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Abstract. Previously proposed adaptive channel allocation schemes in cellular systems
have mainly focused on the case in which a dedicated channel is exclusively allocated to
each user. Thus, it is important to assign the infrequently used channels in adjacent
cells among all available channels to reduce the probabilities of call drop and call block.
Even when best-effort traffic users are supported by sharing multiple channels through
time-domain scheduling, a similar approach (i.e., the conventional scheme) has utilized
channels experiencing the lowest interference at each basestation. However, it is unlikely
that the best-effort users are fairly supported using the channels chosen by the conven-
tional scheme regardless of location because the interference conditions on these channels
tend to be quite different for users far from its serving basestation. In other words, a
channel experiencing low interference at the serving basestation does not guarantee ad-
equate performance for a user who is far away. In this paper, we propose an adaptive
channel allocation scheme in which the best-effort users are fairly supported regardless
of distance to the serving basestation. Specifically, using genetic algorithm, the channel
set that maximizes the sum of the far users’ throughputs is found while allowing a pre-
specified loss in the sum of all users’ throughputs compared with that of the conventional
scheme. Using computer simulations, it is shown that the throughput performance of
the 10th percentile throughput users improves up to 38% in some cases, when the overall
throughput performance loss was allowed to be less than 5% compared with that of the
conventional scheme. In addition, only some of the link-gains can be measured in prac-
tice, because it is very difficult for a user to measure the link-gain of a distant basestation.
Even when only some link-gains can be measured, performance degradation is negligible.
Keywords: Genetic algorithm, Adaptive channel allocation, Radio resource manage-
ment, Cochannel interference, Best effort traffic

1. Introduction. Efficient support of best-effort traffic (e.g., web browsing and data
downloading) has recently attracted much attention as data demands are exponentially
increasing [1]. Because best-effort traffic is relatively insensitive to QoS such as jitter,
packet loss, and latency, it has been shown that best-effort traffic can be well supported
if pre-allocated radio channels are shared via a time domain scheduling method such as
proportional fair (PF) scheduling [1]. When best-effort traffic is supported in cellular
systems, it is important to appropriately choose a set of the shared channels experiencing
less cochannel interference (CCI) among all available channels.

In a macrocellular system employing a frequency reuse factor of one, the throughput
performance of the users in the cell edge area is severely degraded due to high CCI
from adjacent cells. To mitigate this problem, various channel allocation schemes have
been proposed. For example, multiple frequency reuse factors are employed at each cell
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according to the distance from the basestation [2, 3]. In particular, the channels with a low
frequency reuse factor are allocated to cell edge users, while the channels with a frequency
reuse factor of one are allocated to the users in the cell interior. However, this approach
inefficiently uses radio resources because the spectral efficiency of the channels allocated to
the cell edge users is low. For this reason, dynamic channel allocation schemes have been
proposed to avoid assigning channels with high CCI to adjacent cells [4, 5]. To achieve
this, each cell is allowed to exchange information on the channel that is experiencing high
CCI between adjacent cells.
Note that these approaches have been developed under the assumption that the bases-

tations are regularly distributed over the service area. For instance, in a hexagonal cellular
structure, each cell is surrounded by 6 adjacent cells. For this reason, the channel assign-
ment at each cell should consider the CCI effect only on these adjacent cells. However, a
spectral efficiency per unit area obtained from macro-cellular systems is not sufficient to
support the exponentially increasing demand for wireless data service because the area
covered by one macro-cell is too large [6]. To aggressively spatially reuse radio resource,
a macro-cellular system needs to be employed by dividing the service area into a large
number of small cells. However, as the cell size decreases in a macro-cellular system, the
basestations become irregularly distributed because radio propagation becomes severely
irregular. This may result in various types of interference. Consequently, the channels
need to be adaptively allocated considering these complicated interference conditions.

