International Journal of Innovative
Computing, Information and Control ICIC International ©)2013 ISSN 1349-4198
Volume 9, Number 4, April 2013 pp. 15231537

AN EXPERT FRAMEWORK FOR EFFECTIVE DOCUMENT
CLASSIFICATION USING SUPPORT VECTOR MACHINES

MUHAMMAD SHAHBAZ!, QANITA AHMED? AND Aziz GUERGACHI?

!Department of Computer Science and Engineering
2Al-Khawarzami Institute of Computer Science
University of Engineering and Technology
Lahore 54890, Pakistan
Muhammad.Shahbaz@Qgmail.com; M.Shahbaz@uet.edu.pk; qanita.ahmad@kics.edu.pk

3Ted Rogers School of Management — Information Technology Management
Ryerson University
Toronto, ON, Canada
a2guerga@ryerson.ca

Received February 2012; revised June 2012

ABSTRACT. The amount of textual information available on most topics has been in-
creasing continuously in the public domain and in virtually all organizations. Whether
we look at healthcare and its management systems, the environment, climate change and
their challenges, or finance, investment banking and their reporting systems, the unstruc-
tured textual documents that are published count in the tens of thousands or more. Yet
the ability of a human to understand and process it is limited. “Information Overload”
arises when extensive and redundant information is available and it is difficult or some-
times even impossible for humans to understand and manage it. As a significant portion
of data is not structured, unique analytical tools are required to assert intelligence through
unsupervised learning and categorization methods. Though, the art, science, and tools of
handling such data have advanced dramatically, there is still a need to structure learning
methods by using the state of the art text classification and categorization techniques with
the information retrieval tools such that the categories are also semantically associated
with each other. In this paper, we present a framework that employs the superior clas-
sification capabilities of Support Vector Machines. We will extract useful, high quality
information and classify them under various semantic features for the ease of knowledge
users and information retrieval.

Keywords: Text classification, Decision support system, Information retrieval, Support
vector machines

1. Introduction. Classically, two main approaches to Text Categorization (TC) are pre-
sented in artificial intelligence (AI). The first approach is the Knowledge Engineering (KE)
methods, where expert comprehension about the categories is either declaratively encoded
into the system or as a set of procedural classification rules. Second approach to TC is the
utilization of Machine Learning (ML) methods, where a set of pre-classified examples are
used by the classifiers for the learning through a general inductive process. For the pur-
pose of document management, the KE systems typically do better than the ML systems.
Knowledge Acquisition Bottleneck (KAB) is the key shortcoming of the KE approach.
KAB refers to the huge amount of highly skilled labor and expert knowledge required to
create and maintain the knowledge-encoding rules [1]. In this paper, we have presented a
framework to adhere to the positive aspects of the both approaches to manage the issues
imposed by Information Overload [2].

1523

1524 M. SHAHBAZ, Q. AHMED AND A. GUERGACHI

In order to overcome the problems presented by information overload, we have employed
a text classification framework based on Support Vector Machines (SVMs) [3,4] to harness
the power of the omnipresent information in organizations. Such a framework is deemed
to free the organization from the fatigue of organizing document-bases manually which can
be very expensive when a large number of documents are involved and sometimes simply
infeasible in the given time constraints of the application. The document management
system in any organization has a dynamic nature, since new documents are constantly
being created, destroyed, and reorganized. Using text classification for documents has
two main concerns in this regard. First, the number of classes may change over time.
Second, the contents associated with class labels are also liable to change. These concerns
are especially present in the management of knowledge in areas that are critical for the
long-term sustainability of our civilization, such as climate change, the environment,
healthcare, finance, economic growth and investment banking.

We chose to employ different implementations of SVMs because the dimensionality of
the feature space, in case of document classification, is often very large. The number of
dimensions is, typically, defined by the number of unique indexed terms in the corpus.
Since SVM techniques have proven their superior potential to manage high dimensional
input spaces effectively compared with other classification techniques, the need for time
consuming linguistic preprocessing (i.e., reduction of dimensions of the feature space) can
be largely eliminated.

In this paper, we present a generic framework to investigate the following hypothesis:
multiple implementations of support vector machines can be optimally employed to ex-
tract useful, high quality information and to classify them under various categories for
the ease of knowledge users. We present an extensible framework to classify the docu-
ments of an organization into a set of semantic categories, so that the desired information
can be retrieved efficiently based on such categories. Our classification model has been
instantiated and extended in order to solve a set of diverse categorization tasks: multiple
information source handling, feature and meta-feature extraction, intelligent conflict res-
olution, the acquisition of salient parameters and corresponding implementation of SVMs
and, finally, information retrieval and decision support system mechanisms.

