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ABSTRACT. This paper presents a versatile lane departure warning (LDW) system based
on three-dimensional (3D) visual geometry that would help drivers avoid unintended de-
parture from their lane during land vehicle driving. A horizontal gradient map was first
calculated by an edge operator combined with the properties of lateral inhibition and far-
near adaptation so that the operation would be less influenced by bad weather conditions.
The lane marks were then detected with the proposed conjugate Gaussian model on the
non-thresholded gradient map to make the detection more stable and less influenced by
shadow boundary, windshield wipers, and the partial occlusion of other vehicles. The
detected lane marks were then verified by the 3D geometric constraints of the parallel
lines on the road surface to avoid the wrong detection of non-lane marks; moreover, the
constraints were also used to find the other-side lane mark from the extracted one if only
one lane mark was extracted on low-quality road surfaces. This means that the lane can
be detected even if only one lane mark is detected. Lastly, the lane departure distance
was accurately calculated from the 3D geometry of the lane marks rather than roughly
estimated from the two-dimensional relationship of the lane marks on images. Overall,
the properties of the proposed system are special and unique and are not present in exist-
ing systems. Based on various images of weather conditions and road surface situations,
this paper demonstrates the effect and efficiency of the proposed system and compares it
with other existing systems.

Keywords: Lane-mark detection, Lane departure warning, Driving assistance, Ad-
vanced safety vehicle, Computer vision

1. Introduction. According to the Fatality Analysis Reporting System’s Encyclopedia
of National Highway Traffic Safety Administration [1], the number of fatalities caused
by lane and road departure reached 12,164 in the United States in 2008. Although this
number was reduced in 2009, there were still 7,696 deaths caused by departure accidents.
To prevent these fatalities, lane departure warning (LDW) systems have been proposed
to protect drivers from departure accidents. A standard LDW system includes two major
parts: lane-mark detection and departure measurement. The lane-mark detection extracts
lane marks, and then the measurement module acquires the lateral offset of the vehicle to
adaptively prevent the lane departure. The lane-mark detection is not only an essential
task for LDW systems, but also an important function for other vehicle warning systems.
For example, vision-based forward collision and driving behavior detection systems are
also generally based on lane-mark detection results.

Extensive studies have been proposed for LDW systems. The lane marks in images are
tilted by perspective projection. To eliminate this tilted effect, several researchers have
applied inverse perspective projection (IPM) in the preprocessing stage. Bertozzi and
Broggi [2,3] proposed the Generic Obstacle and Lane Detection (GOLD) system, which
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removed the perspective effect of stereo images by transforming them into a top view. Shu
and Tan [4] used three parameters to describe curved lane marks in inverse perspective
mapped images. They then applied a particle filter to estimate the likelihood between
the lane marks drawn by the three parameters and the lane-mark edge images.

The IPM process eliminated the perspective effect of lane marks, but it required a lot
of processing time. To avoid applying the time-consuming IPM, Park et al. [5] detected
lane curve by using a lane-curve function (LCF), which was obtained by transforming the
defined parabolic function on world coordinates to the image coordinates. Li et al. [6]
applied a Sobel operator on multi-resolution gray-level images to obtain edge images and
then applied a very low threshold to filter the edges with low response. Finally, the three-
dimensional (3D) lane model was reduced to two-dimensional (2D) circular arcs, and the
arcs were determined by a multi-resolution fitting method. Jung and Kelber [7] proposed
an LDW system based on the linear-parabolic model, where lane marks were extracted
by an edge distribution function and a modified Hough transform. Zhou et al. [8] used
a deformable template to model lane marks in the gradient map. They then applied the
Tabu algorithm to detect the lane marks based on a likelihood function that fit the edge-
point positions and directions with the lane model. Based on the lane detection result,
a particle filter was then used to help estimate the lane shape in the consecutive images.
Hsiao et al. [9] designed an embedded ARM-based LDW system. The edge responses were
extracted by a one-dimensional Gaussian smoother and a global edge detector. Peaks in
every scan line were detected by the peak-finding algorithm. Finally, all detected peaks
were combined to fit a line segment to represent a lane mark.

