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Abstract. This paper presents a mathematical model for a thermal reaction process of
external heating equipment. The new control system design for this process, which treats
a heat source flowing model for an externally attached device is proposed. The equation
of a distributed parameter system as a coupled system with the heat reaction process is
presented. This paper proposes a lumped heating system to replace the distributed heating
function with a time delay as a whole element. The model that is equivalent to a system
in order to make possible practical devices is considered. This paper discusses the config-
uration of the linear model using the exact linearization method for the coupled system
with external heating equipment.
Keywords: Semiconductor manufacturing equipment, Thermal reaction process, Ex-
ternal heating equipment, Distributed parameter system

1. Introduction. The Radio Corporation of America (RCA) has developed a metal-
oxide-semiconductor (MOS) transistor and integrated MOS arrays, a silicon vidicon, stor-
age tube, etc. In 1961, the RCA developed the removal of trace impurities on silicon lead
to harmful effects electrically for the first time [1]. To develop an efficient framework of
micro-device manufacturing for next-generation industries, it is necessary to have high-
performance feedback control [2].

In particular, statistical process control (SPC) is a quality control method, which uses
statistical methods, and is applied to monitor and control a process and to make a chart
indicating the quality of the process. The monitoring and control of the process ensures
that it operates at its full potential, and SPC is widely used in the manufacturing of
semiconductors.

In the semiconductor manufacturing industry, an increasing number of suppliers have
embarked on the development of large devices. In addition, there is a trend to produce
large wafers, so the steps involved in each process are simultaneously performed on large
chips. It is commonly known that the semiconductor manufacturing process is composed
of a number of processes, and the thermal reaction process is one of the so-called front-end
processes. Through this process, the semiconductor manufacturing equipment maintains
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a fixed temperature using a reaction liquid in wafer, and then, the desired efficiency is
obtained.
In contrast, manufacturers have considered the application of a controller design method

using output feedback in the presence of the bounded symmetric control, which is based
on the linear matrix inequality (LMI).
In the chemical industry, petrochemical plants are involved in the manufacture of hydro-

gen from hydrocarbons [3]. In addition, the simultaneous optimization of scheduling and
transportation is desired because of competition in the semiconductor industry. Therefore,
it is important to reduce the production time and transportation cost [4].
This paper focuses to design a control system and a mathematical model for attached

external heating equipment (AEHE) in the semiconductor manufacturing industry. In
general, the heat reaction process is often used as a method of AEHE. An example of the
system report of the thermal reaction process involves the combination of the thermal
reaction model and the mass balance model [5]. In this example, the thermal reaction
model is obtained by adding a new term to account for the exothermic reaction method
by mixing various kinds of processing liquid. Exothermic reactions present unique haz-
ards that occur within enclosed semiconductor equipment. The heat that is generated
will increase the temperature of the reactants and products of the reaction, and that of
surrounding materials. Because all substances have properties such as pressure that are
temperature dependent, the resulting higher temperatures may affect the behavior of the
materials in the environment.
In previous study, there are other systems such as a time-delay element that are attached

to heating equipment [6].
In [7], it was reported that the multi-period repetitive control system is a type of

servomechanism for periodic reference inputs. They proposed a design method for simple
multi-period repetitive controllers for time-delay plants.
Therefore, this paper focuses on the mathematical modeling of the thermal reaction

process, and considers a design structure for its control system. That is, this paper deals
with the heat source flowing model as a model of AEHE. Further, we express it as an exact
partial differential equation (PDE) because PDEs allow us to employ coupled systems for
the thermal reaction process.
In order to make the model of the exothermic reaction system, the mathematical model

of the thermal process as a coupled system with AEHE and the thermal reaction process
are used.
The originality of this study is expressed for AEHE as a model of lumped parameter

system, not a function of the spatial heating distributed system. This paper proposes
a lumped heating system to replace the distributed heating function with a time delay
as a whole element. It becomes an equivalent system in the construction of practical
equipment.
Therefore, this paper discusses the configuration of the linear model using the exact

linearization method for the coupled system with AEHE.