1.1. Previous works and motivations. Several works on adaptive channel allocation
for microcellular systems have been performed under the assumption that each channel
is exclusively dedicated to each user in a distributed manner [7, 8]. The main purpose
of these schemes is to assign a channel to each arrival call while reducing the call drop
rate and/or block rate. In particular, each basestation identifies the channels which are
infrequently used by adjacent cells and sorts them according to CCI level. Then, each
of the chosen channels is sequentially assigned when needed. However, it is unlikely that
these approaches are suitable to support best-effort users because the assigned channels
need to be shared through PF scheduling as mentioned previously.
The best-effort users can be supported in a distributed manner using a set of channels

with low CCIs at each basestation [9, 10, 11]. Particularly, in this conventional scheme,
at a predetermined or a randomly selected instant, each basestation measures the CCI
power of each channel from all other basestations and chooses channels with the lowest
CCIs. Even though these channels are shared among the best-effort users through PF
scheduling, it is unlikely that the best-effort users will be fairly supported. The reason is
explained as follows. First, the CCI power of a user near its serving basestation is very
similar to that of its serving basestation. Thus, the signal-to-interference power ratios
(SIRs) measured at these channels will be improved with high probability. As a result,
we expect that the throughput performance of the near user will improve. On the other
hand, the CCI power measured at a user far from its serving basestation is quite different
from that of its serving basestation because its adjacent cells are quite different from those
of its serving basestation. This implies that another channel which is not chosen by the
conventional scheme may provide sufficient throughput performance to this user. Thus,
the conventional scheme is not a good solution to fairly support the best-effort users. This
motivated us to develop a channel allocation scheme that fairly supports the best-effort
user regardless of its distance to the serving basestation.
However, it is known that this channel allocation problem is non-deterministic polynom-

ial-time (NP) hard, since it requires a search space which exponentially increases in order
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to identify the best channel combination among the cells as the numbers of the basesta-
tions and the users increase [12, 13, 14, 15]. Although there are neural network- or genetic
algorithm (GA)-based approaches to solve this channel allocation problem due to its low
computational complexity, they do not consider the case in which the assigned channels
are shared through a PF scheduler to support the best-effort users.

1.2. Contributions. In this paper, we propose a GA-based channel allocation scheme
to fairly support the best-effort users in microcellular systems. Specifically, using GA, the
channel set that maximizes the aggregate throughput of the low percentile throughput
users (i.e., the far users) is identified, while allowing a pre-specified amount of loss in
overall throughput performance compared with that of the conventional scheme. In ad-
dition, the proposed scheme is performed under the assumption that each user measures
the link-gains from all basestations and reports them to the central controller. However,
this assumption is impractical because each user does not measure the link-gains of the
basestations far from it. Using computer simulations, it is demonstrated that the pro-
posed scheme shows robust performance even when each user can measure the link-gains
of its nearby basestations.

The contributions of this paper are summarized as follows.

• It is shown that the conventional scheme which selects a set of channels with the
lowest CCI is not a good solution to fairly support the best-effort users. More
precisely, it tends to provide more improved performance to a user near the serving
basestation.

• It is shown that the proposed scheme can identify a set of used channels at each
basestation that maximize the low-percentile throughput performance, while miti-
gating the overall performance loss. Specifically, computer simulations demonstrate
that the throughput of the 10th percentile users improves by up to 38% in some
cases, while allowing an overall throughput performance loss less than 5% compared
with that of the conventional scheme.

• The proposed scheme works very well even when only some of the link-gains are
available.

This paper is organized as follows. Section 2 describes the system model. In Section 3,
the conventional scheme in which each basestation selects a set of channels infrequently
used by its adjacent basestations is described. Section 4 describes the GA used to improve
low throughput user performance while mitigating the overall throughput performance
loss. The simulation results are presented in Section 5. Finally, the conclusions are drawn
in Section 6.

2. System Model. Consider a microcellular system consisting of B basestations, each
of which uses M channels among all available K channels. When the system is assumed
to ignore the effect of noise (i.e., interference-limited), the instantaneous SIR of user n
using channel j of basestation i at frame m is

γ
(j)
i,n(m) =

∣∣∣ρ(j)i,n(m)
∣∣∣2 γ(j)

i,n, (1)

where ρ
(j)
i,n(m) is a Rayleigh fading process with unit variance sampled at frame m, which

is assumed to be independent at each channel, each frame, and each user, and γ
(j)
i,n is the

average SIR as

γ
(j)
i,n =

(1− φ)PGi,n

φPGi,n +
∑

i′∈Sj ,i′ 6=i PGi′,n
. (2)
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In (2), P , Sj, Gi,n, and φ denote the transmit power per channel, a set of the basestations
using channel j, a link-gain between basestation i and user n including the effects of path
loss and shadowing, and an orthogonality factor, respectively. Assume that the value of
φ = 0.001 is employed such that the average SIR cannot exceed 30dB. When channel j is
assigned to user n at basestation i at frame m, its spectral efficiency is assumed to be

r
(j)
i,n(m) = log2

(
1 + γ

(j)
i,n(m)

