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Abstract. In this paper, a new concept on PI design for time delay systems is intro-
duced. The concept is weighted geometrical center of the stabilizing controller parameters
region. Calculating of the stabilizing control parameters region is based on plotting the
stability boundary locus in the (kp, ki) plane and then computing stabilizing values of
the parameters of a PI controller. The weighted geometrical center point of this region
is computed by using coordinates of the boundary points. In the simulations, stabilizing
controllers in a trial circular area centered at the weighted geometrical center point are
studied. Simulation results show that the weighted geometrical center point is a special
point in terms of compromising on the transient state characteristics.
Keywords: PI controller, Design method, Weighted geometrical center

1. Introduction. In system modeling and control, the existence of a time delay in input-
output relations is an important consideration [1,2]. It is well known that time delays
as a source of the generation of oscillation and a source of instability are frequently
encountered in various engineering systems such as long transmission lines in pneumatic
systems, nuclear reactors, rolling mills, hydraulic systems, engines and manufacturing
processes. Many studies have concluded that time delay will reduce the phase margin of
control systems and yield reduced relative stability. Thus, the presence of such time delay
will greatly increase the difficulty of achieving satisfactory performance. For reviews of
recent results on time delay systems, see [3].

Although several advanced control strategies have been developed, structurally simple
proportional-integral (PI), proportional-integral-derivative (PID) and lag/lead controllers
are still widely used in industrial control systems because of their robust performance
and simplicity. Therefore, the subject of the designing PI, PID and lag/lead controllers
is of great importance for researchers. Several methods for determining parameters of
these controllers have been developed during the past sixty years [4-6]. Some of the most
popular methods are the Ziegler-Nichols tuning method, the Astrom-Hagglund auto tun-
ing method and other methods based on integral performance criteria. However, many
important results have been recently reported on computation of all stabilizing P, PI and
PID controllers after the publication of work by Ho et al. [7-10]. A new and complete
analytical solution which is based on the generalized version of the Hermite-Biehler the-
orem has been provided in [7] for computation of all stabilizing constant gain controllers
for a given plant. A linear programming characterization of all stabilizing PI and PID
controllers for a given plant has been obtained in [8,10]. This characterization besides
being computationally efficient has revealed important structural properties of PI and
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PID controllers. For example, it was shown that for a fixed proportional gain, the set
of stabilizing integral and derivative gains lies in a convex set. This method is very im-
portant since it can cope with systems that are open loop stable or unstable, minimum
or nonminimum phase. However, the computation time for this approach increases in an
exponential manner with the order of the system being considered. It also needs sweep-
ing over the proportional gain to find all stabilizing PI and PID controllers which is a
disadvantage of the method. An alternative fast approach to this problem based on the
use of the Nyquist plot has been given in [11,12]. An extension of the method given in
[11] to the lad-lead controller structure has been given in [13]. A parameter space ap-
proach using the singular frequency concept has been given in [14] for design of robust
PID controllers. More direct graphical approaches to this problem based on frequency
response plots have been given in [15,16]. The major problem for this approach is the
requirement for frequency gridding. In [17], a method has been given for computation
of stabilizing PI controllers in the parameter plane, (kp, ki)-plane. In this method, the
result of [12] has been used to avoid the problem of frequency gridding. Thus, a very
fast way of calculating the stabilizing values of PI controllers for a given control system
has been obtained. Recently, a graphical method to compute all feasible gain and phase
margin specifications-oriented PID controllers based on this method has been reported in
[18] where, it has considered both parametric uncertainty and varying time delay. As a
result of this study, Kharitonov region is proposed for robust PID controllers for uncertain
systems with time varying delay. None of above mentioned methods have dealt with nu-
merically tuning of PI and PID controller parameters. A common trait of these methods
leads to calculating the stability region in the controller parameters space. However, the
numbers of controllers in these regions are endless and it is not clear that which point can
be selected.
In this paper, a new concept on PI tuning method based on stabilizing controller param-

eters region for the time delay systems is presented. The concept is weighted geometrical
center of stabilizing controller parameters region. The region in the controller parameter
space is computed by using the stability boundary locus method [17]. The weighted ge-
ometrical center point which can be used as a design preference is computed by means
of the density of stability boundary points. The most important property of the method
is its simplicity and reliability for determining the PI controller parameters according to
the other PI tuning methods in the literature [5,19-21]. In practice, the method provides
an algorithmic tool which has guaranteed stability and can be applied to other systems.
The paper is organized as follows. The next section summarizes the fundamental prop-

erties of the stability boundary locus technique. In Section 3, the derivation of the
weighted geometric center for PI controller tuning is presented. Simulations are con-
sidered in Section 4 to illustrate the wisdom of the presented concept. Finally, concluding
remarks are given in Section 5.