2. Mathematical Model of AEHE. This section discusses the mathematical model
of AEHE. Figure 1 shows a schematic of the external heating reaction system. This is
with reference to the flow model reaction system. In Figure 1, ξ ∈ [0, L] indicates space
variable, t ∈ [0, T ] indicates time variable and Θc(t) indicates the internal temperature
of the heated fluid in the heating unit. Θc(t) indicates the ambient temperature from
AEHE. Further, Figure 2 shows the the cross-section view of Figure 1.
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Figure 1. Schematic of AEHE Figure 2. Cross-sectional
view of TRP

Let the radiation coefficient of AEHE be 1/R and the specific heat of the fluid inside
CM . It is obtained by

∆Θh(t, ξ) = Θh(t+∆t, ξ)−Θh(t, ξ) =
U(•)
RCM

{
Θh(t, ξ)−

∮
Sl

Θc(t, ξ)dξ

}
∆t. (1)

From Equation (1), it is obtained by

∆Θh(t, ξ)

∆t
= − U(•)

RCM

Θh(t, ξ) +
2πlU(•)
RCM

Θc(t). (2)

At this time, as Equation (2) describes the dynamic change in the fluid to move, the
Lagrange differential equation is used, and it is obtained by

∂Θh

∂t
=

∂Θh

∂t
+ q

∂Θh

∂ξ
. (3)

Let rewrite Equation (2) as the following, and it is obtained by

∂Θh(t, ξ)

∂t
+ q

∂Θh

∂ξ
=

U(•)
RCM

{2πlΘc(t)−Θh(t, ξ)} (4)

where, q indicates advection velocity of the fluid.
Here, U(t) ≡ U(•) is called the overall heat transfer coefficient, which is a measure of

the overall ability of a series of conductive and convective barriers to transfer heat [8]. It
is commonly applied to the calculation of heat transfer in heat exchangers.

From this, let Equation (4) describe as

∂Θh(t, ξ)

∂t
+ q

∂Θh

∂ξ
=

U(t)

RCM

{k0Θc(t)− k1Θh(t, ξ)} (5)

where, let k0 > 0, k1 > 0, they indicate a reaction coefficient. Then, the initial condition
of Equation (5) is

Θh(0, ξ) = Θh(ξ) (6)

In addition, the boundary conditions of Equation (5) are

Θh(t, 0) = Θh0(t) (7)

Θh(t, L) = ΘhL
(t) (8)

It is called AEHE of described above as a heating device of In-Line type. The unit of
heating process thermal reaction is widely used in principle; however, its shape is different.
Then, Figure 1 changes into Figure 3.
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Figure 3. Centralized heat-
ing system

Figure 4. Schematic of reac-
tion process

In other words, Figure 3 shows that the AEHE heats materials by the lumped state,
not spatially state. Its distributed function indicates ϕ(ξ∗), which is the function of
ϕ(ξ∗) ∈ C1. The shape of its function is described below. From this, Equation (5) is
rewritten by

∂Θh(t, ξ)

∂t
+ q

∂Θh

∂ξ
=

ϕ(ξ∗)

RCM

U(t){k0Θc(t)− k1Θh(t, ξ)} (9)

As described above, it was possible to express (9) as a conceptual model of AEHE. We
will apply a mathematical model of heat reaction process using above model in the next
chapter.

3. Heat Reaction Process. AEHE is described in this chapter, Figure 4 indicates its
conceptual diagram.
The parameters used in this study define as follows.