Chang et al. [10,11] extracted the maximum gray-level gradient on every horizontal
scanning line to obtain the dotted lane marks. Then, straight-line equations of lane marks
were estimated based on the starting point and terminal point of the longest continuous
lines. Chen et al. [12] utilized the dark-light-dark (DLD) characteristic of the intensity to
extract lane-mark candidates. The distance between the dark-light and light-dark trans-
missions of each lane-mark candidate was estimated. Then, a least-square approximation
was used to obtain the lane mark information by those candidates in which the distance
between two transmissions exceeded a predefined threshold. In addition, several commer-
cial LDW products developed by AssistWare Technology, Inc. [13-15], Tteris, Inc. [13-15],
Mobileye, Inc. [13-16], Continental AG [14], etc., are currently on the market.

In most of these studies and products, the lanes are only detected by utilizing the
extreme edge response on one or two sides of a lane mark without considering the rela-
tionship between the two edge responses and a correlation between the two lane marks of
a lane. In such an outdoor application, if a lane detector does not use extra information
or apply special treatment, the detector will easily encounter the following problems: (1)
it will be sensitive to the bad weather conditions, (i) the results will be unstable for the
low-quality lane marks and road surface, and (4) it might interpret a non-lane mark as a
lane mark. A usable LDW system should be stable in various weather conditions and for
various lane-mark types, even when the quality of the lane marks is low. Furthermore,
the system should reduce the interpretation of non-lane marks as lane marks and should
minimize the calibration procedure of the camera position.

In this study, we propose a versatile LDW system based on 3D visual geometry to
achieve the above-mentioned goals. To reduce the influence of bad weather conditions,
edge pixels were extracted by an edge detector combined with the facilities of lateral
inhibition of a human visual system and far-near adaptation. Then the lane marks were
detected by the proposed conjugate Gaussian model based on the extracted edges to make
the detection more stable and less influenced by shadow boundary, windshield wipers, and
the partial occlusion of other vehicles. In a few stubborn cases, the above detection still
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failed; thus, the detected lane marks needed to be verified by the geometric constraints of
the parallel lane marks on the road surfaces. These constraints included the relationship
between the angle and intercept of a line and the known 3D lane width.

Sometimes, the condition of the road was poor due to a lack of maintenance; in these
cases, the partial lane marks were nearly invisible and were hard to detect. In such
cases, the geometric constraints were also used to find the other-side lane mark from the
extracted one if only one lane mark was extracted. Finally, the lane departure distance
was accurately calculated from the 3D geometry of the lane marks, rather than roughly
estimated from the 2D relationship of the lane marks on the images. Moreover, the
proposed system needed no calibration of camera orientation. All of these properties of
the proposed system are special and unique, and have not been utilized by the existing
systems and products currently on the market. Based on various images of weather
and road surface conditions, this paper will demonstrate the effect and efficiency of the
proposed system and compare it to the other systems.

The remaining sections of the paper are organized as follows. In Section 2, we present
the lane-mark detection with the properties of the lateral inhibition, the far-near adapta-
tion, and the conjugate Gaussian model. In Section 3, we propose geometric constraints
for verification of the detected lane marks and for correcting possible wrong detection.
We describe the determination of lane departure in Section 4, and in Section 5, we report
and compare the experimental results. The conclusion is given in Section 6.

2. Lane-Mark Detection. The proposed lane-mark detector was constructed based on
the property of the human-vision lateral inhibition, the far-near adaptation, and the
conjugate Gaussian model.

2.1. The lateral inhibition property. Lateral inhibition [17] is one property of the
human visual system that can be used to enhance the responses of edges between lane
marks and the road surface. Thus, it is especially helpful for detection in bad weather
conditions.