2. Context and Background. The amount of textual information available is increas-
ing continuously specially in the last twenty years; however, the ability of a human to
understand and process it is still limited. “Information Overload” arises when extensive
and redundant information is available and it becomes difficult, or sometimes even im-
possible, for humans to understand and manage it. However, handling the problem of
this ‘Information Overload’ is necessary for utilizing the information purposefully. As a
result, ability to automatically organize and classify documents is of great significance.
Simply stated, document classification is the task of assigning the unstructured digital
data to one or more categories, based on its contents. Document categorization has been
used to enhance information retrieval. Document Classification is closely related to many
daily applications, including e-mail filtering, mail routing, spam filtering, news monitor-
ing, selective dissemination of information to information consumers, automated indexing
of scientific articles, automated population of hierarchical catalogues of Web resources,
identification of document genre, authorship attribution, survey coding and so on [5].
Automated text categorization is attractive because manually organizing text document
bases can be too expensive and unfeasible given the time constraints of the application
or the number of documents involved.

Thus, a text classification framework has been presented in order to harness the power
of the omnipresent information in organizations. Such framework is believed to release

EXPERT FRAMEWORK FOR EFFECTIVE DOCUMENT CLASSIFICATION 1525

the organization from the fatigue of organizing document bases manually. Manual clas-
sification of such documents is very expensive when a large number of documents are
involved and sometimes simply infeasible in the given time constraints of the application.
The document management system in any organization has a dynamic nature where new
documents are constantly being created, destroyed, and reorganized.

We choose to employ different implementations of SVMs because in practice, in the case
of document classification the dimensionality of the space of the feature space is often very
large, as the number of dimensions is defined by the number of unique indexed terms in
the corpus. Since SVM techniques have proven their superior potential to manage high
dimensional input spaces effectively than other classification techniques, the need for time
consuming linguistic preprocessing (i.e., reduction of dimensions of the feature space) can
be largely eliminated.

3. Proposed Solution. The proposed system, as shown in Figure 1, demonstrates an
expert system for document classification. Such a system can contribute significantly to
overcome the common problem of high complexity of data and to relate the documents
semantically. Therefore, it is helpful for the system to be capable to identify and capture
the documents generation events and trigger appropriate action(s) for classifications. This
process involves the following sub processes; each of these functions is described in more
detail in subsequent sections:

1. Capture events and associated information.

2. Process actions associated with events (e.g., in the sense of an active database sys-
tem).

3. Identify different parts like images, tables, text, paragraphs from a given document.

4. Extract Meta-feature vector for each part of document against the event trigger, and
allow the user to enrich the data manually by adding meaning semantically. Identify
and explore interesting patterns to mine valuable information from data sources.

5. Store the information in the knowledge base in an efficient manner such that it
includes semantic context of data within.

6. Classify the information as included in the document by the appropriate implemen-
tation of SVM as suited by the nature of the enclosed information.

7. Recognize when a given document does not match any category, or when it falls
between two categories and to identify new tags or keywords for it. This is because
category boundaries are not always semantically well defined.

8. The system may query the data via associated applications and tools with context-
sensitive information.

The proposed framework is able to handle any kind of textual material for intelligent
classification and knowledge extraction. This framework not only identifies different forms
of structured and unstructured text from a text corpus but is also able to build a rule-
base for an efficient and effective decision support system. The decision support system
is able to improve itself with the extension in the text-base. The proposed approach
is unique in a way that it not only captures and preprocesses different kinds of text
embedded together but is also able to select the right support vector machine algorithm
for knowledge extraction hidden in the text to help build a robust decision support system.

4. A Framework for Expert Document Classification Based on Multiple Im-
plementations on SVMs. In this section, we present a detailed formalization of each of
the sub-processes mentioned in the last section. The architecture as presented in Figure
1, gives an abstract view of the general working of the system. All the documents from
multiple information sources are handed over to the Event Gateway, which functions as

1526 M. SHAHBAZ, Q. AHMED AND A. GUERGACHI

meta- Information Manipulator

Meta Feature ector

(===

1
1
1 W :

Intelligent SVM
Classifier

. Event Gateway
Text Pre-processing —r—
v -al Brs

MLP Preprocessing
Feature Extraction
QWL Ontology Managsr

.
e T

Data Manager

Data Connector Interface

% Decision Support System

FIGURE 1. An expert document classification framework based on multiple
implementations of SVMs

the main command & control centre of the whole model. The Event Gateway manages
the fundamental services for the interplay of modules via an event-driven and standards-
based messaging-engine. It orchestrates the sequence of invocation of the modules as per
required basis. It is responsible for event-triggering and data flow between the modules.
It does not take part in any document processing activity. Event Gateway (EG) along
with the remaining modules; Document Operator (DO), Meta Information Manipula-
tor (mIM), Text Pre-Processor (TPP), Intelligent SVM Classifier (iSVC), Data Manager
(DM), Decision Support System (DSS), Information Extractor (IEr) are presented in this
section.

