values to represent the random structure features of the ca-
pacitor chip surface from the disassembled matrices. Then, we set the selected frequency
values to zero and reconstruct the image. For a defective capacitor chip, the slight sur-
face variations will be reserved and the random patterns will be eliminated in the restored
image. Finally, the entropy method is applied to setting a threshold for distinguishing
between slight surface variation regions and uniform regions in the restored image. Ez-
perimental results show that the proposed method achieves a high 96.66% probability of
correctly discriminating slight surface variations from normal regions and a low 0.12%
probability of erroneously detecting normal regions as slight variations on random tex-
tured surfaces of capacitor chips.

Keywords: Slight surface variation, Capacitor chips, DCT disassembly, Entropy, Ma-
chine vision

1. Introduction. Passive components (e.g., resistors, capacitors and inductors) con-
tribute no power amplification in the circuit system and require only a signal to start their
functions. As passive components require low or no power consumption, their importance
and popularity have been increasing in these years when energy conservation issues in-
tensify. The number of passive components used in Printed Circuit Boards (PCBs) has
grown to a large extent in much smaller electronic products. More than 80% of the parts
in a motherboard are composed of passive components. With the popularity of passive
components, inspection of surface variations has become a critical task for manufacturers
who strive to improve product quality and production efficiency of passive components.
To contribute to the field of surface variation inspection on passive components, this re-
search uses round Surface Barrier Layer (SBL) chips as testing samples. SBL chips are
passive components (ceramics capacitors) commonly used in many electronic appliances.

Surface variations affect not only the appearance of electronic devices but also their
functionality, efficiency and stability. Large and obvious surface variations such as in-
dents, scraps and scratches are usually inspected by automated visual inspection systems.
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However, slight surface variations such as dust, cavities and pinholes are very difficult to
detect because of their extremely small sizes. Nevertheless, it is also hard to precisely in-
spect slight surface variations by machine vision systems. When product images are being
captured, the area of a slight surface variation could expand, shrink or even disappear due
to the uneven illumination of the environment, complex texture of the product surface,
and so on. Thus, the inspection accuracy of the machine vision system is greatly reduced.
To overcome the difficulties of detecting slight surface variations, this paper presents a
machine vision-based quality inspection system to automatically detect the slight surface
variations on ceramic capacitor chips.

Although slight surface variations occupy only small areas on the product surface, they
could affect the appearance, functions and security of the product. With a width of
0.005 mm and a diameter of 7 mm, the capacitor chips are small in size, light in weight,
and suitable for mass and large-lot-sized production. Figure 1 shows (a) a capacitor chip
carrier plate used in the manufacturing process, (b) faultless and defective capacitor chips,
and (c¢) a chip image without any slight surface variation. Slight surface variations often
appear on the surfaces of capacitor chips and occupy only extremely small areas. For an
capacitor chip image of 256 x256 pixels, the size of its slight surface variation falls within
the range of 1~15 pixels and occupies 0.0015%~0.0229% of the image area. Surface defects
of this magnitude are defined as slight surface variations in this research. Figure 2 shows
capacitor chips with slight surface variations of different shapes. Aiming to improve the
inspection accuracy of slight surface variations, this research proposes a Discrete Cosine
Transform (DCT) based enhancement approach to overcome the difficulties of traditional
machine vision systems in detecting slight surface variations.

This research presents a global approach for the automated visual inspection of slight
surface variations on capacitor chip surfaces. As common machine vision systems are not
good at detecting slight surface variations, we transform a digital image to DCT domain
and analyze the energy trends of the frequency matrix. After some frequency components

(b) ()

FIGURE 1. (a) A capacitor chip carrier plate; (b) faultless and defective
capacitor chips; (c) a capacitor chip without any slight surface variation

FI1GURE 2. Capacitor chips with slight surface variations of different shapes

(a)
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of the normal regions are removed, the rest of the components are transformed back to
spatial domain to produce a restored image with enhanced slight surface variations. These
enhanced slight surface variations can be easily separated from the normal regions by an
entropy method.

