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Abstract. In this paper, a hybrid particle swarm optimization algorithm (HPSOM) that
uses the mutation process to improve the standard particle swarm optimization (PSO)
algorithm is presented. The main idea of the HPSOM is to integrate the PSO with genetic
algorithm mutation method. As a result, the proposed algorithm has the automatic balance
ability between global and local searching abilities. The validity of the HPSOM algorithm
is tested for a variety of benchmark problems. Experimental results show empirically
that the proposed method outperforms significantly the standard PSO methods in terms
of convergence speed, solution quality, ability to find the global optimum, and solution
stability.
Keywords: PSO, Evolutionary algorithm, Hybrid PSO

1. Introduction. Over the past decades, several population-based random optimization
techniques, such as evolutionary algorithm and swarm intelligence optimization, have
been widely employed to solve global optimization problems. Four well-known paradigms
for evolutionary algorithms are genetic algorithms (GAs) [1], evolutionary programming
(EP) [2], evolution strategies (ES) [3], and genetic programming (GP) [4]. These methods
are motivated by natural evolution. The particle swarm optimization (PSO) method is a
member of a wider class of swarm intelligence methods used for solving global optimization
problems [5-7].

The PSO is a population-based stochastic optimization algorithm, which is inspired by
the social behaviors of animals like fish schooling and bird flocking [6,7]. As a stochastic
search scheme, PSO has characters of simple computation and rapid convergence capabil-
ity. PSO was used in different industrial areas such as power systems [8,9-12], parameters
learning of neural network [13,14], parameters optimization of fuzzy system [15], control
[16], prediction [17], and modeling [17-19]. However, PSO exhibits some disadvantages; it
sometimes is easy to be trapped in local optima (it is often called premature convergence),
and the convergence rate decreased considerably in the later period of evolution.

It is observed that the PSO takes into consideration the global level of information to
determine their search direction. Hence, the global and local best positions are computed

1919



1920 A. A. A. ESMIN AND S. MATWIN

at each time instance (iteration), and the output is the new direction of search. Once
this direction is detected, it is followed by the cluster of birds. Note that PSO differs
from the ordinary genetic algorithm because no crossover and mutation is considered.
A few modifications are incorporated into the method, so it becomes more robust. Such
modifications arise not because a bird may follow a different direction by itself but because
the local information (position) this bird carries may be exploited as a permutation.
Different variants of the PSO algorithm were proposed. Some of these variants have

been proposed to incorporate the capabilities of other evolutionary algorithms, such as
hybrid versions of PSO or the adaptation of PSO parameters, creating the adaptive PSO
versions. Many authors have considered incorporating selection, mutation, and crossover,
as well as differential evolution, into the PSO algorithm. As a result, hybrid versions
of PSO have been created and tested, including the hybrid of genetic algorithm and
PSO, a genetic programming-based adaptable evolutionary hybrid PSO and evolutionary
PSO [5,23-26]. Using another approach, Sun et al. [24] introduced quantum theory into
PSO and propose a quantum-behaved PSO (QPSO) algorithm, which can be guaranteed
theoretically to find optimal solution in search space, and Xi et al. [25] introduce an im-
proved quantum-behaved particle swarm optimization algorithm with better convergence,
weighted QPSO (WQPSO).
Some hybrid PSO algorithms were proposed by adding GAs’ idea in [19,20]. The

algorithm selects a certain number of particles according to the hybrid probabilities at
each stage of iteration. The particles are randomly matched into couples. Each couple
reproduces two children by crossover. Then, the children are used to replace their parents
of the previous particles to keep the number of particles unchanged.
Mutation operators are an integral part of evolutionary computation techniques, pre-