4.1. Event gateway (EG). All the functionality of the proposed architecture is initi-
ated and handled by the central event gateway. The events are normally asynchronous
external activities that need to be handled by the framework for instance an event occurs,
whenever a new document arrives in the system. Therefore, EG is an asynchronous call-
back subroutine to handle application-level information from the underlying framework.
Event Gateway, thus, contains formal specification, in the form of rules (or ontology), for
handling these synchronous or asynchronous events.

Whenever a new document arrives in the system, or any other trigger for classification
arises, the event handler initiates a sequence of activities to update its current support
vectors and finally the knowledge base. The main job of this event gateway is to super-
vise and overlook all the activities being performed within the scenario. It validates the
exact sequence of activities to be carried out, i.e., document analyses, meta-feature ex-
traction, classification mechanisms and launches the systematic instruction manual for the
invocation of rest of components of the system to achieve the desired goals of document
classification.

EXPERT FRAMEWORK FOR EFFECTIVE DOCUMENT CLASSIFICATION 1527

Input: Ev.¢ Ev, where Ev; can be any event
Output: sequence of activities
Events:
Event 1.1: Validates the sequence of activities
Activities:
Act 1.1: Maintain business processes
Enterprise Service Bus (ESB) [6], as shown in Figure 2, provides an abstraction layer
on top of an implementation of an enterprise messaging system, which allows seamless
integration of data and the modules. ESB works in close correspondence with a Business
Process Execution Language BPEL [7] Engine to support implementation of complex
functionality that requires synchronization of multiple modules (usually using BPEL).
In this manner, service orchestration [8] enables coordination of multiple implementation
modules.

Modules

(BPEL Engine)

] L
Multiple
information Docume"t Knowledge Base
Source Repository

FIGURE 2. A high-level working of event gateway in our system

4.2. Document operator (DO). Since we are talking of an open environment, the
file types under consideration are not limited or restricted to some specific universally
accepted file types. However, at this point, we believe that we should limit the scope of
the input document to various file types like html, PDF, xml, image, excel, email, etc.

In a completely automated environment, the input documents must be converted ma-
chine understandable text material in order to facilitate the text categorization process.
The appropriate elements within the document may be; text to store flat information,
tables for storing statistical information, context free diagrams for highest-level view
of a system and images that may contain the relevant information and other intricate
details attached as meta-data captions with the relevant picture.

This module thus analyses the logical structure of a document as described in Figure 3
in order to redistribute the document according to its elements. The process is carried out
in three phases: creation of logical structure based on the document architecture model,
description of the logical structure based on document grammar and finally generation of
an SGML/ XML document based on the elements. The main principle is to identify the
individual elements, to analyze the logical structure of these elements as defined in a doc-
ument architecture model. Whenever a certain element is encountered, its corresponding
start and end tags are added directly to the resultant XML document.

1528 M. SHAHBAZ, Q. AHMED AND A. GUERGACHI

Logical structure creation:

s Y : .
[y - parsing of composite level
L\ document objects
— - identification of basic level
objects

logical structure of ey

| coarse level

the document -
4

Logical structure creation:
- top down parsing based on
document grammar

- logical labeling of basic level
objects

- defining the relations of
elements

logical structure of i
the document “. fiover esved Y
) XML

<xml [>
4

SGML Creation SGML/ XML document

FicUre 3. A flow diagram for conversion of input document to XML format

setDocumentLocator(locator);

startDocument|()
while(lendofDocumentObjects){ // Logical Structure Creation
doStartTag(); //Top down parsing based on document grammar

setTagAttributes(tagAttributes);
startElement(URI, localName, attributes); //Logical labeling of basic level objects
setElementAttributes(tagAttributes);
.. Define the relations of the elements
endElement(URI, localName, attributes);
} // End of Document Objects
endDocument()

Input: d; € d where d; is a raw document of any type
d; € {html, text, jpg, pdf, email, xsl, ... , xml}

Output: D; € D where D; is a document of XML type d;] fzglg Dilxmr

where £ is any type of document including html, PDF, xml, image, excel, email, etc.
Events:

Event 2.1: Conversion of a document to XML format

Event 2.2: Validation of XML format

Activities:

Act 2.1: Parsing of composite level object for a document

Act 2.2: Identification of basic level object or elements in a document

Act 2.3: Generation of document model
Act 2.4: SGML/XML Creation

EXPERT FRAMEWORK FOR EFFECTIVE DOCUMENT CLASSIFICATION 1529

4.3. Meta information manipulator (m-IM). As the document is pre-processed and
each element is individually identified, meta-information about different parts of docu-
ments can be extracted to form the schema of that document. The XML schema (W3C
XML, 2000) describes the XML document, in terms of restraints on the structure and
content of documents of a certain element type. Similarly, during the meta-information
feature extraction phase, the elements are mapped on the meta-features contained within
the documents. The meta-feature vector, generated at the conclusion of this phase, con-
tains the constituent elements of the document (as recognized in the last module), hence
providing a relatively high-level abstract view of the input document. Analogous to XML
Schema, which presents a view of the document type at a comparatively higher level of
abstraction, structure and field names as well as specific values are described in a self-
documenting format. The meta-feature vector MF produced will also contain the elements
and token names as contained in the document. The MF is stored in the central data
repository managed by Data Manager.

From the implementation perspective, an XHandler is provided for each meta-feature in
MF as illustrated in Figure 4. XHandler is passed back to Event Gateway for the invoca-
tion of respective modules as specified in the form of rules. For instance, the textHandler
is solely responsible for the further processing of textual data. For the scope of current
research and development purpose, only textHandler is made functional, nonetheless we
have foreseen the implementation of the rest of handlers as well.

Input: Dy, where Dy, is a document of XML type

n—1

Output: MF = |J ¢; where ¢; is the meta-features that belong to Meta-Feature
=0
Vector M F
Events:

Event 3.1: Generation of Meta-Feature Vector M F

Event 3.2: Store M F in Data Manager

Activities:

Act 3.1: Generate detailed list of the meta-features contained within the documents
Act 3.2: Incorporation of meta-features in the meta-data of XML document

Act 3.3: Pass M F to the Event Gateway to store it to knowledge repository

4.4. Text pre-processor (TPP). As the textHandler is initiated through the Meta
Information Manipulator (m-IM) module, an event is generated in the Event Gateway to
pass the textHandler along with the attached element of the document to the Text Pre-
Processor (TPP) module. This step is scalable, and the relevant XHandler will later be

TextHandler
EquationHanlder

ImageHandler

Meta-
information
Manipulator

Chart&GraphHandler

XML
IllustrationHandler

TableHandler

ContentHandler

ErrorHandler

FIGURE 4. Decomposition of an XML document to its constituent meta-features

1530 M. SHAHBAZ, Q. AHMED AND A. GUERGACHI

extended to initiate specific modules for the further processing of the specified elements
of the document as described in the previous module.

The standard text pre-processing routine includes: Tokenization, Dimensionality re-
duction, Stemming, POS Tagging, Feature extraction, TF-IDF, Latent Semantic analy-
sis, Vector space modeling, etc. [1]. As the Text Pre-processor (TPP) is activated, TPP
performs the basic steps like tokenization, POS tagging, NP Chunking, stemming for the
purpose of feature extraction. For the purpose of this research, we have employed “A
General Architecture for Text Engineering” Gate [9], a widely used open source tools for
natural language processing, for utilizing its text pre processing functionalities. We briefly
describe the core functionality of Gate.

Using Gate for Text Preprocessing: For the purpose of pre-processing, the Tex-
tHandler ensures the following subtasks as described in Gate [9] are performed:

e To employ Sentence Splitter to generate sentence annotation, in order to identify the
sentences from the document under process.

e The key responsibility of tokeniser is to split the text into simple tokens. By default,
Gate provides these tokens: Words (upperInitial, allCaps, lowerCase, mixedCaps),
Number, Symbol (Currency Symbol, Symbol), Punctuation, SpaceToken.

e For Part-of-Speech (POS) tagging, ANNIE Tagger which is a modified form of
Brill Tagger is utilized. The tagger produces a POS tag as an annotation on each
word or symbol. The tagger uses a default lexicon and ruleset provided by the
Gate Implementation. Some of the papermenters required by the ANNIE Part-of-
Speech tagger are: encoding, lexiconURL, rulesURL, document, inputASName, out-
putASName baseTokenAnnotationType, baseSentenceAnnotationType, and failOn-
MissingInput Annotations.

e The English Tokeniser is comprised of a standard tokeniser and a JAPE transducer.
The JAPE transducer adjusts the standard output of the tokeniser to the specific
requirements of the English part-of-speech tagger.

e Typically the named entities are generated with Person, Organization and Location
annotation by the use of Named Entity Transducer and the OrthoMatcher. The
gazetteer is to used to recognize entity names in the text based on lists such as
names of cities, organisations, days of the week.