2. Surface Variation Detections. Assessment of surface blemishes of industrial prod-
ucts has become a critical task for manufacturers who strive to improve product quality
and production efficiency [1]. Blemish detection techniques, generally classified into the
spatial domain and the frequency domain, compute a set of textural features in a sliding
window and search for significant local deviations among the feature values. Recently,
an automatic vision defect inspection system has been proposed for detecting defects on
highly specular reflection curved surfaces by using image reconstruction, morphological
technique, and template matching. Zhang et al. [2] applied template matching using
morphological processing to detect defects on metal plating surfaces. Chang et al. [3]
presented a new approach for inspecting LED wafer defects using Learning Vector Quan-
tization (LVQ) neural networks. Araki et al. [4] used independent component analysis to
detect blemishes for mirror polished metal surfaces.

Fourier transform, wavelet transform and Gabor transform are common texture anal-
ysis techniques used in the frequency domain. Li and Tsai [5] demonstrated a blemish
detection method based on image reconstruction of Fourier transform and Hough-like non-
stationary line detection to identify saw-mark blemishes in multicrystalline solar wafer
images. Han and Shi [6] proposed an adaptive level-selection approach based on wavelet
transform to detect defects on images with high frequency texture background. Lin [7]
used the one-level Haar wavelet transform to decompose color images of surface bar-
rier layer chips and extracted wavelet features from normal samples and testing samples
were statistically compared based on Hotelling, Mahalanobis, and Chi-square distances
to identify ripple blemishes on the chip images. Liu et al. [8] presented two methods of
designing Gabor filters for extracting slub in both the time domain and the frequency
domain. The first method selects a better filter in the time domain according to a de-
signed cost function. The second method obtains the proper parameters for the filter
in the frequency domain according to the frequency characteristic of slubs. Also, Lin
and Chiu [9] proposed a machine-vision-based system that applies block discrete cosine
transform and grey relational analysis for the automated visual inspection of tiny flaws
occurred in the domed surfaces of LED epoxy-packing. Kumar [10] and Ngan et al. [11]
surveyed and reviewed the articles related to fabric defect detection methods published
in the last decades. These machine vision-based techniques were summarized, classified,
and commented in a comparison manner.

Use of the DCT in a wide variety of applications has not been as extensive as its
properties would imply due to the lack of an efficient algorithm. Thus, many algorithms
and VLSI architectures for the fast computation of DCT have been proposed [12-14]. Chen
et al. [15] developed new and fast algorithms for edge enhancement of remote sensing
image data in the DCT domain and implemented in three steps: high-pass filtering,
adding back full or part of gray levels to the original image, and contrast stretching.
Zhong and Jain [16] proposed an algorithm for object localization using shape, color, and
texture. The texture and color features are directly extracted from the DCT compressed
domain and are used to find a small number of candidate images in the database, and
regions in the candidate images which share similar texture and color as the query can
be identified. Ngo et al. [17] presented approaches for indexing shape, texture, and color
features directly in the DCT domain by exploiting ten DCT coefficients. Overall, the
retrieval results are competent since most of the top retrieved images are relevant.
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3. Proposed Methods. We first perform the DCT transformation to transform a spatial
domain image into the frequency domain. From the energy concentration analysis of the
DCT domain, we can disassemble the frequency matrix into four disassembled matrices.
We select the proper number of larger frequency values to represent the random structure
features of the capacitor chip surface. Then, we set the selected frequency values to zero
and reconstruct the image. Finally, the entropy method is applied to set the threshold for
distinguishing between slight surface variation regions and uniform regions in the restored
image.

3.1. DCT frequency domain analyses. Since digital images are two dimensional dis-
crete data arrays, two dimensional DCT transform is needed to process the transformation.
The DCT of an image d, , of size M x N is given by the Equation (1) [18]. This expression
must be computed for values of u =0,1,2,..., M — 1, and also for v =0,1,2,..., N — 1.
Similarly, given D, ,, we obtain d, , via the inverse DCT transform, given by the Equation
(2) for x =0,1,2,...,M —1and y = 0,1,2,..., N — 1. Equations (1) and (2) comprise
the two-dimensional, DCT pair. The variables v and v are frequency variables, and x and
y are spatial variables.