)
(bps/Hz). (3)

Based on this, assume that a full buffer traffic model is employed in which each user
always has packets to be received from its serving basestation. Also, because M channels
are available at each basestation, assume that a multichannel PF scheduler is employed
to assign these channels to its serviced users [16]. In particular, channel j is assigned to
user n∗ served by basestation i at frame m if

n∗ = argmax
n∈Ui

γ
(j)
i,n(m)

γ
(j)
i,n

(4)

where Ui denotes a set of users at basestation i [17]. In this case, it is known that the
long-term average throughput of user n at channel j of basestation i is [17]

R
(j)
i,n =

1

Ni

∞∫
0

log2

(
1 + xγ

(j)
i,n

)
e−x

(
1− e−x

)Ni−1
dx (5)

where Ni is the number of users served by basestation i. We see that the throughput of

(5) can be evaluated if Ni and γ
(j)
i,n are available.

3. Description of Conventional Scheme. In this section, we describe the conventional
channel assignment scheme used to improve the overall throughput performance compared
with that of the random assignment scheme in which each basestation randomly selects
M of K channels [9, 10, 11]. In the conventional scheme, each basestation chooses a set
of the channels infrequently used in the adjacent basestations. From these channels, the
users near the serving basestation will receive CCI powers similar to those of the serving
basestations. This means that these channels’ average SIRs at the near users can be
improved compared with that of the random channel assignment scheme. As a result, the
overall throughput performance can be improved because their performance is dominated
by the performances of the near users.
The conventional scheme is performed as follows. At first, each basestation randomly

chooses M channels among all available K channels. Then, at randomly chosen frames,
each basestation repeatedly chooses M channels with the lowest CCI powers. To achieve
this, it turns off its transmitter and measures the average CCI powers of all channels from
all basestations. In this case, the average CCI power of channel j at basestation i is

Ii(j) = P ·
∑

i′∈Sj ,i
′ 6=iG̃i,i′ , (6)

where G̃i,i′ denotes a link-gain between basestations i and i′ including the effects of path
loss and shadowing. From these measurements, basestation i chooses M channels with
the lowest average CCI powers. Particularly, channel j is chosen if

Ii(j) ≤ Ii(πM) (7)

where π denotes a permutation such that Ii(π1) ≤ · · · ≤ Ii(πK). The process is completed
when all basestations update their chosen channels. Then, this process is iterated multiple
times, after which it is expected that each cell selects the channels which are infrequently
used at its adjacent cells [9].
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Figure 1. Flow chart of the conventional scheme

To avoid the case when more than two basestations update their channel sets simultane-
ously, assume that a sequence of updated basestations is pre-determined at each iteration.
Under this assumption, only one basestation is allowed to update the channel set at each
frame. The flowchart of the conventional scheme is shown in Figure 1.

4. Description of the Proposed Scheme.

4.1. Motivations. As mentioned previously, it is expected that the conventional scheme
improves the overall throughput performance because it is dominated by the performance
of the near users. On the other hand, it is unlikely that the conventional scheme will im-
prove the performance of the users far from their serving basestation because the received
average CCI powers at these users are quite different from those of the basestation. To
fairly support these users, we need to improve their performances.

To achieve such fair support, the proposed scheme replaces some used channels with
the unused channels which enhance the far users’ performances. However, when a used
channel is replaced with an unused channel with large CCI, the performance of the near
users (i.e., the high throughput users) may be severely degraded. To mitigate this problem,
unused channels with relatively low CCI must be chosen. One major issue with this task is
that the search space to identify such channels exponentially increases as the numbers of
basestations and users increase. Thus, the heuristic GA algorithm is employed to mitigate
this complexity problem. Specifically, GA is used to find the channel set that maximizes
the aggregate throughput of low throughput users while allowing a pre-specified amount
of loss in the aggregate throughput of all users as compared with that of the conventional
scheme.

In the following section, we define the low throughput users as those whose throughput
values are below some specified percentile throughput value. For instance, when the 10th
percentile throughput users are defined as the low throughput users, their throughput
values are less than the threshold of the lowest 10% of all users’ throughput values in the
system.

In the followings, we describe the proposed scheme’s flow in a more detail.
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4.2. Flow of the proposed scheme.