In all situations, lane marks in the images tended to be vertical, so a vertical-edge
detector was sufficient to detect all lane marks. Assume the gray levels of pixels py, p1,
P2, - .., Pp in an image row were fy, fi, f2, ..., fn. The horizontal first difference e;; for
p; was defined as

€1, = fz'+1 - fi, (1)
and the horizontal second difference ey ; for p; was defined as
€2 = fi+1 — fio1- (2)

In general, the outdoor images were more or less blurred. To use the edge detection to
improve these kinds of images, we adopted the second-difference edge detector. With
the effect of lateral inhibition, f; was perceived as f; — afi_; — af;11, where a was the
inhibition factor and generally set at about 20%. The second and third terms «f;_; and
af;11 were just the neighboring inhibition to pixel p;. Thus, the edge response for p;
became

ey = (fir1 —afi — afive) — (fisr — afisa — af;)
= afico — fic1 + fix1 — afiye. (3)

ey, had a higher contrast than e, ;; thus, e;; was more stable for edge detection in bad
weather conditions.
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FicUure 1. The different edge responses for different-distanced lane marks.
The average of edge responses is 57.5 for far lane mark and 69.8 for near
lane mark.

2.2. Adjustment of far-near edge weights. Due to the effect of perspective projec-
tion, far lane marks are smaller and more blurred than near lane marks in images. The
edge response of a near lane mark is therefore stronger than that of a far lane mark, as
shown in Figure 1. This means that the direction of a linear lane model is dominated by
the near lane mark. However, the far lane marks provide more directional information
than the near lane marks provide for lane cruise driving. Thus, we needed to balance the
weights of far and near lane mark edges. Our adjustment of the edge responses was based
on the vertical coordinate of the images. For a pixel p at coordinates (z,y) with edge
strength e, the adjustment of e was defined as

61:6(6 Y = Ymin +1>, (4)

Ymax — Ymin

where 8 was the adjustment factor, 5 > 0, and ymax and ymin were the upper and lower
bounds of the considered vertical range for detecting lane marks in images, respectively.
The adjustment of far and near edge responses made the lane cruise driving on curved
lanes more stable.

2.3. Lane detection by the conjugate Gaussian model. To detect the real lane
marks, we extracted both the left and right borders of a lane mark in the horizontal
second-difference map simultaneously. The lane border was defined as

y = tanf(x — b), (5)

where # was the angle between the lane border and z axis (horizontal), tan § was called
the slope, and b was the intercept between the lane border and the z axis.

Without thresholding, we accumulated the edge responses of pixels along every lane
border specified by # and b to construct an accumulating difference map on the 6§ — b
parameter space. Then, from the accumulating difference map, we found the maximum
and minimum pair as shown in Figure 2. In Figure 2(b), the horizontal plane represents
the intercept in pixels and the angle in degrees, and the vertical axis is the accumulation
of edge responses corresponding to the angle and intercept. The highest peak denotes
the highest potential of the left border of a lane mark, and the lowest valley denotes the
highest potential of the right border of the same lane mark.

In general, the shape of the peak and valley in the accumulating difference map was
like a pair of asymmetric Gaussian functions. We defined a conjugate Gaussian model to
match the peak and valley in the map as shown in Figure 3. The zero-mean bivariate
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FIGURE 2. The accumulating difference map on the 6 — b parameter space.
(a) Two lane borders of a left dashed lane mark. (b) The highest peak
Pyrar and the deepest valley P, present the left and right borders of the
left lane mark, respectively.

accumulation

-
)
SoTR /
e Y =
e iy
e )

P
DR e T
:_-53: ___-‘ ““! W\ "'4

intercept b
angle 0

FI1GURE 3. The conjugate Gaussian model

Gaussian function is shown as

2

G(x1,25) = 1 62(1—7791122){(%) +(:722) 72”12%%}, (6)
2m011099 (1 - ,0122)

with p1y = ﬁ for variables x; and x5; this was used to define the proposed conjugate
Gaussian model. However, the model was too complicated to be efficient. We assumed
that (i) the two variables were independent and that (4) the variances of the two variables

were the same as o2 to simplify the bivariate Gaussian function as

1 212 +ey?