M—1N-1 - - - -
(2z + 1)ur (2y + 1)om
Du,v Z d:v,y COS T COS T (].)
z=0 y=0 L - L i
M—1N-1 - - - -
(2z + 1)ur (2y + 1)om
V) Dy —_— —_— 2
Z Zp » COS Y, cos 5N (2)
u=0 v=0 - e L d
where
Vv
JE u=1,23.. M—1"
\/%, v=20
\/%, v=1,23,... N-1
w=0,1,2,...,M—1
v=0,1,2,...,N -1
x=0,1,2,.. M 1
y=0.1.2.... N—1
The power spectrum P(u,v) of image d,, is defined as:
P(u,v) = Dy’ (3)

That is, the energy of the image can be obtained by adding up the squares of the DCT
coefficients.

As the origin of the DCT coefficients has a very huge frequency value, it is sometimes
called the Direct Current (DC) component of the spectrum, while other coefficients are
called the Alternating Current (AC) components. The DC coefficients in the upper left
corner reflect information of lower frequencies, whereas the AC coefficients in the lower
right corner reflect that of higher frequencies. The high-pass filter attenuates low frequen-
cies and passes high frequencies. A high-pass filtered image is sharper than the original
image because the low frequencies have been attenuated. Based on the DCT filtering
property, we can obtain a restored image with enhanced transitional gray level details,
if we apply a high-pass filtering operation in the frequency domain and then perform an
inverse DCT.
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The 3-D DCT spectrum diagram in Figure 3(a) shows that a lot of energy concentrates
in the origin (v = 0, v = 0) and that the energy decreases gradually from the origin
and the low frequency zone to the high frequency zone. Based on the fluctuations of the
frequency trend and the properties of the low and high frequency zones, we design a high-
pass sector filter centered at the origin of the 2-D DCT spectrum to filter out major low
frequency components of the spectrum image. An adequate radius is first determined for
the sector filter in the spectrum space. Frequency components (low frequencies) within
the radius of the sector filter are then set to zero, and those outside the filter (medium
and high frequencies) are retained. Finally, the inverse DCT is applied to transform the
filtered image back to the spatial domain. Figure 3(b) demonstrates a 3-D DCT spectrum
diagram with a high-pass sector filter.

U axis

FIGURE 3. A high-pass sector filter added into a 3-D DCT spectrum dia-
gram: (a) A 3-D diagram of a DCT spectrum; (b) A 3-D diagram of a DCT
spectrum with a cutting sector radius

The low frequency components with larger magnitude represent the global approxima-
tion of the original image. All other middle and high frequency components provide the
local, detailed information of the image [14]. Therefore, we can select a proper radius for
the frequency components of larger magnitude to represent the global, repetitive textural
feature of the image and remove such background texture by reconstructing the image
without the use of larger-magnitude frequency components. In the following subsections,
we propose a DCT disassembly and cumulative sum analysis procedure to automatically
determine an appropriate sector radius for image restoration.

3.2. Disassembly of DCT domain. As given in Equation (1), DF} is the discrete
cosine transform of a testing image dfgl} of size M x N. Let G* be a waveform sign of 1-D
frequency arrays and axis be a 1-D coordinate vector. Then, G*(azis) is a waveform plot

along the axis coordinate and can be denoted as:
G* (axis) = D¥, (4)
N1 OT Df:(Mfl),v; u=0,1,2,...M—1;v=0,1,2,...,N—1. Figure

4 shows the plots of 1-D waveform arrays G*(D#NI( M-1) ,) of a DCT frequency matrix along

. 1
where axis = D*
u’ON(

the u axis and demonstrates that the waveforms of the G*(D#NI(M_I) ,) remain stable until
they approach the DC location. And, the closer the waveforms are to the DC location,
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FIGURE 4. 1-D waveform plots G*(D#j(Mfl) .)