Definition 3.1. Definitions for various parameters
vb = Vb + LbS: Substantial volume of the reaction process unit [m3]
vh = Vh + LhS: Substantial volume of the heater unit [m3]
Vb: Substantial volume of the heater unit [m3]
Vh: Substantial volume of the heater unit [m3]
Lb: Effective length of the reaction process side [m]
Lh: Effective length of the heater unit [m]
S: Cross-sectional area of the pipe [m2]
Θb: Internal temperature of the reaction process [K]
Θh: Internal temperature of the heating unit [K]
q: Flow rate [m3 · s−1]
ρ: Density of the reaction mixture [kg ·m−3]
c: Heat capacity of the reaction mixture [Cal ·Kg−1 ·K]
P : Input power of the reaction process [W ]
H: Input power of the heating unit [W ]
Θ0: Ambient temperature of the reaction process [K]
Pb: Exothermic reaction of the reaction process [W ]
κ0: Coefficient of heat dissipation to the outside [s−1]
1/R: External radiation coefficient of the reaction mixture [s−1]
CM : Heat capacity of the heating unit [Cal ·Kg−1 ·K]
Θc: Ambient temperature from the outside [K]
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U(t): Overall heat transfer function (control variable)

The amount of heat that must be added during a chemical reaction in order to keep
the desired temperature is considered as follows.

Figure 5. (a) Buit-in heater,
(b) outside heater

Figure 6. Detailed model of AEHE

The heat unit is attached the built-In type directly into the reaction process in Figure
5(a), and a thermal model can be expressed as

vbρc
dΘb

dt
= κ0vbρc(Θ0 −Θb) + Pb + P (10)

where, let Θb(0) = Θb0 .
Such systems that are widely used conventional methods were used until a few years

ago. However, their usage is again increasing.
In contrast, it is capable of heating the reaction liquid indirectly, instead of requiring

that the heat exchange unit be installed directly into the reaction process in Figure 5(b).
Then, the above system model as Figure 5(b) can be shown as Figure 6.
In this case, the model that includes from the reaction process to AEHE is expressed

by

vbρc
dΘb

dt
= {−Θb +Θh(t, L))}qρc+ (Θ0 −Θc)κ0v0ρc+ Pb (11)

∂Θh(t, ξ)

∂t
+ q(t)

∂Θh(t, ξ)

∂ξ
=

U(t)

RCM

{k0Θc(t)− k1Θh(t.ξ)} (12)

where, let U(t) be a overall heat exchange coefficient, let ξ be a spatial variable at this
time, and let 0 ≤ ξ ≤ L, L ∼= Lb + Lh. In this case, since AEHE is a heat exchanger
in general, the derivation of the model is a strictly expressed for the system, then, it is
derived by

∂Θh(t, ξ)

∂t
+ q(t)

∂Θh(t, ξ)

∂ξ
= U(t)

{
1

RCM

k0Θc(t)−
k1

(Vh + LhS)ρc
Θh(t, ξ)

}
+

1

RCM

{k0Θc(t)− AΘh(t, ξ)} (13)
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where, let A be a effective area of heat exchange ([m2]), vb = Vh + LhS, and q(t) is the
advection velocity of the fluid.
Then, let Û(t) ≡ ϕ(ξ∗)U(t), ϕ(ξ∗) is a distributed function in Equation (9). According

to Equation (13), the outlet side mathematical model can be rewritten by

dΘh(t, L)

dt
=

ϕ(ξ∗)U(t)

RCM

{k0Θc(t)− k1Θh(t, L)}+
1

RCM

{Θ0(t)− AΘh(t, L)} (14)

where, let RCM = (Vh + LhS)ρc [19].
Then, Equation (14) is rewritten by

dΘh(t, L)

dt
= w(t, L){k0Θc(t)− k1Θh(t, L)}+ f{Θh(t, L)}

= w(t, L)g{Θh(t, L)}+ f{Θh(t, L)} (15)

where, the following equation holds.

w(t, L) =
ϕ(ξ∗)U(t)