G(x1, ) = e 2w . (7)

272

A conjugate Gaussian model was coupled with a positive Gaussian function Gp and a
negative Gaussian function Gy in the 8 — b space, where Gp and G were defined as

1 2402

e 252 (8)

Gp =G(b,0) =

2mo2
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and
1 »2402

e 2?2 . 9)

Gy =—G(b0) = —

272

Two borders of a lane mark in the images have a specified relationship. We defined the
Gaussian functions in the conjugate Gaussian model to have a similar relationship. We
searched the lane borders in the accumulating difference map using the criterion

(b',0') = arg max [Ep(b,0) + En(b,0)], (10)

with two fitness functions

i i G(m,n)E(b+m,0 + n)

Ep(b,) =~ — (11)
Z. Z.[G(m, n))? Z Z[E(b +m, 0+ n)]?

and

_Z ZGmn ((b+ ) +m, (0 + ) +n)

m=—in=—j

En(b,0) = ——" (12)

> Y [Gmn)? Z Z ((b+ 6,) + m, (0 + 6) + n)]?

m=—in=—j m=—in=—j

where E' was the accumulating difference map and ¢, and Jy were the relative locations
of the peak and valley in the intercept axis and angle axis, respectively. Ep and Ey
were correlations of the Gp and Gy functions with the accumulating difference map,
respectively. A lane mark was detected if its function value Ep(V,0") + En(b',6) was
greater than threshold value T;.

FIGURE 4. Analysis of intercepts and slope angles of the used lane model.
The map base represents intercept and slope angle of lane models. The
height is the accumulation of the detected lane marks. The distribution
presents the relationship between intercepts and angles of correct lane
marks.
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The intercept b and slope angle 6 of the lane model were dependent. To reduce the
search space for finding lane borders by Equation (10), we analyzed all possible relation-
ships between the intercept and slope angle of the lane model to construct an intercept-
angle relationship map as shown in Figure 4. The map was built by analyzing 27,312
frames with 54,624 lane marks. In the map base, the two axes represented the intercept
and slope angle, respectively. The height represented the appearance number of detected
lane marks with the corresponding intercepts and slope angles. Based on the statistical
data, we utilized a Gaussian function,

1 _(0-6p?
2

277, (13)

to describe the corresponding angles for each intercept, where #; was the mean of slope
angles corresponding to the intercept b;. We then built a look-up table to record the
Gaussian mean 6;, standard deviation o;, and the upper/lower bounds of the slope angles
indexing by the intercept b;. When searching for lane borders, the upper and lower bounds
improved the performance.

Moreover, the look-up table was also used for finding the relative intercept ¢, and
slope angle dp. In Equation (12), the 0, and &y were variants for different b and 6; b was
the intercept of the left border of a lane mark. With the known lane-mark width and
known relationship between the camera and the world coordinate system [18], we found
the intercept b’ of the right border of the lane mark on the image and then acquired
0y, = b — b. Afterward, from the above look-up table, we found the means of slope angles
6(b) and 6(b') for intercepts b and V', respectively, and then acquired §y = 6(b") — 6(b).

3. Lane Verification. With the conjugate Gaussian model, we found that we could
accurately detect lane marks. However, it was still possible that some traffic signs and
unexpected stripes on the road surface could be wrongly taken as lane marks, as shown
in Figure 5. A robust lane detection system should possess the ability to reduce “false
positive” errors; in other words, a robust system should not interpret a non-lane mark as
a lane mark.

3.1. Three-dimensional geometric verification. We used two lane mark clues to
verify whether the detected lane marks are correct or not, which are (i) the relationship
between intercept b and slope angle 6 of a lane model and (i) the known 3D lane width.

3.1.1. Judgment on the relation between intercepts and slope angles. In Section 2.3, we
stated that the intercept b and slope angle 6 of a lane model are mutually dependent on
images. Based on this premise, we built a look-up table to record the related data. We
used the Gaussian mean 6; and standard deviation o; to verify the correctness of detected

FiGurRE 5. Wrong detection due to the extra liquid stripe on road surface
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FiGURE 7. The relationship of lane marks on image plane and road plane.
(a) Front view. (b) Top view.

lane mark. The angle range for each intercept was set to cover 99.7% of correct lane
marks. That is, if |§ — 6;| < 30, then 6 was accepted.