The term frequency in TPP module is identified by TF-IDF, and the features are then
modeled into the vector space. The Vector Space F' is saved in the Data Manager and
Event Gateway is notified.

IHPUt: Dtablea Dte:vt - DXML DXML 0 {Dtablea Dtemta Dimagea .- }

n—1

Output: F' = |J ¢; where ¢; is the features that belong to Vector Space F
§=0

Events:

Event 4.1: Identification of keywords in the documents

Activities:

Act 4.1: Tokenization

Act 4.2: Stemming

Act 4.3: POS Tagging

Act 4.4: Feature extraction

Act 4.5: TF-IDF

Act 4.6: Latent Semantic analysis
Act 4.7: Vector space modeling
Act 4.8: Dimensionality reduction

EXPERT FRAMEWORK FOR EFFECTIVE DOCUMENT CLASSIFICATION 1531

Act 4.9: Managing relationships between the categories expressed in Web Ontology
Language (OWL).

ationNumber

...........................

NLP Preprocessing:

tokenization, sentence splitting

Original markups

POS Tagging

r oo D]

[{d : ti qtEidR);; = thy x idf]

2k Tidf; = log

Stemming

Noun Phase Chunking E

Feature Extraction

——

e A
Latent Semantic Analysis .

Vector Space Modeling ’
—_
Dimensionality Reduction

OWL Ontology Manager

FIGURE 5. An illustration of steps covered in Text-Preprocessing module [9]

4.5. Intelligent SVM classifier (iSVC). Once the TPP completes it functionality, the
preprocessed documents are fed into the SVM classifier for text categorization. A classifier
interface provides point of interaction for the documents and the underlying classifiers.
Based on the meta-features of the document, the classifier interface presents the optimal
SVM implementations from a pool of available implementations. This enumeration is
handed over to decision support module (discussed later), in order to suggest best possible
classifier and hand the list of recommended classifiers to the SVM Classifier unit, which
then will be held responsible for carrying out the classification process [3].

The ultimate objective of SVM based classifier is to discover a decision surface to divide
the training data samples into the target classes. The decisions hence made are based
on the support vectors that are chosen as the effective elements in the given training
set. SVM makes decision based on the globally optimized separating hyper-plane for text
classification [10].

The SVM classifier contains various implementations of SVMs like SVMlight, BSVM,
WinSVM, LIBSVM, and LSSVM which are the specific implementations of the support
vector machines. The documents are mutually exclusively classified for the classifier as
recommended earlier. After classification, some conflicting support vectors may arise.
These conflicting support vectors may be simply defined, as the support vector will be
passed on to Decision Support System to resolve the conflict.

1532 M. SHAHBAZ, Q. AHMED AND A. GUERGACHI

SVMlight: SVMlight is a C language implementation of Support Vector Machines
(SVMs). It employs fast optimization algorithm to solve classification and regression
problems.

SVMstruct: It presents SVM learning for multivariate and structured outputs like
sets, sequences, and trees.

SVMperf: SVMperf offers new training algorithm for linear classification SVMs that
is designed to be faster than SVMlight for large datasets.

TinySVM: TinySVM put forward solution for the problem of pattern recognition based
on latest findings in statistical learning theory. It has been implemented to large number
of real-world applications, such as hand-written character recognition, text categorization.

SimpleSVM Toolbox: The SimpleSVM Toolbox is a Matlab toolbox (fully imple-
mented in Matlab) that implements the SimpleSVM algorithm. It is fast, easy to modify

and makes many extension possible (for instance invariance treatment).
n—1
Input: F, SVM, #|5, = |J pjr where pji is the parameter set that defines a certain
§=0
implementation of SVM ¢.

n—1
Output: ¢,” C ¢,/ C |J ¢;, where ¢," are the Support Vectors, ¢;” are the conflicting
§=0

support vectors

Events:

Event 5.1: Identifies the parameters of given implementation of SVMs.

Event 5.2: Classify the given test data to target classes

Event 5.3: Conflicting support vectors have arisen

Activities:

Act 5.1: Decide the target class based on the globally optimized separating hyper-plane.

Act 5.2: Identify support vectors.

Act 5.3: Discover a decision surface to divide the training data samples into the target
classes.