venting loss of diversity in a population of solutions, which allows a greater region of the
search space to be covered. Therefore, the addition of mutation operators to PSO should
enhance its global search ability and, thus, improve its performance. Recently, different
hybrid PSOs with mutation operator have been proposed to overcome the drawback of
PSO mentioned previously. PSO with Gaussian mutation (GPSO) [27,28], whose global
searching ability is more efficient than the standard PSO, is proposed by Natsuki and
Hitoshi. Ling et al. [29] proposed a hybrid PSO with wavelet mutation named HWPSO,
in which a fine-tuning mutating method is used. In HWPSO, by performing mutation
operation on the selected particle, the solution space should be explored more efficiently,
and premature convergence is more likely to be avoided.
Although different mutation operators have been applied to enhance the achievements

of PSO, the new mutation process needs to be further investigated so as to achieve better
balance between global and local searching abilities and preserving the most important
advantages of PSO when compared with GA, which is easy to implement, and there are
few parameters to adjust.
In previous work, we propose and apply successfully hybrid particle swarm optimizer

with static mutation to loss power optimization problem [8], and in reference [9], a brief
description was presented.
This paper presents the hybrid particle swarm optimizer with mutation (HPSOM), by

integrating the mutation process often used in GA into PSO and by varying the mutating
space along the search (dynamic mutation). This process allows the search to escape
from local optima and search in different zones of the search space. As a result, the
proposed algorithm has the automatic balance ability between global and local searching
abilities to guarantee the better convergence. Simulations show that the proposed hybrid
algorithms possess better ability to find the global optimum than that of the standard PSO
algorithm. The effectiveness of the HPSOM method is demonstrated by the experiments
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of benchmark problems with comparison to PSO and other three hybrid PSO algorithms
(GPSO, HWPSO and WQPSO) [25,27-29].

The remainder of the paper is organized as follows. Section 2 describes the main aspects
of the PSO method. Section 3 presents the standard genetic algorithms. The hybrid PSO
is described in Section 4. In Section 5, some experiments are performed. Finally, Section
6 presents concluding remarks and directions of the future work.

2. The Particle Swarm Optimization. The PSO algorithm is a population-based
optimization method that tries to find the optimal solution using a population of particles
[6,7,10]. Each particle is an individual, and the swarm is composed of particles. Some of
the attractive features of the PSO include ease of implementation and the fact that no
gradient information is required. In PSO, the solution space of the problem is formulated
as a search space. Each position in the search space is a potential solution of the problem.
Particles cooperate to find the best position (best solution) in the search space (solution
space). Each particle moves according to its velocity. At each iteration, the particle
movement is computed as follows:

xi(t+ 1)← xi(t) + vi(t), (1)

vi(t+ 1)← ωvi(t) + c1r1(pbesti(t)− xi(t)) + c2r2(gbest(t)− xi(t)) (2)

In Equations (1) and (2), xi(t) is the position of particle i at time t, vi(t) is the
velocity of particle i at time t, pbesti(t) is the best position found by particle itself so
far, gbest(t) is the best position found by the whole swarm so far, ω is an inertia weight
scaling the previous time step velocity, c1 and c2 are two acceleration coefficients that
scale the influence of the best personal position of the particle (pbesti(t)) and the best
global position (gbest(t)), and r1 and r2 are random variables within the range of 0 and
1.

Equations (3) and (4) define how the personal and global best values are updated at
time t, respectively. It is assumed below that the swarm consists of s particles and the
objective function f is used to calculate the fitness of the particles with a minimization
task.

Thus, i ∈ 1..s

pbesti(t+ 1) =

{
pbesti(t) if f(pbesti(t)) ≤ f(xi(t+ 1))
xi(t+ 1) if f(pbesti(t)) > f(xi(t+ 1))

(3)

gbest(t+ 1) = min {f(y), f(gbest(t))}
where, y ∈ {pbest0(t), pbest1(t), . . . , pbests(t)}

(4)

The process of PSO is shown as Figure 1.
Equation (2) consists of three terms. The first term is the current speed of the particle,

which shows its present state and has the ability to balance the whole and search a local
part. The second term is the cognition term, which expresses the “thought” of the particle
itself and causes the swarm to have a strong ability to search the whole and avoid a local
minimum. The third term is called the social term; it reflects the information sharing
among the swarm and among the particles, leading the particles toward known good
solutions. Under the influence of these three terms, the particles can reach an effective
and best position.