3.1.2. Judgment on the lane width. Tf we have calibrated the relative position and orien-
tation of the camera to the world coordinate systems, we could derive the transformation
formulas from a point location in the world coordinate system to that on the image. The
proposed system verified whether or not the detected lane marks were correct by project-
ing the known lane width onto the image to compare it with the detected lane width on
the image.

We utilized the monocular computer vision method proposed by Tseng [18] to estimate
yaw angle ¢ and pitch angle 6 of the 3D lane marks with respect to the camera coordinate
system. As shown in Figure 6, the height of the camera was h and the distance D from
the intersection point of the camera optical axis and the road surface to the camera was

h
D = . 14
sin 6 (14)
As shown in Figure 7(b), if the camera had no roll rotation to the road surface, the visual
lane width W on the road surface at D cos 8 distance from the camera had the relation of

Ww_w (15)
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where w was the lane width at the image center and ¢ was the distance from the camera
lens center to the image plane. If the vehicle had yaw rotation of angle ¢ with respect to
the road surface normal, the actual lane width W, and the visual lane width W had the
relation W, = W cos ¢. Then,

w_iw_qsinﬁ _gsint Wy
D h  h cosd

Actually, for any vertical location y in the image, we could derive the relationship
between the lane widths on the road surface and on the image as

’LU( )_ Wact
9= h cos ¢

where y. was the vertical coordinate of the image center.

(16)

(gsin® — (y — yc) cos0) (17)

3.2. The rectification of wrong detection. If the angle and intercept parameters of
a lane model were not compatible or the lane width did not match the known width, we
could search a more correct lane mark pair from one detected lane mark and the known
lane width. We categorized this rectification into two cases: (i) only one lane mark was
extracted or (i7) both lane marks were extracted but the lane width was not correct.

If only one lane mark was extracted, we utilized the lane mark to infer the other based
on the 3D geometry of two lane marks and the known lane width. As described in Section
3.1.2, we chose any two different vertical locations y; and y, to compute w(y;) and w(ys)
from Equation (17); we then inferred two horizontal locations z and x5 from w(yy), w(ys)
and the extracted lane mark. The line passing through (z1,y;) and (z2,ys) just specify
the desired lane mark. In the above process, one of (1, y;) and (x2,y2) could be replaced
by the pre-acquired vanishing point of the lane marks [19].

In the case of wrong lane width, we assumed that one of the detected lane marks was
correct, but that we did not know which one. Hence, we used the previous method from
the detected left lane mark to find the corresponding right one and the detected right lane
mark to find the corresponding left one. Then we used the fitness functions of Equations
(11) and (12) to judge which pair of lane marks was the better one. The pair with the
larger fitness function value was chosen as the desired lane marks. An example of the
rectification is shown in Figure 8.

4. Lateral Offset Determination. The lateral offset estimation method was first pro-
posed by Tseng [18], and we modified the decision criterion for departure. The proposed
method was based on 3D perspective geometry to estimate the lateral offset of the host
vehicle from the detected lane marks. We assumed that there were only pan and tilt
rotations of the camera to the road surface (world coordinate system); hence, the driving
situation is shown in Figure 9. Figure 9(a) shows a top view of a camera in a lane. The
camera is located at ¢ and has a pan angle ¢ to left. L and R are the distances from ¢
to the left and right lane marks, respectively. Figure 9(b) is the corresponding front-view
image, where two lane marks are perspective projected onto the image to intersect a van-
ishing point v. [ and r are the distances from the midpoint of the image’s lower border
to the left and right lane marks along the horizontal direction. These [ and r are just the
[ and r shown in Figure 9(a).