2. Stability Region for a PI Controller. In this section, a method is presented to
obtain the stability region using the stability boundary locus approach [17]. Consider the
single-input (r) single-output (y) (SISO) control system shown in Figure 1 where

G(s) = GP (s) · e−θs =
N(s)

D(s)
· e−θs (1)

is the plant to be controlled and C(s) is the PI controller of the form

C(s) = kp +
ki
s
. (2)
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Figure 1. Block diagram of the control system

The problem is to find the stability region which includes all the parameters of the PI
controller of (2) which stabilize the given system. The closed-loop characteristic polyno-
mial P (s) of the system, i.e., the numerator of 1 + C(s)G(s), can be written as

P (s) = s ·D(s) + (kp · s+ ki) ·N(s) · e−θ·s. (3)

Decomposing the numerator and the denominator polynomials of GP (s) in (1) into their
even and odd parts, and substituting s = jω, gives

GP (ω) =
Ne(−ω2) + j · ω ·No(−ω2)

De(−ω2) + j · ω ·Do(−ω2)
. (4)

For simplicity (−ω2) will be dropped in the following equations. Thus, the closed-loop
characteristic polynomial of (3) can be written as

P (ω) = PR(ω) + j · PI(ω) (5)

where

PR(ω) = (ki ·Ne − kp · ω2 ·No) cos(ωθ) + ω · (ki ·No + kp ·Ne) · sin(ωθ)− ω2 ·Do, (6)

PI(ω) = −(ki ·Ne − kp · ω2 ·No) sin(ωθ) + ω · (ki ·No + kp ·Ne) · cos(ωθ) + ω ·De. (7)

Then, equating the real and imaginary parts of P (ω) to zero, two equations are obtained
as

Q(ω) · kp +R(ω) · ki = X(ω), (8)

S(ω) · kp + U(ω) · ki = Y (ω) (9)

where

Q(ω) = ω ·Ne · sin(ωθ)− ω2 ·No · cos(ωθ), (10)

S(ω) = ω ·Ne · cos(ωθ) + ω2 ·No · sin(ωθ), (11)

R(ω) = Ne · cos(ωθ) + ω ·No · cos(ωθ), (12)

U(ω) = ω ·No · cos(ωθ)−Ne · sin(ωθ), (13)

X(ω) = ω2 ·Do, (14)

Y (ω) = −ω ·De. (15)

Finally, by solving the 2-dimensional system of (8)-(15) the parameters of PI controller
are obtained as

kp =
(ω2 ·No ·Do +Ne ·De)·cos(ω ·θ) + ω ·(No ·De −Ne ·Do)·sin(ω ·θ)

−(N2
e + ω2 ·N2

o )
, (16)

ki =
−ω ·(ω2 ·No ·Do +Ne ·De)·sin(ω ·θ) + ω2 ·(No ·De −Ne ·Do)·cos(ω ·θ)

−(N2
e + ω2 ·N2

o )
. (17)

Changing ω from 0 to ∞, the stability boundary locus, l(kp, ki, ω) is constructed in the
(kp, ki) plane using (16) and (17).
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As a special case, a real root can cross over the imaginary axis at s = 0. Thus, a real
root boundary is obtained by substituting s = 0 in P (s) of (3). Therefore, this special
boundary is determined as

ki = 0. (18)

The stability boundary locus and the real root boundary divide the parameter plane
(kp, ki) into stable and unstable regions. The stable region can be obtained by choosing
a test point within each region.