Two basic approaches to PSO exist based on the interpretation of the neighborhood
of particles. Equation (2) reflects the global best (gbest) version of PSO where, for each
particle, the neighborhood is simply the entire swarm. The social component then causes
particles to be drawn toward the best particle in the swarm. In the local best (lbest)



1922 A. A. A. ESMIN AND S. MATWIN

Figure 1. The PSO algorithm

PSO model, the swarm is divided into overlapping neighborhoods, and the best particle
of each neighborhood is determined [5,6].
The stopping criterion (termination conditions) mentioned in the aforementioned algo-

rithm depends on the type of problem being solved. Usually, the algorithm is run for a
fixed number of iterations (objective function evaluations) or until a specified error bound
is reached.
The description of how the algorithm works is as follows: initially, based on particle

fitness information, one particle is identified as the best particle. Then, all the particles
are accelerated in the direction of this particle but, at the same time, in the direction of
their own best previously encountered solutions. Occasionally, the particles will overshoot
their target, exploring the search space beyond the current best particles. All particles
also have the chance to discover better particles en route, in which case, the other particles
will change direction and head toward the new best particle. Because most functions have
some continuity, chances are that a good solution will be surrounded by equally good, or
better, solutions. By approaching the current best solution from different directions in
search space, the chances that these neighboring solutions will be discovered by some of
the particles are good [6,7].

3. The Standard Genetic Algorithms. The GAs algorithms have been applied suc-
cessfully to problems in many fields. The GAs are general-purpose search techniques
based on principles inspired from the genetic and evolution mechanisms. Their basic
principle is the maintenance of a population of solutions to a problem (genotypes) as
encoded information individuals that evolve in time [21,22].
Generally, GA comprises three different phases of search: phase 1: creating an initial

population; phase 2: evaluating a fitness function; phase 3: producing a new population.
A genetic search starts with a randomly generated initial population within which each

individual is evaluated by means of a fitness function. Individuals in this and subsequent
generations are duplicated or eliminated according to their fitness values. The further
generations are created by applying GA operators. This eventually leads to a generation
of high-performing individuals [21,22].
There are usually three operators in a typical genetic algorithm [22]: the first is the

production operator (elitism), which makes one or more copies of any individual that
posses a high fitness value; otherwise, the individual is eliminated from the solution pool.
The second operator is the recombination (also known as the “crossover”) operator. This
operator selects two individuals within the generation and a crossover site and carries
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out a swapping operation of the string bits to the right-hand side of the crossover site
of both individuals. Crossover operations synthesize bits of knowledge gained from both
parents exhibiting better-than-average performance. Thus, the probability of a better
performing offspring is greatly enhanced. The third operator is the “mutation” operator.
This operator acts as a background operator and is used to explore some of the invested
points in the search space by randomly flipping a “bit” in a population of strings. Because
frequent application of this operator would lead to a completely random search, a very
low probability is usually assigned to its activation.

4. The Hybrid Algorithm. Since the presentation of PSO [5-7], its performance has
been investigated in several papers. The work presented in [19] describes the complex task
of parameter selection in the PSO model. Comparisons between PSOs and the standard
GA formulation have been carried out in [19], where the author points out that PSO
performs well in the early iterations but presents problems in reaching a near-optimal
solution.

The behavior of PSO in the gbest model presents some important aspects related to the
velocity update. If a particle’s current position coincides with the global best position,
the particle will only move away from this point if its inertia weight (ω) and previous
velocity are different from zero. If their previous velocities are very close to zero, then all
the particles will stop moving once they catch up with the global best particle, which may
lead to a premature convergence of the algorithm. In fact, this does not even guarantee
that the algorithm has converged on a local minimum. It means that all the particles
have converged at the best position discovered so far by the swarm. This phenomenon is
known as stagnation [8,9,24].