RCM

≡ w(t) (16)

g{Θh(t, L)} = k0Θc(t)− k1Θh(t, L) (17)

f{Θh(t, L)} =
1

RCM

{Θ0(t)− AΘh(t, L)} (18)

In this case, by using the strict linearization method, Equation (15) can be rewritten
by

dm(t)

dt
= −am(t) + bu(t) (19)

where, the following equation holds (see Appendix 1).

a =
{ 1

RCM

+
k1

RC2
M

}
(20)

b =
1

RCM

(21)

w(t) =
1

Θ0(t)− k1Θh(t, L)
×
[

1

RCM

{Θ0(t)− k1Θh(t, L)}+ u(t)

]
× A

RCM

(22)

m(t) = k1Θh(t, L)− k0Θc(t) (23)

Therefore, the model of the coupled system on Equations (11), (19) is
dm(t)

dt
= −am(t) + bu(t)

vbρc
dΘb

dt
= {−Θb +Θh(t, L))}qρc+ (Θ0 −Θc)κ0v0ρc+ Pb

(24)

Thus, for example, if a recursive least squares estimation method is used, the parameters
a and b in Equation (19) can be estimated. Moreover, the zero-order hold (ZOH) is a
mathematical model of the practical signal reconstruction done by a conventional digital-
to-analog converter (DAC). Equation (19) can be rewritten from the continuous data to
the digital data by using ZOH. As a result, it is possible to configure the control system
by using STC method [11].
Furthermore, to study the structure of the control system, Equation (24) can be rewrit-

ten as the following equation. The output variable sets m̂(t) when ξ(t) is controlled by the
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Figure 7. Conceptual model of the external heating

control variable and the mathematical model of the thermal reaction process is derived
by

vbρc
dΘb

dt
= (−qρc+ κ0v0ρc)Θb + {(m̂(t) + Θc)qρc+Θ0κ0v0ρc+ Pb} (25)

where, let Ka = (q − κ0 · vb)ρc.
Then, we obtain

dΘb

dt
= − Ka

vbρc
Θb +

1

vbρc
{(m̂(t) + Θc)qρc+Θ0κ0vbρc+ Pb} (26)

In addition, the variables in Equation (26) are translated as follows: ã =
Ka

vbρc
, b̃ =

1

vbρc

f(t) = {(m̂(t) + Θc)qρc+Θ0κ0vbρc+ Pb}
(27)

From Equation (27), Equation (26) can be rewritten by

dΘb

dt
= −ãΘb + b̃f(t) (28)

As described above, by specifying the system parameters in Equation (26) respectively,
it is easy to examine the effects of substituting computer simulations of temperature of
the reaction process in place of real equipment.

4. Construction Method of Control System by the Strict Linear Method. Here,
we discuss the exact linear model.

Now, we rewrite Equation (28) to

dΘb

dt
+ ãΘb = b̃f(t) (29)

In this case, Equation (29) can be rewritten from continuous data to digital data by
using ZOH. It is obtained by

(1− exp(−ãT ) · z−1)Θb =
b̃

ã
(1− exp(−ãT )) · z−1 · f(t) (30)
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where, let z−1 = exp(−sT ). Then, let α = − exp(−ãT ), β = b̃
ã
(1−exp(−ãT )). Therefore,

Equation (30) is as

(1 + α)Θb = β · z−1 · f(t) (31)

That is, it is obtained by

Θb(t) = −αΘb(t− 1) + β · f(t− 1) (32)

Here, the predicted value Θ∗
b(t+ 1|t) in the left-hand side of Equation (32) is derived by

Θ∗
b(t+ 1|t) = −αΘb(t) + β · f(t) (33)

From Equation (32), the prediction error is derived by

ε(t+ 1|t) = Θ∗
b(t+ 1|t)− γ(t) = −αΘb(t) + β · f(t)− γ(t) (34)

Therefore, to minimize Equation (34), f(t) that minimize the mean square prediction
error is derived by

f(t) =
αΘb(t) + γ(t)