4.2.1. Evaluation function. GA is one of the search algorithms which originate from an
evolutionary algorithm [18, 19, 20, 21]. In this paper, a chromosome represents a set of
channels chosen by all basestations in the system. Each chromosome is represented as a
B by K matrix in which each row represents the channel allocation at each basestation.
Particularly, the (i, j)th element of the chromosome is 1 (0) if channel j at basestation i is
used (unused). The number of 1’s in each row is M , while the number of 0’s is (K −M),
because M channels are assumed to be used at each basestation.
Under this set-up, the proposed scheme identifies the set of used channels (i.e., the

chromosome) maximizing the aggregate throughput of the low throughput users while
allowing a pre-specified amount of loss ε in the aggregate throughput of all users. The
detailed process is described as follows. The evaluation function, i.e., the aggregate low
throughput user performance for a given chromosome c at generation g is

F (g, c) =

{
φ(g, c), if Φ(g, c) ≥ (1− ε) · Φconv (8)

0, otherwise.

In (8), φ(g, c) is the aggregate throughput of low throughput users of chromosome c at
generation g as

φ(g, c) =
∑
i

∑
j∈Ci(g,c)

∑
n∈Li(g,c)

R
(j)
i,n (9)

where Ci(g, c) and Li(g, c) denote the set of chosen channels at basestation i and a set
of low throughput users at basestation i of chromosome c at generation g, respectively,
Φ(g, c) is the corresponding aggregate throughput of all users and is defined as

Φ(g, c) =
∑
i

∑
j∈Ci(g,c)

∑
n∈Ui

R
(j)
i,n (10)

where Ui denotes the set of all users at basestation i, Φconv is the aggregate throughput
of all users using the channel sets determined by the conventional scheme, and ε (for
0 < ε < 1) is the maximum allowed loss rate of the overall user throughput.
From these definitions, we can see that the evaluation function (8) returns the aggre-

gate throughput of the low throughput users if the overall throughput loss is less than ε
compared with that of the conventional scheme. Otherwise, it returns zero. Using this,
therefore, GA finds the chromosome (i.e., the channel allocation pattern of all basesta-
tions) maximizing the aggregate low throughput user performance, while maintaining the
overall performance loss rate, which is less than ε.

4.2.2. Initial population generation. To perform GA, we need to generate an initial pop-
ulation (i.e., a set of chromosomes). However, when initial population is randomly gen-
erated, it is difficult to find suitable chromosomes to satisfy the overall performance loss
requirement according to (8) because the overall throughput performance of a randomly
selected channel set will likely be too low compared with that of the conventional scheme.
To avoid this problem, the initial population is generated as follows. First, for a given

channel allocation set determined by the conventional scheme, some basestations are
randomly chosen. Then, a chromosome is generated such that, at each chosen basestation,
some used channels are randomly selected and replaced with unused channels. When
the aggregate throughput of the low throughput users is not greater than that of the
conventional scheme or it does not satisfy the loss requirement of (8), this chromosome
is eliminated, and this process is repeated until a suitable chromosome is found. When
such a chromosome is found, an other basestation is randomly selected, and the whole
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process is repeated until the initial population is formed. The overall process generating
the initial population is shown in Figure 2.

4.2.3. Crossover and mutation. Crossover generates offspring chromosome by combining
the two parent chromosomes that survived from the previous generation. Also, in this
algorithm, the number of 1’s in each row in the offspring chromosome should be the same
as the number of used channels at each basestation, M . In this respect, the conventional
crossover process does not seem to be suitable because the number of 1’s in all of the rows
of the offspring chromosome are not guaranteed to be the same.

To satisfy this condition, a modified crossover process should be employed as follows.
First, the two parent chromosomes that survived from the previous generation are selected.
Then, if the elements of the two chromosomes at the same position have the same value,
this value is copied to the corresponding element position of the offspring chromosome.
The remaining elements of the offspring are filled with the values randomly selected of
the two parent chromosomes while ensuring that each row in the offspring contains M 1’s.

Select BSs ramdomlyReplace some channelsin the selected BSs

Initial populationcompleted ?