the more widely they fluctuate. The magnitude of frequency components that are far
away from the top left origin in the DCT domain falls rapidly and approximates zero.
We disassemble the 2-D DCT domain D#! into two matrices: the odd matrix DO,

u,U
and the even matrix DE, ., whose definitions are given below:
DOy, = D¥,, (5)
1
DEU,U’ - D?:Z’ULFI (6)

where v = 0,1,2,... M —1; v = 0,1,2,...,(N/2) — 1. The odd-number frequencies
of the v axis form the odd frequency matrix DO, ,, while the even-number frequencies
make up the even frequency matrix DFE, ,,. The v' axis in either the odd or the even
frequency matrix is half as long as the v axis in the original frequency matrix D#},
Therefore, the original frequency matrix D#}, can be further disassembled into odd-odd
DOOy ,, odd-even DOE, v, even-odd DEQO,, ., and even-even DEE,, ,, matrices under
the alternating decomposition of odd and even parts. These four matrices can be denoted

as follows, respectively:

DOOy v = D) 5 (7)
DOEy = DY)y (8)
DEOy, = D¥) 1 5y (9)

DEEy v = Dil'+1,2v'+1 (10)

where v’ =0,1,2,...,(M/2) - 1; ' =0,1,2,...,(N/2) — 1.

After the original frequency matrix D#}, is disassembled into four matrices (Equations
(7) to (10)), we can use the G* waveform plot to examine the frequency fluctuations of
the waveform matrices. Since each frequency matrix has two dimensions, u’ and v axes,
the four disassembled frequency matrices will have eight sets of 1-D waveform arrays. To
obtain the right sector radii that help improve the analysis results, the negative 45 degree
diagonal coefficients of the frequency matrix can be disassembled into a 1-D array DA,
when M and N are equal and the top left DC location is set as the origin. This diagonal
matrix can be denoted as follows:

DA, = Df} (11)
where t =0,1,2,.... M — 1.

The frequencies of the waveform plot G*(DA;) of the matrix DA, fluctuate in the same

way as those of the waveform matrices G*(DOg(ri—1),) and G*(DEyp—1y,). Thus,
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we can further disassemble the matrix DA, into DAOy and DAFE, matrices. These two
matrices can be denoted as follows:

DAO; = DAy, (12)

DAEy = D Aoy 1 (13)

where t' = 0,1,2,...,(M/2) — 1. After completing the disassembly procedure, we exam-
ine the frequency fluctuation trends of the waveform plots G* of the four disassembled
frequency matrices (Equations (7) ~ (10)). We find that the waveform plots of the 1-D
odd arrays show significant and systematic frequency changes. The frequency fluctuation
trends of the odd-odd matrix are smoother and more predictable when compared with
those of the other disassemble matrices. The DCT frequency matrix D}} needs to be
disassembled because most of the regular waveform plots come from the disassemble odd-
odd matrix DOO,, ,s. Therefore, the odd-odd frequency matrix DOO,, s (including the

diagonal matrix DAOy) will be the main target of the later analyses.

3.3. Cumulative sum (CUSUM) control scheme for radius selection. To select
the proper sector radius, we propose a transition point detection method that uses the DC
location as the origin of the sector area to locate the low-frequency regions. The proper
radius R* of the sector area is determined at the point where the frequency fluctuation
trend gets stable. A stable frequency trend signifies that the frequencies are no longer in
the low-frequency regions. Similar to the waveform plots G*(axis) of the disassembled
frequency matrices, the waveform plots of the disassembled odd-odd matrix DOO,
perform better in detecting the transition point when the frequency trend turns stable.
Therefore, this research analyzes three sets of frequency arrays DOO,, o, DOO,s, and
DAOy to determine the proper radius R* of the sector.

To detect the transition points in the gentle curves, this research proposes the CUSUM
algorithm, which is commonly used in statistical process control to detect the slight shift
or deviation from the normal production process [19]. Generally, the CUSUM method
processes data, that are smooth in the beginning periods and that deviate slightly in the
later periods. However, since the curves fluctuate sharply in the beginning periods and
then turn smooth in the other periods, our algorithm applies the reverse order CUSUM
method, which processes data in the reverse direction.

Suppose that Z sample sets with sample size n = 1 are collected, and X, is the ob-
servation of the z-th sample, where z = 1,2,3,...,s,...,Z. The cusum scheme works
by accumulating derivations from po that are above target with one statistic CJ and
accumulating derivations from p that are below target with another statistic C;. The
statistics C" and C; . are called one-sided upper and lower cusums, respectively. They
are computed as follows [19]:

Cf =max [0, X;— (uo+K)+Cj|] (14)
C; =max [0, (u—K)—X,+C,_,] (15)

S
where Cf = C5 =0, K = io.