β
(35)

where, γ(t) is a target desired value for the optimal system. In this case, from Equations
(27) and (35), it is obtained by

γ(t)− exp(−ãT )Θb(t)
b̃
ã
(1− exp(−ãT ))

= (m̂(t) + Θc(t))qρc+Θ0κ0vbρc+ Pb (36)

From this, according to track the γ(t) by the Θb(t), let the target desired value of the
m(t) be the m̂(t). Then, from Equation (36), it can be obtained by

m̂(t) =
1

qρc

{
γ(t)− exp(−ãT )Θb(t)

b̃
ã
(1− exp(−ãT ))

−Θ0κ0vbρc− Pb

}
−Θc (37)

Applying Equation (19) in the same manner analysis and according to Equation (35),
it can be obtained by

u(t) =
m̂(t)− exp(−aT )m(t)

b
a
(1− exp(−aT ))

(38)

Figure 8. System model of the external heat system
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Therefore, from Equations (16) and (22), it can be obtained by

Û(q,H, t)

RCM

=
1

[Θ0 − k1Θh(t, L)]
×

[ 1

RCM

{k0Θc(t)− k1Θh(t, L)}+ u(t)
]
× 1

RCM

(39)

If q is stable variable in Û(q,H, t), Equation (39) can be derived by approximately

Û(q,H, t)

RCM

= n(q)ϕ(ξ)H(t), ∀n > 0 (40)

where, n(q) is the linear function that q depends on Û(t).
Above describe, using Equation (40) from Equation (37), it can be obtained from the

control input H(t) that inputs to AEHE. Here, the distribution function of AEHE is
defined as follows:

Definition 4.1. Distribution function of AEHE

ϕ(ξ∗) = c1 exp
{
−(ξ∗ −K)2

}
, ∀|ξ∗| < K (41)

where, if |ξ∗| ≥ K, let ϕ(ξ∗) = 0.

Assuming that 0 ≤ ξ ≤ L ∈ Ω, let ϕ ∈ D(Ω), ϕ in Equation (41) is a real function with
a compact support in Ω.

Because Equation (40) is a smooth function ϕ(ξ∗), such as Equation (41), the AEHE
represents the mathematical control function that heats with the lumped state spatially.

According to this, by using Equations (38)-(41), the electric input power H(t) can be
obtained by

H(t) =
[n(q)ϕ(ξ∗)]−1

[Θ0 − k1Θh(t, L)]
×
[

1

RCM

{k0Θc − k1Θh(t, L)}+ u(t)

]
(42)

Figure 9. Distribution function of the heating
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Figure 10. Reaction diagram of the process fluid supply

5. Configuration of the Control System of Heat Flow. From Equation (13), the

variables of Û is strictly derived by

∂Θh(t, ξ)

∂t
+ q(t)

∂Θh(t, ξ)

∂ξ
=

1

RCM

U(t){k0Θc(t)− k1Θh(t, ξ)}

+
U(t)

RCM

{k0Θc(t)− AΘh(t, ξ)} (43)

where, U(t) can be derived by the following function:

U(t) ≡ U(q, I, V, f, t) (44)

The temperature Θh(t, ξ) of the reaction liquid can be obtained from Equations (43)
and (44). The variables V (•), f in Equation (44) are the current and frequency in the
inductive method respectively.
That is, by spraying the reaction liquid, the object temperature can be derived by

Θh(t, L).
Here is the time-optimal heat control problem, and its accuracy of the control temper-

ature is required.
As mentioned above, the object is heated over a long period of time in the circulatory

system, and the temperature control is obtained by securing the more reaction liquid in
the tank.
To reduce a die size, the framework of the semiconductor process has evolved and have

been migrated to the thermal reaction process.
Now, before we discuss the control algorithm, the electrical variables for the induction

heat unit are described. Figures 11-13 and the meaning of the variables used in the
following equation is as follows. V (•): Supply voltage, I(A): Circuit current, P (W ):
Input power, f : Power frequency, δ: Skin effect coefficient, C: Capacitance, Vs: Electrode
area, d: Distance between electrodes, εs: Dielectric constant of the object to be heated,
ε0: Permittivity of vacuum.
First, the input power is given by