Act 5.4: Globally optimized separating hyper-plane for text classification.

Act 5.5: Resolve the problem of conflict support vectors.

4.6. Data manager (DM). The principle of the data store is to store and get docu-
ments. Data Store is a document repository server to store, query and fetch XML based
documents. It has been designed for practical needs to allow the storage of semi-structured
documents and un-structured documents. The documents to be classified are stored in
conventional relational database (MySQL, Postgresql, SAP DB, IBM DB2) [11].

Ontology Manager is a lightweight tool for managing relationships between the cate-
gories expressed in Web Ontology Language [12]. With this manager, one can browse,
search, and submit ontologies to an ontology repository. Users can discover relationships
between several categories without having to go through all the relevant documents. Thus
saves the time and effort [13].

The categories lying under conflicting support vectors are modified according to the
ontological relationships as specified in the Ontology Manager to resolve the state of
divergence. SVM Classifier can reclassify the documents with revised information.

Input: di|ka Di|XML, MF, F, 52), (Sk, SVM

Output: Data Store, Semantic Store, Ontology Manager

Events:

Event 6.1: Data needs to be stored or retrieved.

Activities:

Act 6.1: Fetch XML based documents.

EXPERT FRAMEWORK FOR EFFECTIVE DOCUMENT CLASSIFICATION 1533

Act 6.2: Query XML based documents.

Act 6.3: Store and retrieve meta-feature vector

Act 6.4: Store and retrieve feature vector

Act 6.5: Browse, search, and submit ontologies to an ontology repository.

Act 6.6: Mark the specific feature as support vector and conflicting support vectors

Act 6.7: Keep the record of all the implementation of SVMs available and their respec-
tive parameters

4.7. Decision support system (DSS). The meta-feature vector is fed into the decision
support systems (DSS) which are simple but intelligent information extraction systems
that are including knowledge base systems for all the classifiers to support decision making
activities. Based on the meta-features of the document, the DSS suggests the optimal
SVM implementation from various implementations available. The main job of decision
support module is to suggest the classifiers and hand the list of recommended classifiers
to the SVM Classifier unit, which then will be held responsible for carrying out the
classification details. The components of this DSS will be: (1) Operation Rule Filter, to
describe the operation logic, i.e., the condition and action; (2) Objective Events Filter,
to discriminate the events with anticipated properties; (3) Rules Mapper to match the
condition logic as described in operation rules and map them to specific implementation
of support vector machines.

0 E—— Decision Support System

= Rules Engine o< T 7
svm || =Urx o, €SIM

h 4
N

P | Knowledge Base |

13
Il
\ 4

FIGURE 6. Decision support system to suggest the optimal implementation
of SVM

For the purpose of our framework, we need these methods for constructing and operating
autonomous Information Retrieval (IR) systems:

1. Define effectiveness measure that computes a score, indicating how good those deci-
sions were, when they are applied to a set of decisions made by the system.

2. Tune the system for the best possible effectiveness of its decisions; this can be carried
out simply by assigning the weights to the most pertinent SVM implementation.
For a more sophisticated and optimized performance, attributes of the training new
data can be crosschecked with the available implementations of SVM to predict most
suitable classifier.

The system estimates the effectiveness of its decisions in an on-going fashion, and invokes
the appropriate module when these estimates indicate some problem with handling new
data.

Input: F', MF, #

Output: 6, € SVM

Events:

Event 7.1: Suggest the optimal implementation for classification

1534

Activities:

Act 7.1: Determine effectiveness measure for the decision

Act 7.2: Operation Rule Filter

Act 7.3: Objective Events Filter

Act 7.4: Rules Mapper

Act 7.5: Determine suitable implementation of SVM according to the given parameters
and meta-feature vector space

M. SHAHBAZ, Q. AHMED AND A. GUERGACHI

4.8. Information extractor (IEr). As the ontology manager in the previous phase
stores the relationships between the categories in the form of ontologies. The ontologies
are queried for the purpose of finding out the relationships between the different cate-
gories. The information extracted in this manner allows the system to adjust the support
vectors to resolve the conflicts of classification. The accuracy in the discovery of inherent
information of the document is improved if ontologies are described at a finer level [14].