Example 2.1. Consider the transfer function of the first order plus time delay (FOPTD)
system has the form

G(s) =
N(s)

D(s)
· e−θs =

1

s+ 1
e−0.5·s. (19)

Here, the aim is to obtain all stabilizing values of kp and ki that make the closed loop
system in Figure 1 stable. The following equations are obtained after equating the real
and imaginary part of characteristic to zero.

kp · ω · cos(0.5 · ω)− ki · sin(0.5 · ω) = ω, (20)

kp · ω · sin(0.5 · ω) + ki · cos(0.5 · ω) = −ω2 (21)

The plotting of the stability boundary locus is executed by cooperative analyzing of Equa-
tions (20) and (21) for each value of ω. Hereunder, kp, ki pairs are obtained accordingly
to ω values. Then, computed kp, ki pairs are figured in (kp, ki)-plane.
Figure 2 shows the stability boundary locus for a range of frequency (0, 10 rad/s) and

the real root boundary line. It can be observed from this figure that the parameter plane
is divided into four regions, namely R1, R2, R3 and R4. By choosing one arbitrary test
point in each region, the stability region which is the shaded region (R2) shown in Figure

Figure 2. Stability boundaries of the FOPDT system
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Figure 3. Stability region of the system

2 can be determined. Figure 3 shows more clearly R2 for all stabilizing values of kp and
ki. In this figure, the stability boundary locus is computed for the range of ω [0, ωi]. The
intersection frequency ω is calculated as 3.67 rad/s.

3. Weighted Geometrical Center. The points based stability boundary locus for the
FOPTD system in (19) are shown in Figure 4. In this figure, each (kp, ki) points are
marked by changing ω from 0 to 3.67 in steps of 0.01. It is seen from this figure that
the distance between each points is not same. The points are closely spaced at small ω
values. With growing the values of ω, they become distant and then tighten around the
peak point of stability boundary locus and finally unwraps when reached the stability
boundary locus to the real root boundary (kp-axis).

This locus enclosing the stability region consists of n points of which the coordinates
named are defined as (kp1, ki1), (kp2, ki2), (kp3, ki3), . . . , (kpn, kin). For this example, n
equals to 368.

Remark 3.1. Note that the stability region is not closed form in the example. A part of
stability region boundary consists of real root boundary (kp-axis). Therefore, projections
of boundary locus points on kp-axis are considered for that stability region is obtained in
closed form. The projections of the points in the stability boundary locus are shown in
Figure 5. In this case, the coordinates of the projection points are (kp1, 0), (kp2, 0), (kp3, 0),
. . . , (kpn, 0).

As a result of combining the points of stability boundary locus and real root boundary
line, the weighted geometrical center (kpw, kiw) of the stability region is obtained easily
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Figure 4. (kp, ki) points constituting the stability boundary locus depend-
ing on ω values

Figure 5. The coordinates of (kp, ki) points constituting the stability
boundary locus and their projections for the real root boundary line for
ω ∈ [0, 0.05]
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as follows

kpw =
1

n

n∑
j=1

kpj, (22)

kiw =
1

2 · n

n∑
j=1

kij. (23)

Thus, the weighted geometrical center using (22) and (23) can be found precisely. It is
clear that smaller step size of ω provides greater accuracy.

Reconsider the FOPTD system given in Example 2.1. When the weighted geometrical
center of the stability region in Figure 3 is computed by using (22) and (23), the PI
controller parameters are obtained as kp = 1.0549 and ki = 1.1811. In Figure 6, weighted
geometrical center of the FOPTD system is given.

4. Simulations. For the wisdom of the weighted geometrical center point is explained,
a circular testing area centered at the weighted geometrical center point in the stability
region is used for the simulations. The testing area is shown in Figure 7(a). Diameter
of the testing area centered at weighted geometrical center point (|AB|) is one unit. The
controllers used in simulations are computed by dividing the line segment |AB| into ten
equal parts according to angle Θ which is the angle between |AB| and horizontal axis.
Thus, sixty-six controllers are obtained by using six different values of angle Θ (0◦, 30◦,
60◦, 90◦, 120◦ and 150◦) for the simulations. The controllers on |AB| are named as C1,
C2, . . . , C11 and showed in Figure 7(b). Control parameters of these controllers are given
in Table 1. As for this, the controller on the weighted geometrical center is C6.