P = V I cos
(π
2
− δ

)
= V I sin δ ∼= V I tan δ(Watt), ∀δ << 1 (45)
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Figure 11. Schematic of the induction heating

Figure 12. The equivalent circuit of the induction heating

Figure 13. Phase difference δ

In addition, c = ε0εs
s
d
, I = ωcV ; therefore, the following equation holds.

I = ωcV =
5

9
εsfs

V

d
× 10−10(A) =

5

9
εsfsE × 10−10(A), ∀E =

V

d
(46)

where, let ε0 = 8.855 × 10−12[F/m] = 1/(4π × 9 × 109). In addition, E represents a
electrolytic strength. Therefore, power P is derived by

P =
5

9
dsEεs tan δ × 10−10(W ) (47)

where, ds represents the Dielectric volume of the object to be heated. Therefore, the
power per unit volume is derived by

P =
5

9
fE2εs tan δ × 10−10(W ) (48)

where, εs tan δ represents the Dielectric loss factor. Therefore, power P can also be ex-
pressed by

P ∼= fE2εs tan δ (49)
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where, f, E, εs tan δ is the variable determined by the object.
Therefore, from Equations (42)- (49), u(t) can be obtained.
At this time, the system model that can be obtained by the Exact Linearization Method,

and are given by Equation (19) and Equations (20)-(23). From above these equations, we
obtain

dm(t)

dt
+ am(t) = bu(t) (50)

where, let m(t) = k1Θh(t, L) − k0Θc, and let the Θc(t) ≡ const. For the simplicity. The
parameters a, b are the fixed values in Equations (20) and (21) respectively. In addition,
from Equation (16) and Equation (22), it is obtained by

U(I, f, q, t)

RCM

=
1

[Θ0 − k1Θh(t, L]

[ 1

RCM

(k0Θc − k1Θh(t, L));u(t)
]
× 1

RCM

(51)

In this way, it was found that the temperature of the object can be controlled by the
overall heat transfer function U(t). At this time, the control parameters can be done by
the input voltage and frequency.
Then, by applying the maximum principle using the model described above, the flow

control in the time-optimal control system is discussed.

Figure 14. Reaction process control system equipment

5.1. Solution by the maximum principle. In this chapter, though it is different from
the control method STC, the constraint condition of the following control function is
discussed.

0 ≤ U(t) ≤ M (52)

Regarding with a control criteria, the criteria is derived by

J = min
m(t)

[
1

2

∫ T

0

(r −m(t))2dt

]
(53)

where, r is the desired value.
In this case, the Hamiltonian is derived by

H =
1

2
(r −m(t))2 − λ(−am(t) + bu(t)) (54)
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dλ

dt
= −∂H

∂m
= rm(t)− 1

2
m(t)2 + λam(t) =

(
r − 1

2
+ λ

)
m(t) (55)

dm

dt
= −∂H

∂λ
= −am(t) + bu(t) (56)

The optimal control function uopt(t) is also derived by

uopt(t) =
∂H

∂u
= −bλ(t) (57)

uopt ≡
{

0 : λ(t) > 0 (U(t) = 0)
Mu : λ(t) < 0 (U(t) = M)

(58)

where, let 0 ≤ u(t) ≤ Mu. At this time, λ(T ) = 0 is a terminal condition.

6. Conclusion. As mentioned above, we proposed an exact mathematical thermal model
for thermal reaction processes, such as those discussed in this study. In addition, a model
that is in agreement with a real system was also proposed using the exact linearization
method.