In Equations (14) and (15), K is usually called the reference value, and it is often
chosen about halfway between the target ;o and the out-of-control value of the mean py
that we are interested in detecting quickly. Thus, if the shift is expressed in standard
deviation units as pu; = pg + do, then K is one-half the magnitude of the shift. Note
that CJ and C; accumulate deviations from the target value uo that are greater than K,
with both quantities reset to zero on becoming negative. If either C or C} exceeds the
decision interval H, the process is considered to be out-of-control. A reasonable value for
H is four or five times the process standard deviation o [19].
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The data sequence should be arranged in a reverse order before the reverse-order
CUSUM method is applied. According to the definitions of the CUSUM method (Equa-
tions (14) and (15)), we assume C} and C} as the one-sided upper and lower cusums of
the sequence X, respectively. We must substitute the data of the three disassembled fre-
quency matrices DOOy o, DOOy s, and DAQOy into the sequence X7, respectively, before
applying the proposed reverse-order CUSUM method. Then, from the situations of being
within or beyond a decision interval H, we determine the status of the process variation
and identify the transition points P(DOO, ), P(DOOy, ), and P(DAOy) of the three
frequency matrices.

The first value in each of the three frequency matrices DOO,, o, DOQOy,» and DAOy is
the DC value in a DCT domain. This value represents the average gray level of an image
and is usually the extreme value (the largest or the smallest) in a frequency matrix. Hence,
this research sets the DC value at zero when detecting the transition points in the gentle
curves to determine the proper radius of the sector filter. Setting the DC value at zero
will avoid significant variations among the frequency components. After the calculations
in Equations (14) and (15), three transition points will be identified in the gentle curves
by the R-CUSUM method. The proper radius of the sector filter R* can be denoted as:

R* = 2AVG(P,, Ps, P,) + 1 (16)

where AV G(P,, Ps, P,)) = average(P,, Ps,/2P,). The proper radius R* is selected based
on the average radius of the transition points of the gentle curves along the three principal
frequency arrays in the disassembled odd-odd matrix.

The calculation of the proper radius R* is presented in Equation (16), where three
transition points are used. Figure 5 shows points P,, P3, and P, are the three transition
points of the gentle curves along u’, v/, and diagonal axes, respectively. The point P,
must be multiplied by a weight of v/2 because this point comes from the diagonal matrix
DAOy and must be adjusted to be in the same scale as P, and Pg. And then, the three
transition points are substituted into Equation (16) to compute the best filter radius R*.

If the cumulative deviation sums reveal the trend of cyclic accumulations, then it means
the data of the sequence are auto-correlated [19]. Cyclic accumulations may increase the
chances of making wrong detection judgments and picking the wrong transition points.
To overcome the problems of cyclic accumulations, we propose the reverse order differ-
ence CUSUM method (RD-CUSUM), which is also based on the CUSUM scheme to
detect transition points. However, the RD-CUSUM method reverses the data sequence
of the frequency array and calculates the difference between two successive data before
the CUSUM algorithm is implemented. The difference function L(z%) calculates the new
reverse-order difference sequence L(x* ;) by subtracting the reverse-order value z} , in
period (z — 2) from the reverse-order value z¥ | in period (z — 1). Through the calcu-
lation of the reverse-order difference sequence, we can eliminate the cyclic accumulation

phenomenon in the cumulative deviation sums. Figure 6 shows the calculation of the best
filter radius R* by the RD-CUSUM method.

3.4. Entropy method for blemish separation. After the proper sector radius R* is
determined, the frequency filtering operation can accurately specify the non-defect low
frequency regions and set the values of their frequencies at zero in the DCT domain.
Thus, the filtered frequency image Dﬁ can be transformed back to the spatial domain
to produce a corresponding restored image dfz by using Equation (2). When a restored
image with enhanced slight surface variations is generated, an automated thresholding
technique called Kapur’s entropy method [20] is applied to separate the slight surface

variations from the normal regions. Figure 7 shows the whole process of the proposed
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FIGURE 6. Calculation of the filter radius R* by the RD-CUSUM method

DCT based enhancement approach for slight surface variation detection on capacitor
chips. A testing image with slight surface variations which are difficult to detect in the
spatial domain is processed by the proposed DCT high-pass filtering operation. Then,
taking the inverse DCT of the filtered result, the surface variations can be segmented by
the Kapur’s entropy method.