SVM [10]

S‘f’x’l"ﬂld [24]

K Van.’rida.w

SVME
SVMiEr

S I,Ml mm

Latent SVM™"

SYMme

SYmM™

SYMPeY [22]

SVAr™*

mySVM

LIBSVM

BSVM [11]

TinySVM [23]

R-SVM

MATLAB
SVM Toolbox

TABLE 1. Comparison of different implementations for SVMs

-

Joachims

Joachims

Joachims

Joachims

Joachims

Joachims

Joachims

Yue,
Finley

Yisong
Yue

Joachims
Joachims
Stefan
Riiping
Chang and
Lin

Hsu and
Lin

Vapnik

Zhang and
Wong

Linux. Windows.
Cygwin. and Solaris

Linux

Linux. Windows
Linux, Windows

Linux, Windows

Linux, Cygwin

Linux, Windows,
Cygwin,

Linux

Linux, Cygwin, Windows
Linux Cygwin

Linux Cygwin, Windows
C++ source code and

Windows binaries

interfaces for Python. R.
Splus. MATLAB, Perl.
Ruby, and LabVIEW
Linux and Windows

Linux /Windows

Linux

Windows . linux

* SVM classification and regression package
fast optimization algorithm
can be applied fo very large datasets

model complex (multivariate) output such as trees, sequences, or sets
can be applied to natural language parsing, and part-of-speech tagging

for multi-class classification

learns a weighted context fiee grammar from examples

learns to align protein sequences from training alignments

Learns a Markov model from example

Training of structural SVM predictions rules for unobserved dependency

structure in NP-coref, motif finding, ranking with weak ordering

Learns rankings that optimize Mean Average Precision (MAP) as the

performance metric.

Learns to predict diversified rankings and sets for Information Retrieval.

binary classification rule that directly optimizes ROC-Area, F1-Score. or

the Precision/Recall Break-Even Point

Learns a rule for predicting rankings as typically used in search engines

and other retrieval systems

SVM classification and regression

C-classification, v-classification. e-regression. and v-regression
also supports multi-class classification, weighted SVM for unbalanced

data. cross-validation and automatic model selection

provides two implementations of multi-class classification and SVM

regression

C-classification and C-regression, uses sparse vector representation
can handle several ten-thousands of training examples. and hundred-

thousands of feature dimensions

specially designed for the classification of microarray gene expression

data

implements SVM classification and regression

EXPERT FRAMEWORK FOR EFFECTIVE DOCUMENT CLASSIFICATION 1535

However, it is important not to identify loads of rules in order to avoid the problem of
“over accurate”, because in such cases the results may not be useful. If ontologies are
considered as information chains, knowledge gained from one domain can be extended to
another domain through similarity over components in order to improvise the classification
of documents, when a large and heterogeneous collection is covered.

Input: ¢} C ¢/ 1

n_
Output: ¢} C ¢ C {J ¢;

=0
Events:

Event 8.1: The conflicting support vectors need to be resolved

Activities:

Act 8.1: Query the stored ontologies to find out the relationships between the different
categories

Act 8.2: Adjust the support vectors to resolve the conflicts of classification

5. Validation and Verification. In order to assert that an algorithm is functionally
correct, we have to show that for all input data that satisfies some condition, which is
called the pre-condition of the algorithm, the output data satisfy a certain pre-defined
condition, which is called the post-condition of the algorithm [15].

As illustrated in Figure 7, the respective pre-conditions and post-conditions are shown
for each module and the overall data processing in the system. The Document Opera-
tor DO receives documents d;|, of any extension from multiple information sources and
converts it into a universal format of XML documentD;|,,;. The XML document is
then presented as input for meta-Information Manipulator m-IM to analyze the elements

of the XML document Dx,s;,. Each element is labeled with respective meta-features
MF = nol ¢; and respective handlers for the features are instantiated. In order to limit
the scop]ezoof the implementation in the initial phases, only textHandler is tackled so far.
The Text Pre-processing module, extracts the features F' = nL_Jl ¢; from the input text
provided. =

For the choice of optimal implementation of SVM 6, € SV M, Decision Support System

n—1
DSS is invoked. DSS takes MF, F,SVM, p|s = | pjx- The intelligent SVM classifier
=0

contains several implementations of SVMs, once the DSS suggests a certain implementa-

n—1
tion 0, € SV M along with the feature vector F' = J ¢;, to be classified, are presented for
=0
n—1
classification. If successfully classified at this point, support vectors qﬁg- C U ¢, are stored
=0

to the database and the classification operation is finished. If, however, some conflicting
support vectors ¢ C ¢ arise at this point, they are fed into Information Extractor (IEr).
[Er queries upon the ontologies stored in the TPP phase and then is relocated to the

n—1
conflicting support vectors ¢ C ¢ C | ¢;.
=0

As discussed in the previous section, the Event Gateway (EG) manages the fundamental
service for the interplay of modules. It orchestrates the sequence of invocation of the
modules as per required basis. It does not take part in any document or data processing
activity. Similarly, the core functionality of Data Manager (DM) is to store and retrieve