In Figure 9(b), the line vc is called the vehicle location line that passes ¢ and is parallel
to the lane marks. Based on the principle of the same triangles, the ratio of the distances
from ¢ to the left and the right lane marks in the image is the same as that in the 3D
space; that is, [/r is equal to L/R. If the lane width was fixed and known, then the actual
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(b)

(d)
FicURE 8. Steps of rectification for wrong lane marks.
detected right lane mark. (b) (¢) From one detected lane mark to find the
other one. (d) Choosing the better one.
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FIGURE 9. A camera in a lane. (a) Top-view diagram. (b) The front-view image.
distances from the camera to both lane marks could be calculated by
|
- l—|—7” act
and
R=——W,

I +r act»

where W, was the actual lane width.
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A simple warning for lane departure was set as follows. If the vehicle width was W,
the camera was set behind the windshield with distances D; and D, to the vehicle left
and right borders, respectively. Then the warning would be raised if the distance from
the vehicle border to the lane mark was less than T;. That is,

{ If L —D; <T;, thevehicle is unintentionally departing to the left side, (20)

If R— D, <T;, the vehicle is unintentionally departing to the right side.

5. Experiments. The proposed LDW system was tested with many images captured in
various weather conditions and road surface situations such as heavy rain, glare from the
sun, cast shadows, light noise, night, and double-lane marks, as shown in Figures 5, 8 and
10. The performance of most LDW systems is generally influenced by these conditions
and situations. We also compared the proposed method with the other existing methods.
All experimental images were 320 x 240 pixels. The proposed system was examined on
PC-based platforms, Apple iPhone systems, and Android-based mobile phones.

5.1. Effect of lateral inhibition. Both synthetic and real images were examined for the
effects of lateral inhibition. The results of the first-difference and second-difference vertical
edge detections and edge detections with and without lateral inhibition were compared.

(@)

FIiGURE 10. Image samples with various weather conditions and road-
surface situations. (a) (b) Heavy rain. (c) (d) Glare from the sun. (e)
(f) Cast shadow. (g) Light noise. (h) Night. (i) Double lane marks.
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TABLE 1. Effects of lateral inhibition

Experimental video Number of | Lateral | Detected | Detection
lane marks | inhibition | marker rate

Sunny day 9 436 With 2,395 | 98.3%
on highway ’ Without 2,379 | 97.8%
Sunny day 5 054 With 2,024 | 98.5%
at exit of highway ’ Without 1,980 | 96.4%
Sunny day 1.308 With 1,358 | 97.1%
in downtown ’ Without 1,342 96.0%
Cloudy day 576 With 5721 99.3%
at exit of highway Without 566 | 98.3%
Rainy day Lona |__With 1,867 | 98.2%
on ramp of highway ’ Without 1,835 96.5%

One artificial 320 x 240 image with ideal lane marks is shown in Figure 11(a). The
first-difference edge detection without lateral inhibition generated a low-contrast edge
response (accumulation) as shown in Figure 11(b); with the lateral inhibition, the contrast
of the edge response was enhanced, as shown in Figure 11(c). The second-difference edge
detector gained a more significant edge response than the first-difference edge detector,
as illustrated in Figure 11(d) without lateral inhibition and Figure 11(e) with lateral
inhibition. With the proposed conjugate Gaussian model, the fitness function values
of the four maximum edge responses were 0.94, 0.97, 1.84 and 1.89, respectively. The
second-difference edge detector with lateral inhibition had the strongest contrast in the
accumulating difference map; hence, the detection was more stable. In other words, we
were able to avoid extracting the wrong lane mark. This phenomenon was even more
obvious in real images.

One real image is evaluated as shown in Figure 12(a). The results and comparison are
given in Figures 12(b)-12(e). The complex scene has more little peaks and valleys than in
the artificial image. In these complicated accumulating difference maps, it is easy to make
a wrong detection. The second-difference edge detector with lateral inhibition generated
the strongest contrast and was less influenced by the rugged surface, as shown in Figure
12(e); the detector generated a more stable solution. The fitness function values of these
four maximum edge responses were 0.89, 0.98, 1.80 and 1.96, respectively. We compared
the effects of lateral inhibition in various weather conditions as listed in Table 1. The lane
detector with lateral inhibition had a higher detection rate in various weather conditions.
The average detection rate was 98.21% with lateral inhibition and 96.84% without lateral
inhibition.