Let an image with gray levels in the range [0, L — 1]. We assume S; be the number of
pixels in the image having gray level [ and the total number of pixels in the image should
be lL:_Ol S;. Then, Y] is an estimate of the probability of occurrence of gray level [ in the
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FIGURE 7. Procedures of the proposed approach for detecting slight surface
variations on capacitor chip

image, denoted as Y; = 5 / ZZL;OI S;. From the definition of entropy, the entropy of an

imageis N = — lL:_Ol Y, InY;. We aim to classify the pixels of the image into two opposite

classes, namely flaw (black) and normal region (white) by thresholding. The entropy of
the defective portion of an image is No(7T') and the entropy of the normal portion of an
image is Ng(T'). Therefore, the Kapur’s entropy method is to determine the value of the
threshold T, such that the total entropy N (Equation (17)) of the partitioned image is
maximized.

T L—1
N =No(T)+ Np(T) == V;InY, = > ¥V;InY, (17)
r=0 r=T+1

The Kapur’s entropy method outperforms many other methods in detecting small ob-
jects [21]. However, the entropy method cannot correctly separate slight surface variations
if the chip image does not go through the defect enhancement step of the proposed DCT
frequency filtering operation. This is because many noises in the image may incur erro-
neous judgment in flaw separation. If an image is processed by the proposed DCT-based
image reconstruction approach in advance, the slight surface variations in the image can

be precisely located by the Kapur’s entropy method.

4. Implementation and Analyses. We make use of the following equipments: a white
ring LED lighting device, a charge-coupled device (CCD) camera model WAT-221S of
Watec company, a lens with 1 to 10 amplifications of changeable focal lengths, a frame
grabber model IMAQ PCI-1411 of National Instruments corporation, and a XYZ elec-
tronic control table with a controller. Figure 8 shows the configurations of the experi-
mental environment and hardware setup in which we scan real capacitor chips to be used
as testing samples. Each image of the chip has a size of 256 X256 pixels and a gray level of
8 bits. The 150 images are defective chips with one or more than one slight surface varia-
tions and the other 50 images are regular chips without any slight surface variation. The
slight surface variation detection algorithm is edited and executed on the sixth version of
C++ Builder complier on a personal computer (Pentium-4 2.8 GHz and 1GB DDRII 667
Hz-RAM).
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FIGURE 8. (a) Configurations of experimental environment; (b) hardware
setup of the conducted experiments

4.1. Pre-processing of DCT enhancement. Region of interest (ROI) is a rectangle
(block) that contains the object to be investigated. The use of ROI can avoid the in-
terference of uninterested regions when mask computations or frequency transformations
are conducted. If an image containing uninterested regions is transformed into the DCT
domain, the uninterested region can significantly interfere in the frequency analysis of
the ROI. Therefore, after we use CCD and XYZ electronic control table to acquire the
image of the target chip and its six neighboring chip fragments, we produce a target mask
to delineate the ROI, the region of the target chip. Then we obtain a mixed image by
combining the target region with a manipulated background to decrease the interference
of an uninterested region. This mixed image will then be used as the input for further
DCT transformation.

To maximize the number of chips on the carrier plate, every chip is located very close
to its neighboring chips. Thus, while the image of a specific chip is captured, the image
covers not only the whole of the specific chip but also fragments of its six neighboring
chips (as shown in Figure 9(a)). Thus, the images of all the chips might be captured with
slight differences; that is, not all chips are located in the exactly same positions in their
individual images. As a result, a target mask is needed for each image to specify the
location of the target chip. Figure 9 presents the procedure for producing a target mask
for a target capacitor chip.