1536 M. SHAHBAZ, Q. AHMED AND A. GUERGACHI

n—1 n—1 n—1
the parameters like di|,, Dilyy, MF = U e, F'= U ¢;,0r € SVM, pls = U pjr,
=0 =0 =0

1

@7 C ¢ C |J ¢; and does not involve in the core processing of the system. Hence, Event
§=0

Gateway (EG) and Data Manager (DM) are not formally specified in Figure 7.

d|,

© — Document Operator
n-l

| 0L

JMF=U5. Di

K

F=0
. . —
| meta- Information Manipulator

D&’)ﬁ 1 S!exr M D!ab\ie 2 S!ab\ie WMF
n-1
Text Pre-processing |———F' = Ugﬁi —
n-1 J=0
MF SVM, gcig = |__.J fojk
v o
- F
Decision Support System
&, e S¥AL
-1
L r
@C@CU@
= Intelligent VM Classifier < 7
n-1
't f
— : =g elly,
Information Extractor =0

Y Y I
I;EI'J. _ l;:'j O

FIGURE 7. Formal verification of the proposed system

6. Conclusion. As the usage of computers and electronics has grown in industrial sys-
tems, an enormous increase in document generation has resulted. As the behavior of
industrial systems becomes more complex, the common activities are more dependent on
the availability of knowledge and information. To tackle the information challenges in
the industrial environment, the automated text classification for unstructured informa-
tion has flourished for some time now. In this paper, we have presented a framework
for expert document classification for industrial informatics based on multiple implemen-
tations on SVMs, to cater to diverse information needs. Industrial informatics focuses
on different methodologies of information technology. To enhance industrial fabrication,
intelligence and manufacturing processes, we have combined a document classification
framework with the semantic features of information retrieval, for the benefit of both
diverse methodologies.

Acknowledgment. This work was supported in part by NSERC (Natural Science and
Engineering Research of Council of Canada) and CFI (Canadian Foundation for Innova-
tion).

EXPERT FRAMEWORK FOR EFFECTIVE DOCUMENT CLASSIFICATION 1537

REFERENCES

[1] R. Feldman and J. Sanger, The Text Mining Handbook, Advanced Approaches in Analyzing Un-
structured Data, Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK,
2007.

[2] A.F.Farhoomand and D. H. Drury, Managerial information overload, Commun. ACM, vol.45, no.10,
pp.127-131, 2002.

[3] T. Joachims, Transductive inference for text classification using support vector machines, ICML,
pp-200-209, 1999.

[4] T. Joachism, Learning to Classify Text using Support Vector Machines: Methods, Theory and Algo-
rithms, Kluwer Academic Publishers, 2002.

[5] G. T. Raju, P. S. Satyanarayana and L. M. Patnaik, Knowledge discovery from web usage data:
Extraction and applications of sequential and clustering patterns — A survey, International Journal
of Innovative Computing, Information and Control, vol.4, no.2, pp.381-389, 2008.

[6] D. Chappell, Enterprise Service Bus: Theory in Practice, O’Reilly Media Published, 2004.

[7] IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems, Business Process Execution Language
for Web Services Version 1.1, http://www.ibm.com/developerworks/library /specification/ws-bpel/,
2007.

[8] C. Peltz, Web Services Orchestration and Choreography. Computer 36, 10 (Oct. 2003), IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 2003.

[9] H. Cunningham, D. Maynard and K. Bontcheva, General Architecture for Text Engineering
(GATE): A Full-Lifecycle Open Source Solution for Text Processing, The University of Sheffield,
http://gate.ac.uk/overview.html, 2010.

[10] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle, Least Squares Sup-
port Vector Machines, World Scientific, Singapore, http://www.esat.kuleuven.be/sista/lssvmlab/,
2002.

[11] S. Csaba and A. Attila, Data Store Version 0.7a, http://spacemapper.sourceforge.net/DataStore/in
dex.html Revision:1.13, 2002.

[12] World Wide Web Consortium W3C, Eztensible Markup Language (XML) 1.0, http://www.w3c.org
/TR/REC-xml, 2000.

[13] D. Rekesh and K. Mittal, A Web-based system for managing Web Ontology Language (OWL) on-
tologies, IBM Web Ontology Manager, 2006.

[14] G. Amati, F. Crestani and F. Ubaldini, A learning system for selective dissemination of information,
Proc. of the 15th International Joint Conference on Artificial Intelligence, 1997.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, 2nd Edition, Introduction to Algorithms,
The MIT Press, 2001.