5.2. Effect of the conjugate Gaussian model. The purpose of the conjugate Gaussian
model was to extract lane marks without being influenced by shade, windshield wipers,
and the partial occlusion of other vehicles. As one example shows in Figure 13(a), if the
conjugate Gaussian model was not applied, the edge with the strongest edge response
was wrongly extracted as a lane mark; the edge was actually caused by a viaduct shadow,
which generated the maximum peak Pj,,, in the accumulating difference map as shown in
Figure 13(c). However, Pyrq; and Py, formed the best pair with the conjugate Gaussian
model as shown in Figure 13(b). In this case, the fitness function value was 1.53 for the
pair of Py, and Py, but was only 0.60 for the pair of Py, and P,;. , where P, was
obtained from Pj,,,. and the estimated Jy and ¢6,. Based on the test samples, the effect of
the conjugate Gaussian model is compared and listed in Table 2. The overall detection
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FIGURE 11. The comparison of accumulating edge responses for an artifi-
cial image. (a) The artificial 320 x 240 image. (b) The first-difference edge
detector without lateral inhibition. (c) The first-difference edge detector
with lateral inhibition. (d) The second-difference edge detector without
lateral inhibition. (e) The second-difference edge detector with lateral in-
hibition.

rate of lane marks with and without the conjugate Gaussian model observably increased
from 86.90% to 98.21% in the five experimental videos.

5.3. Effect of the three-dimensional geometric constraints for lane verification.
The 3D geometric constraints included the relationship between intercepts and slope an-
gles and the 3D lane width constraint. We took six long-period videos with 54,479 images
to evaluate the first constraint. Half of the videos were used to build the intercept-angle
relation map, and the other half were used to examine the map. In the examined videos,
only 0.7% of lane marks failed to be detected. Most failures appeared on highway on-
or off-ramps or in the situation of rapid lane changes, where the relation of intercepts
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FicURE 12. The comparison of accumulating edge responses for a real im-
age. (a) A real image. (b) The first-difference edge detector without lateral
inhibition. (c) The first-difference edge detector with lateral inhibition.
(d) The second-difference edge detector without lateral inhibition. (e) The
second-difference edge detector with lateral inhibition.

and slope angles was out of the range of criterion |§ — ;| < 30. For the 3D lane width
constraint, we took five videos containing 37,048 images to evaluate. In every image, we
estimated two lane widths with different distances and then back-projected the widths
onto the road surface to compare them with the actual lane width. The difference between
the estimated lane width and the actual width was less than 0.09 meters on average.

5.4. The performance of lane verification and rectification. Two situations were
used to evaluate the performance of lane verification. One was the host vehicle taking a
highway exit as shown in Figure 14(a). The right solid lane mark was divided into a solid
and a dashed lane mark. The solid lane mark had a larger edge response; thus, the solid
lane mark was extracted. The other situation was a noticeable liquid stripe on the road
surface as shown in Figure 5. The stripe had a stronger edge response than the dashed
lane mark; thus, the stripe was extracted. Based on the proposed verification process, the
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FIGURE 13. The conjugate Gaussian model for lane-mark detection. (a)
The viaduct shadow leads the highest edge response on road surface. (b)
The edges of peaks Ppraz, Prin, and Py, in accumulating difference map.
(¢) The accumulating difference map on the 6 — b space. P}, is the global
maximum, but Py, and P.;, form the best pair with the proposed conju-
gate Gaussian model.

TABLE 2. Effects of conjugate Gaussian model

Experimental video Number of Conjugate Detected | Detection
lane marks | Gaussian model | lane marker rate

Sunny day 5 436 With 2,395 98.3%
on highway ’ Without 1,971 80.9%
Sunny day 5 054 With 2,024 | 98.5%
at exit of highway ’ Without 1,959 | 95.4%
Sunny day 1.308 With 1,358 | 97.1%
in downtown ’ Without 1,218 | 87.1%
Cloudy day 576 With 572 99.3%
at exit of highway Without 486 | 84.4%
Rainy day 1.902 With 1,867 | 98.2%
on ramp of highway ’ Without 1,636 | 86.0%
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lane marks in both situations were correctly detected as shown in Figures 14(b) and 15,
respectively. The detection results without and with the lane verification are compared
in Table 3. The detection rate of lane marks improved 25.34% on average.