In Figure 9, the testing image is first captured and input. Second, a cross is located
right in the middle of the image (not the middle of the target chip), and the average gray
level of the cross region is computed. Assuming the length and width of the cross region
are each composed of Wd pixels, there will be (2 Wd - 1) pixels to be computed to get the
average gray level, which is denoted as PA (PA is set at 20 in this research). Third, based
on a predefined criterion a region growing procedure is applied to group pixels of similar
gray levels into a larger region. This procedure starts from a seed point (the image center
in this case) and searches for those neighboring pixels whose gray levels fall within the
range (PA + Tr), where Tris the gray level tolerance. TRy is used to denote the region
whose pixels have gray levels in the specified range. Fourth, on the surface of a capacitor
chip exists some noise pixels, whose gray levels do not fall into the specified range but
which are located within the IR, region. The new grown region is denoted as IRy and
its complement set as IRf. Finally, we re-assign the region I'R), as IR,,, which is the
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(e) (d)

FIGURE 9. The procedure for producing a target mask for a target capac-
itor chip: (a) input a testing image; (b) calculate the average gray level of
the central cross region; (c¢) compare and select the pixels whose gray lev-
els in a specified range; (d) select the pixels whose gray levels in the same
range as that of the top left corner pixel; (e) select the reverse region of the
previous step to obtain a target mask

target mask of the testing image and which can specify the accurate region of the target
capacitor chip.

In Figure 10, the original image (a) covers not only the whole of the target chip but
also fragments of its six neighboring chips. In the target mask image (b), all non-target
regions are removed, and the region of the target chip is delineated by the black circle
after the target mask is applied. The clear silhouette of the target chip shows that the
target mask has successfully performed its designated functions. In the mixed image (c),
a manipulated background is formed by filling up all the non-target regions with the
average gray level of the cross region in Figure 9(b). And, a mixing operation is done to
integrate the foreground (the target region) with the manipulated background to obtain
a rectangular ROI. As the foreground and the background are in similar gray levels now,
we can easily find that the target region contains gradual shades, which are not seen in
the earlier images.

& o

*

(a) (b) (¢)

FIGURE 10. (a) Original testing image (d,.,); (b) target mask image (I R,,);
(c) mixed image (d#}) of capacitor chip

4.2. Inspection performance in large sample size experiments. The performance
evaluation indices, (1 — ) and (1 — f3), are used to represent correct detection judgments;
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the higher the two indices, the more accurate the detection results. Statistical type I
error o suggests the probability of producing false alarms, i.e., detecting normal regions
as flaws. Statistical type II error 5 implies the probability of producing missing alarms,
which fail to alarm real flaws. We divide the area of normal region detected as flaws by
the area of actual normal region to obtain type I error, and the area of undetected flaws

by the area of actual flaws to obtain type II error. Therefore, the correct classification
rate (CR) is defined as:

CR = (Ncc + Ndd)/Ntotal X 100% (18)

where N, is the pixel number of normal textures detected as normal areas, Ny is the
pixel number of flaws detected as defective regions, and Ny is the total pixel number
of a testing image.

To demonstrate the flaw detection results, Figure 11 lists partial results of detecting
slight surface variations by the Otsu method [22], the Iterative method [23], the Kapur’s
method [20], the proposed method, and the professional inspector, individually. The
three spatial domain techniques, the Iterative, Otsu, and Kapur’s methods, make lots of
erroneous judgments (false alarms) on slight surface variation detection. The frequency
domain technique, the proposed method, detects most of the slight surface variations and
makes less erroneous judgments. Therefore, the frequency domain approach outperforms
the spatial domain techniques in the slight surface variation detection of the capacitor
chips.

. Kapur entropy
Testing images Otsu method [terative method method Proposed method Inspector

FIGURE 11. Partial detection results of the Otsu, Iterative, Kapur’s en-
tropy, the proposed methods, and inspector

To compare the performance of the slight surface variation detection, Table 1 summa-
rizes the detection results of our experiments. The average defect detection rates (1 — f3)
of all testing samples by the four methods are, 99.99% (Otsu method), 99.99% (Iterative
method), 98.74% (Kapur’s method), and 96.66% (proposed method). However, the three
spatial domain methods have significantly higher false alarm rates (o), 46.64% (Otsu
method), 46.26% (Iterative method), and 10.34% (Kapur’s method). On the contrary,
the other frequency domain approach has rather lower false alarm rate, 0.12% (proposed
method). The proposed method has higher correct classification rates (CR) than do the
other methods applied to slight surface variation detection. The average computation
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time for processing a testing image is as follows: 0.55 seconds by Otsu method, 0.62
seconds by Iterative method, 0.72 seconds by Kapur’s method, and 2.48 seconds by pro-
posed method. Hence, the proposed method can overcome the difficulties of detecting
small defects and excel in its ability of correctly discriminating slight surface variations
from normal regions.