Figure 6. Weighted geometrical center of the system
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(a)

(b)

Figure 7. (a) Testing area around the weighted geometrical center for
simulations and (b) zoomed testing area

The closed loop step responses are illustrated in Figures 8-13, for the controllers given in
Table 1. The aims of the controllers minimize the transient state response performances.
The performances are rise time, settling time and overshoot. Numerical values of these
performances of the closed loops are given in Table 2 for comparison.
It can be seen from Figures 8-13 and Table 2 that when the controllers are changed from

C1 to C11 for all values of angle Θ, controller C6 provides a good compromise between
the rise time, settling time and overshoot performances. Since this result is illustrated



NEW CONCEPT ON PI DESIGN 1547

Figure 8. Step responses of the closed loops for Θ = 0◦

Figure 9. Step responses of the closed loops for Θ = 30◦
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Figure 10. Step responses of the closed loops for Θ = 60◦

Figure 11. Step responses of the closed loops for Θ = 90◦
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Figure 12. Step responses of the closed loops for Θ = 120◦

Figure 13. Step responses of the closed loops for Θ = 150◦
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Table 1. Control parameters of the controllers used in simulations

kp ki kp ki

Θ = 0◦

C1 0.5549 1.1811

Θ = 90◦

C1 1.0549 0.6811
C2 0.6549 1.1811 C2 1.0549 0.7811
C3 0.7549 1.1811 C3 1.0549 0.8811
C4 0.8549 1.1811 C4 1.0549 0.9811
C5 0.9549 1.1811 C5 1.0549 1.0811
C6 1.0549 1.1811 C6 1.0549 1.1811
C7 1.1549 1.1811 C7 1.0549 1.2811
C8 1.2549 1.1811 C8 1.0549 1.3811
C9 1.3549 1.1811 C9 1.0549 1.4811
C10 1.4549 1.1811 C10 1.0549 1.5811
C11 1.5549 1.1811 C11 1.0549 1.6811

Θ = 30◦

C1 0.6219 0.9311

Θ = 120◦

C1 1.3049 0.7481
C2 0.7085 0.9811 C2 1.2549 0.8347
C3 0.7951 1.0311 C3 1.2049 0.9213
C4 0.8817 1.0811 C4 1.1549 1.0079
C5 0.9683 1.1311 C5 1.1049 1.0945
C6 1.0549 1.1811 C6 1.0549 1.1811
C7 1.1415 1.2311 C7 1.0049 1.2677
C8 1.2281 1.2811 C8 0.9549 1.3543
C9 1.3147 1.3311 C9 0.9049 1.4409
C10 1.4013 1.3811 C10 0.8549 1.5275
C11 1.4879 1.4311 C11 0.8049 1.6141

Θ = 60◦

C1 0.8049 0.8347

Θ = 150◦

C1 1.4879 0.9311
C2 0.8549 0.9213 C2 1.4013 0.9811
C3 0.9049 1.0079 C3 1.3147 1.0311
C4 0.9549 1.0945 C4 1.2281 1.0811
C5 1.0049 1.0945 C5 1.1415 1.1311
C6 1.0549 1.1811 C6 1.0549 1.1811
C7 1.1049 1.2677 C7 0.9683 1.2311
C8 1.1549 1.3543 C8 0.8817 1.2811
C9 1.2049 1.4409 C9 0.7951 1.3311
C10 1.2549 1.5275 C10 0.7085 1.3811
C11 1.3049 1.6141 C11 0.6219 1.4311

better, dimensionless performance values of the controllers and maximum variation from
each other of these performances are given in Figures 14-19. Dimensionless values of rise
time, settling time and overshoot performances are obtained by dividing the results given
in Table 2 for each performance to their maximum values respectively. Thus the values
of the performances scale to range of [0, 1].
From Figures 14-19, the following conclusions can be made. It can be clearly seen that

the rise time, settling time and overshoot values for the controller C6 are closely at their
best values. Furthermore, one can say that the controller C6 is a good trade off point
for accounting to the transient response performances. For example, from Figure 16, it
is clear that the gap between the maximum and minimum values of the performances for
controller C1 is big; however, C6 reduces to the minimum.
For robustness test of the controller C6 respect to variations of the system parameters,

it is considered that variation range of the coefficients ofD(s) given in (19) is ±%10, where



NEW CONCEPT ON PI DESIGN 1551

Figure 14. Performances of the controllers Θ = 0◦

Figure 15. Performances of the controllers Θ = 30◦
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Figure 16. Performances of the controllers Θ = 60◦

Figure 17. Performances of the controllers Θ = 90◦
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Figure 18. Performances of the controllers Θ = 120◦

Figure 19. Performances of the controllers Θ = 150◦
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Table 2. Numerical values of transient state performances of the controllers