Start

Done YesNo
Aggregate low user throughput is improvedwhile satisfying the loss requirement ?Yes

No

 
Figure 2. Flow chart of initial population generation

1 0 1 1 0 1 0 0 1 0
0 1 0 1 0 1 0 1 1 0

i th rowin parents chromosome A
i th rowin parents chromosome B

0 1 1 1 0 1 00 1 0i th rowin offspring chromosome

Crossover
Mutation

0 0 1 1 0 1 0 1 1 0i th rowin offspring chromosome
 

Figure 3. Example of crossover and mutation processes
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Table 1. Summary of simulation conditions

Parameter Value

no. of BSs (B) 20

no. of users 240

std. of shadowing 10 dB

corr. dist. of shadowing 50 meters

no. of total CHs per BS (K) 10

no. of used CHs per BS (M) 5

no. of populations 15

no. of offsprings 10

mutation probability (pmu) 0.05

As a result, this crossover process can generate a new offspring chromosome that contains
M 1’s in each row.
Figure 3 shows an example of crossover and mutation processes for K = 10 and M = 5.

In this figure, we see that elements 4 ∼ 7, 9, and 10 at row i in parent chromosomes A
and B are the same, respectively. They are copied to their corresponding positions in
the offspring chromosome. The remaining elements in the offspring chromosome are filled
with the randomly selected elements of the two parent chromosomes while ensuring that
the number of 1’s is M . In this example, elements 2 and 3 of parent chromosome A are
copied to the offspring, as are elements 1 and 8 of parent chromosome B.
After the crossover process is complete, the mutation process starts with probability

pmu at each row of the offspring chromosome. Specifically, a randomly selected element
of 1 is replaced with a randomly selected element of 0. In Figure 3, we see that elements
2 and 7 are replaced. When the offspring chromosome is the same as any parent chromo-
some or any previously generated offspring chromosome, a randomly chosen row of the
corresponding offspring is replaced with the randomly generated row containing M 1’s.
This indicates that the channel set of a randomly chosen basestation is fully re-generated.
After generating the offspring chromosomes, those satisfying the loss requirement in (8)
along with their parent chromosomes are sorted in evaluation function value order. Fi-
nally, the chromosomes with the largest evaluation values survive as the populations of
the next generation.

4.2.4. Termination condition. GAmay be terminated if the maximum evaluation function
value among the chromosomes is unchanged during pre-specified generations. However,
even when a suitable chromosome is not found, this termination condition may be met.
To avoid this, we employ a termination condition in which the termination of GA is

possible after the production of at least a pre-specified number of generations. This issue
will be discussed in Section 5.1.

4.2.5. Implementation issue. Note that the value of R
(j)
i,n can be estimated if Ni and γ

(j)
i,n

as shown in (5) are available at the controller which performs GA. To have each user

measure its average SIR {γ(j)
i,n} for a given channel set (i.e., a given chromosome) and

report them to the controller is a very time consuming task in the GA process.

Fortunately, the controller can estimate {γ(j)
i,n} using (2), if link-gains {Gi,n} between all

users and all basestations are available. This allows the GA execution time to be as short
as possible because no average SIR measurement is required. However, the requirement for
the availability of all link-gains is not practically feasible because a user cannot measure
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the link-gain from far basestations. Thus, we investigate the performance loss when only
some of the link-gains are available in Section 5.3.

5. Simulation Results. To evaluate the performance, assume that 20 basestations and
240 users are randomly distributed on a wrap-around structured rectangular area with
width 1000 meters. In this case, the average number of users per basestation is 12. Assume
that the basestations and the users are equipped with an omnidirectional antenna, and
the number of all available channels K is 10. Also, the number of used channels per
basestation M is 5. The path loss model for a given distance d is [22]

L(d)[dB] =

{
39 + 20 log10 d, 10m < d ≤ 45m,

−39 + 67 log10 d, d > 45m.

It is assumed that the shadowing is log-normal distributed with 10dB standard deviation
and its decorrelation distance is 50 meters [9]. Each user selects a serving basestation
with the largest link-gain.

In addition, assume that the population size is 15 at each generation. The offspring
chromosomes are generated using the 5 parent chromosomes with the largest evaluation
values. Because they are generated from all possible combinations of these 5 parent
chromosomes, the number of the offspring chromosomes is

(
5
2

)
= 10. As discussed in

Section 4.2.3, the parent chromosomes and the offspring chromosomes which satisfy the
loss requirement in (8) are gathered, and the 15 chromosomes with the largest evaluation
values among them are chosen as the population for the next generation. To determine the
average performances, simulation results are obtained and averaged over 100 independent
distributions of the basestations and users. Simulation conditions are summarized in
Table 1.