TABLE 1. Summarized comparison table of slight surface variation detec-
tion of capacitor chips for four different methods

Methods 1—-08 (%) | a (%) |CR (%) | Time (s)
Otsu method 99.99 46.64 | 54.26 0.55
Iterative method 99.99 46.26 | 54.73 0.62
Kapur’s method 98.74 10.34 | 89.76 0.72
Proposed method 96.66 0.12 99.74 2.48

4.3. Experiments on DCT reconstruction effects. To evaluate the performance of
the proposed DCT-based image reconstruction approach, experiments with and without
the defect enhancement process are both conducted. The testing images with and with-
out the DCT defect enhancement operation are all segmented by the Kapur’s method
to examine how they differ in terms of slight surface variation detection. Table 2 indi-
cates the production related effects of slight surface variation detections by the current
method, entropy method, and proposed method. Advantages of the proposed approach
are summarized as follows:

(1) Both of the entropy and proposed methods excel in its ability of correctly discrimi-
nating slight surface variation blemishes from normal regions. The proposed method has
lower false alarm rates and better detection rates than do the traditional methods.

(2) The two methods have higher correct classification rates than do the current human
inspection method applied to slight surface variation detection of capacitor chip images.

(3) The proposed method has the lowest material wastage rate 1.6% and the smallest
tolerance 2.2% of capacitor values compared with the current inspection method and
entropy method due to the better blemish detection accuracy. The tolerance indicates
how close the marked value of the capacitors is to its actual value. Cumulative slight
surface variations cause a wide tolerance of capacitor values.

(4) The re-test rate for detecting slight surface variations of capacitor chips is as follows:
22.4% by the current method, 8.6% by the entropy method, and 1.8% by the proposed
method. The re-test rate is the percentage of re-inspection and re-testing of chip products
that have undergone rework or other modifications. The proposed method has respectively
five times and twelve times lower average re-test rate than do the entropy method and
the current method.

TABLE 2. The production related effects of slight surface variation detec-
tions by the three methods

Tolerance of

Methods Material wastage . Re-test rate
capacitor values
Human inspection
(current method) 18.6% 8.8% 22.4%
Kapur’s method 4.8% 5.4% 8.6%

Proposed method 1.6% 2.2% 1.8%
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5. Conclusions. This paper presents a global approach for the automated visual in-
spection of slight surface variations in the surfaces of capacitor chips. Based on an image
reconstruction scheme, it applies DCT disassembly and cumulative sum techniques to ef-
fectively detect slight surface variations. By analyzing the energy concentration condition
of a chip frequency image, we can apply the DCT based approach to disassembling the
frequency domain image into four disassembled matrices. From the disassembled odd-odd
matrix, the cumulative sum algorithm can be used to select proper frequency values of
large magnitude that represent the normal background texture of the chip surface. Then,
we take out the selected frequency values of large magnitude and reconstruct the image
from the DCT frequency matrix to remove the global random patterns of the statistically
textured image and reserve local anomalies in the reconstructed image. Experimental re-
sults demonstrate that the proposed approach achieves high accuracy in detecting slight
surface variations.

The processing time of the proposed approach can be significantly shortened after the
parameter optimization is conducted and the DCT implemented in a single integrated
circuit. If we do not count the time of taking forward and inverse DCT, the time of taking
the RD-CUSUM method is less than 50 ms and the processing time of each method is very
time-saving. The proposed method effectively and efficiently overcomes the difficulties of
detecting small defects on capacitor chip images with random textured surfaces and excels
in its ability of correctly discriminating slight surface variations from normal regions.
Therefore, future research directions can focus on examining existing approaches to search
for the most efficient and effective method for the proposed application.
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