Rise
Time (s)

Settling
Time (s)

Overshot
(%)

Rise
Time (s)

Settling
Time (s)

Overshot
(%)

Θ = 0◦

C1 1.0865 7.1155 24.3890

Θ = 90◦

C1 2.5846 6.6477 0
C2 1.0391 6.6089 20.7785 C2 1.1827 5.1936 0
C3 0.9861 5.6365 17.6438 C3 1.0156 4.1186 0
C4 0.9291 4.1206 15.0021 C4 0.9233 2.5037 2.5867
C5 0.8700 3.8030 12.9235 C5 0.8596 3.1298 7.0941
C6 0.8110 3.3914 11.5223 C6 0.8110 3.3914 11.5223
C7 0.7537 2.9662 10.8925 C7 0.7717 3.4663 15.8777
C8 0.6999 3.5486 11.0296 C8 0.7389 3.4572 20.1654
C9 0.6505 3.7124 11.8407 C9 0.7109 4.8701 24.3852
C10 0.6059 3.6935 13.2106 C10 0.6866 5.0214 28.5285
C11 0.5663 3.6304 15.0266 C11 0.6653 5.0726 32.5781

Θ = 30◦

C1 1.3031 5.1586 10.4360

Θ = 120◦

C1 0.8748 6.7852 0
C2 1.1863 4.7992 9.9632 C2 0.8555 5.5057 0
C3 1.0772 4.4397 9.7522 C3 0.8411 4.3253 0
C4 0.9775 4.0788 9.8875 C4 0.8295 3.6896 3.4298
C5 0.8886 3.7227 10.4603 C5 0.8196 2.9275 7.3300
C6 0.8110 3.3914 11.5223 C6 0.8110 3.3914 11.5223
C7 0.7437 3.1099 13.0626 C7 0.8030 3.6271 15.9419
C8 0.6856 2.8869 15.0224 C8 0.7955 5.0060 20.5462
C9 0.6354 3.6978 17.3266 C9 0.7884 5.5387 25.3102
C10 0.5921 3.7062 19.9104 C10 0.7814 5.7480 30.2202
C11 0.5546 3.6551 22.7205 C11 0.7744 7.5356 35.2686

Θ = 60◦

C1 1.5725 3.6611 0

Θ = 150◦

C1 0.6448 5.5182 4.8768
C2 1.2918 2.5044 0 C2 0.6792 4.1756 4.9130
C3 1.1097 2.9957 2.1879 C3 0.7139 3.9484 5.5141
C4 0.9814 3.4348 5.1180 C4 0.7480 3.7008 6.7816
C5 0.8856 3.4627 8.2666 C5 0.7806 2.8909 8.7840
C6 0.8110 3.3914 11.5223 C6 0.8110 3.3914 11.5223
C7 0.7505 3.2870 14.8352 C7 0.8384 3.7509 14.9110
C8 0.7003 3.1756 18.1785 C8 0.8626 3.9486 18.8377
C9 0.6578 4.0589 21.5361 C9 0.8832 5.9754 23.2231
C10 0.6212 4.1588 24.8983 C10 0.9001 6.3389 28.0301
C11 0.5895 4.1593 28.2593 C11 0.9131 8.4470 33.2506

D(s) is the characteristic equation of the plant. Accordingly, Kharitonov polynomials of
D(s) are given in (24)-(27).

D1(s) = 0.9 · s+ 0.9 (24)

D2(s) = 1.1 · s+ 1.1 (25)

D3(s) = 0.9 · s+ 1.1 (26)

D4(s) = 1.1 · s+ 0.9 (27)

Step responses of the controller C6 for Kharitonov polynomials of D(s) are given in Figure
20, where it is seen that controller C6 exhibits a good robust performance in spite of
variations of the system parameters.

5. Conclusions. A new concept for the PI control of time delay systems is presented
in this paper. The concept is weighted geometrical center point of the stability region of
the PI control system in the control parameters plane. The controller on the weighted
geometrical center and its adjacent controllers are simulated. Simulation results show that
the weighted geometrical center is a special point in terms of offering a good compromise
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Figure 20. Performances of the controller C6 respect to parameter uncertainties

between the rise-time, settling time and overshot performances. In future studies on this
topic, seeking techniques based on the weighted geometrical center can be developed.
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