5.1. Convergence property. Figure 4 shows the average 10th percentile user through-
put performances with generation for the maximum allowed overall throughput loss rate
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Figure 4. Convergence of the proposed scheme improving the performance
of the 10th percentile user throughput for ε = 0.05
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ε = 0.05. In this figure, each line represents one distribution of basestations and users.
We see that the performance and the complexity are well compromised after a certain
number of generations (more than about 150 generations in this figure). In this case,
the aggregate number of chromosomes searched is about 10× 150 because the number of
offspring chromosomes generated at each generation is 10. On the other hand, the search

space size is
((

10
5

))20 ≈ 1048 because 5 of 10 channels are chosen at each of 20 basestations.
As discussed in Section 4.2.5, the execution time to generate 150 generations can be

shortened under the assumptions that a suitable processor is employed and all link-gains
are available at the controller. Also, because similar performance trends are observed in
other cases which are not presented in this paper, the performance of the proposed scheme
with 150 generations is presented in the following section.

5.2. Low throughput performance improvement. Figure 5 shows the comparison
of low throughput user performances for ε = 0.05 and 0.1. Particularly, we compare the
performances of the 5th, 10th, 15th, and 20th percentile users. As expected, the low
throughput user performance improvement increases when a large value of ε is allowed.
In this example, the 10th percentile user throughput performances are improved by about
38% and 44% if the overall throughput performance loss rates of ε = 0.05 and 0.1 compared
with the conventional scheme are allowed, respectively.
In addition, we see that the improvement rate becomes large for low percentile values.

The reason is that, at a low percentile value, the number of users whose throughputs
need to be improved is relatively small. Thus, it is relatively easy to find a channel set to
significantly improve these users’ performances.

5.3. Effect of available link-gains. Previously, we have assumed that link-gains be-
tween all basestations and users are available at the controller. However, this assumption
is not practically feasible because it is very hard for a user to measure the link-gains
of distant basestations. When only some link-gains are available at the controller, each
user’s average SIR values for a given channel set will be estimated inaccurately. Thus, we
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Figure 5. Comparison of the average low throughput user performances



GA-BASED ADAPTIVE CHANNEL ALLOCATION 2029

2.65 2.7 2.75 2.8 2.85 2.9 2.95

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Avg. Overall User Throughput (bps/Hz)

A
vg

. 1
0t

h 
P

er
ce

nt
ile

 U
se

r 
T

hr
ou

gh
pu

t (
bp

s/
H

z)

random

conventional

7

6
5

8
9 10 20 (perfect)

D = 4

Figure 6. Average user throughput performance with the number of avail-
able link-gains for ε = 0.05

investigate the effect of link-gain availability on the performance. In particular, consider
the case when each user can measure the link-gains from D basestations whose link-gains
are the largest.

Figure 6 shows the overall throughput performance versus the 10th percentile user
throughput performance for the number of available link-gains per user D and ε = 0.05.
Also, the performances of the conventional and the random assignment schemes are plot-
ted. As expected, the low throughput user performance and the overall throughput per-
formance are degraded as D decreases because the average SIR value estimation becomes
more inaccurate for low D. However, the low throughput user performances are still
better than those of the conventional scheme and the random scheme.

In addition, the performance loss due to the unavailability of some link-gains is not
significant when D is not excessively small. For example, at D = 7, the low and the
overall throughput performances are degraded by about 1.8% and 1.5% compared with
those of the case when all link-gains are available (i.e., D = 20), respectively. This implies
that the proposed scheme can improve the low throughput user performance if a suitable
number of link-gains are available.

6. Conclusions. In this paper, we propose a GA-based channel allocation scheme that
fairly supports best-effort users in a microcellular system. The conventional scheme does
not properly support the users far from the serving basestation, because it chooses the
channels which improve the performance of the near users. To solve this problem, the pro-
posed scheme finds the channel set maximizing the far users’ performances while allowing
a pre-specified loss of overall performance. Using computer simulations, we demonstrate
that the proposed scheme improves the performance of the 10th percentile low throughput
users up to 38% while allowing the overall performance loss to be less than 5% compared
with that of the conventional scheme. Also, we show that the low percentile user perfor-
mance improvement can be maintained even when only some basestations’ link-gains are
available to each user.
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