Prior to the validation of our method, simulations were carried out. In this way, by
taking advantage of the optimal control theory or various mathematical programming
techniques, it was possible to configure the control system.

The originality of this study was the expression of the mathematical model of AEHE
and the expression of a coupled system for reaction processes.
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Appendix 1: Derivation of the parameters a and b. In Exact Linearization Method,
we take advantage of Lie derivative.
In vector field, Lie brancket [f, g](x) of vector-valued function f(x) and g(x) respectively

are

[f, g](x) =
∂g

∂x
f(x)− ∂f

∂x
g(x) (59)

where, Formula (59) is defined in vector field.
adifg(x) is

ad0fg(x) = g(x), (60)

ad1fg(x) =
[
f, adi−1

f g
]
(x) (61)

where, Formula (61) is also defined in vector field.
In addition, the Lie derivative of scalar function φ(x) in vector field f(x) is

Lfφ(x) =
∂φ

∂x
f(x) (62)

Then, by running the Lie derivative repeatedly, we obtain

L1
fφ(x) = Lfφ(x), (63)

Li
fφ(x) = Lf

[
Li−1

f φ(x)
]
. (64)

In such a model of this study, we put

g(Θ(t, L)) = k0Θ0(t)− k1Θ(t, L), (65)

f(Θ(t, L)) =
1

RCM

(Θc(t)−Θ(t, L)) (66)

Therefore, it is to satisfy the theorem of Exact Linearization Method [22].
Consequently, we obtain

Lad0fgφ(Θ(t, L)) =
∂φ

∂Θ
ad0fg(Θ(t, L))

=
∂φ

∂Θ
(k0Θ0(t)− k1Θ(t, L)), (67)
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Lad1fgφ(Θ(t, L)) =
∂φ

∂Θ
ad1fg(Θ(t, L))

=
∂φ

∂Θ
× 1

RCM

(k0Θ0(t)− k1Θc) (68)

Therefore, we put

φ(Θ(t, L)) = k0Θ0 − k1Θ(t, L) (69)

Then, w(t) becomes

w(t) =

[
L1
fφ(Θ(t, L))

LgL0
fφ(Θ(t, L))

+
u(t)

LgL0
fφ(Θ(t, L))

]
× A

RCM

=

[
{RCM}−1(Θc −Θ(t, L))

k0τ cli − k1Θ(t, L)
+

u(t)

k0Θc − k1Θ(t, L)

]
× A

RCM

=
1

k0Θ0(t)− k1Θ(t, L)

{
1

RCM

(Θc −Θ(t, L)) + u(t)

}
× A

RCM

(70)

where, let Θ̂ = φ(Θ(t, L)) ≡ Θ(t, L)−Θc(t), and we can rewrite to

dΘ̂

dt
=

dΘ̂

dΘ
· dΘ
dt

=
1

RCM

(Θ0(t)− k1Θ(t, L)) + (k0Θc(t)− k1Θ(t, L))

×
[

A/CM

k0Θ0(t)− k1Θ(t, L)
· 1

RCM

{Θ0(t)−Θ(t, L)}+ u(t)

]
= −

{
1

RCM

+
A

RC2
M

}
·
{
Θc −Θ(t, L)

}
+

A

RCM

u(t)

= −
[

1

RCM

+
A

RC2
M

]
Θ̂(t) +

A

RCM

u(t)

= −aΘ̂(t) + bu(t) (71)

where,

a =

[
1

RCM

+
A

RC2
M

]
, b =

A

RCM

(72)

w(t) =
1

k0Θ0(t)− k1Θ(t, L)

×
{ 1

RCM

{Θ0(t)− k1Θ(t, L)}+ u(t)
}
× A

RCM

(73)

where, w(t) become

w(t) =
A

RCM

Ŵ (t) (74)

That is, the model of Exact Linearization Method is expressed by

dΘ̂(t)

dt
= −aΘ̂(t) + bu(t). (75)