(b)

FIGURE 14. The comparison of lane detection without and with rectifica-
tion process. (a) Without lane verification. (b) With lane verification.

F1GURE 15. Lane marks are correctly detected from the liquid stripe

TABLE 3. Detection rate improved by the lane rectification

Verification | # of lane marks | Detected # | Detected rate | Improvement
Situation | Without 342 292 85.4% 9.9%
1 With 342 326 95.3% 7
Situation | Without 700 429 61.3% 39.8%
2 With 700 659 94.1% o7
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5.5. Comparison of methods. The proposed method and two existing methods were
compared based on images of various weather conditions and road surface situations. The
first existing method, based on line fitting of maximum gradient points on all scan lines
to find lane marks, was used in [9-11]. The second existing method, based on line fitting
of low-high-low gray-level patterns on every scan line to detect lane marks, was used in
[12]. Twelve videos, including the cases shown in Figures 5, 8 and 10, were tested. There
was a total of 22,808 images; in these images, two different tilt angles and four camera
heights were used.

The detection rates of the three methods are compared and shown in Table 4. The
proposed method included more features and showed the best detection rates. All cases
shown in Figures 5, 8 and 10 were correctly detected by the proposed method, as shown in
Figures 14(b), 15 and 16. Based on the proposed detection with lateral inhibition property,
the lane marks in Figures 16(a)-16(e) were correctly detected. Based on the proposed
conjugate Gaussian model, the lane marks in Figure 16(f) were correctly detected. Based
on the proposed rectification process for known lane width, the invisible lane marks in
Figures 16(g) and 16(h) were recovered. Based on the proposed rectification process for
known lane width, the lane marks in Figures 14, 15 and 16(i) were detected. The two
existing methods failed in the all cases included in Figures 15 and 16(f)-16(h). The second

1.9764m

1 .4829m

FIGURE 16. The detection results of the images shown in Figure 10. (a)
(b) Heavy rain. (c) (d) Glare from the sun. (e) (f) Cast shadow. (g) Light
noise. (h) Night. (i) Double lane marks.
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FiGURE 17. The very stubborn cases in which the lane marks are not detectable

TABLE 4. Comparison of detection rates among the proposed method and
two existed methods

Detection rates
# of lane | Fitting of maximum Fitting of The proposed

marks gradient points low-high-low pattern method
Sunny day 14,550 97.43% 91.30% 99.22%
on highway
Sunny day 7,262 93.14% 92.87% 98.22%
in downtown
Cloudy day at | ¢ 5 95.13% 94.47% 96.62%
exit of highway
Rainy day 7,274 89.47% 84.20% 99.75%
on highway
Nighttime 7,264 97.80% 07.27% 99.56%
on highway
Road with 1,240 0.00% 0.00% 99.84%
liquid stripe

existing method could not detect lane marks in the liquid stripe images due to a halo that
resulted from the sun shining into the camera lens, as shown in Figure 5. Of course, some
very stubborn cases were still undetectable by the proposed method, as shown in Figure
17.

6. Conclusion. In this paper, we have proposed a versatile LDW system based on 3D
visual geometry to prevent drivers’ unintended departure from their current lane. The
proposed system possesses several special and unique properties that are not present in
other existing methods and systems. These properties include the follows: (i) The system
needs no thresholding to extract lane-mark edges, (i7) it can adapt to various weather
conditions, (#i7) it can tolerate the shadow effect, (iv) it can reduce the influence of
partially covered lane marks, (v) it can tolerate low-quality road surfaces, (vi) it can
tolerate a missing lane mark, and (vii) it includes accurate lane departure rather than a
rough estimation from the 2D relationship of the lane marks on the images. Based on
various images of weather conditions and road surface situations, we examined the effect
and efficiency of the proposed system and compared it with other existing methods. With
the proposed methods and rectification process, the detection rate substantially increased
with a little extra processing time; moreover, the experiments demonstrated that the
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proposed LDW system showed excellent results. Of course, a few very stubborn cases
were still undetectable, and these will become targets for further research.
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