This paper presents the HPSOM, by incorporating the mutation process often used in
GA into PSO and by varying the mutating space along the search (dynamically). The
stagnation is alleviated by this technique and introduces diversity into the population.
This process allows the swarm to escape from the local optima and to search in different
zones of the search space. As a result, the proposed algorithm has the automatic balance
ability between global and local searching abilities and achieves better convergence. Figure
2 lists the pseudo-code for the basic HPSOM algorithm.

This process starts with the random choice of a particle in the swarm and moves to
the different positions inside the search area. The mutation process can be applied for
discrete and continuous PSO version:

• Discrete PSO: Although PSO is developed for continuous optimization problem,
initially, there have been some reported studies that focused on discrete problem
[30]. For the discrete version, we can use the binary mutation. For binary valued

Figure 2. The pseudo code for HPSOM algorithm
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individuals, mutation means the flipping of variable values because every variable
has only two states.
• Continuous PSO: The mutation process is employed using the following Equation
(5):

mut(pk)← −pk + β (5)

where pk is the random choice particles from the swarm, and β is randomly obtained
within the range [0 , 0.1 ∗ (xmax − xmin)], representing 0.1 times the length of the search
space.
It is possible to use different equation to calculate the mut value. However, in this case,

the mutating space is kept unchanged all the time throughout the search, and the space
for the permutation of particles in PSO is also fixed. It can be improved by varying the
mutating space along the search. The β can be linearly decreasing it from u to l times
the length of the search space, using the following Equation (6) and shown in Figure 3:

β = u− u− l

itermax

· iter (6)

where u is the upper range, l is the lower range, itermax is the maximum number of
iteration, and iter is the current iteration number.

Figure 3. The β linearly decreasing

By applying the mutation process, the particle will move to the other side in the space
and prevent the particles from being trapped in the local minima. Figures 4 and 5 show
the behavior of the particles; we can observe that in HPSOM (Figures 4(b) and 5), the
particles are more active and moving permanently to explore the search space compared
with the particles in PSO (Figures 4(a) and 5).

5. Experiment Results. To test the performance of HPSOM, four benchmark functions
are used, all minimization problems. The first two functions were unimodal, whereas
the last two were multimodal with many local minima. These four functions have been
commonly used in other studies on particle swarm optimizers (e.g., [5,19,23,28]). The



HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM 1925

(a)

(b)

Figure 4. (a) The behavior of the particles (pop = 3) in PSO for (F1)
stagnation iteration ∼60, (b) the behavior of the particles (pop = 3) in
HPSOM for (F1) more active and without stagnation

comparison process is stated as follows: first, we compared the original PSO and HPSOM
algorithms with different configuration (varying the population size and dimensions of the
functions), and then, we compare the performance of HPSOM with that of the other three
hybrid algorithms, GPSO [28], WQPSO [25], and HWPSO [29] using fixed population



1926 A. A. A. ESMIN AND S. MATWIN

Figure 5. The behavior of the particles in PSO verses HPSOM (F1)

size (20) with different function dimensions. These benchmark functions are described as
follows:

• Spherical: The generalized sphere function is a very simple, unimodal function, with
its global minimum located at x = 0, with f(x) = 0. This function has no interaction
between its variables.

f1(x) =
n∑

i=1

x2
i

where x is a n dimensional real-valued vector, and xi is the ith element of that vector.

• Rosenbrock: The second function is the generalized Rosenbrock function, a unimodal
function, with significant interaction between some of the variables.

f2(x) =
n−1∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
• Griewank: A multi-modal function with significant interaction between its variables,
caused by the product term. The global minimum, x = 0, yields a function value of
f(x) = 0.

f3(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1

• Rastrigin: The fourth and final test function is the generalized Rastrigin function,
a multi-modal version of the spherical function characterized by deep local minima
arranged as sinusoidal bumps. The global minimum is f(x) = 0, where x = 0. The
variables of this function are independent.

f4(x) =
n∑

i=1

(
x2
i − 10 cos(2πxi) + 10

)
The search space and initialization ranges for the experiments are listed in Table 1.
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Table 1. Search space and initialisation ranges for test function

Function Search space Initialization ranges
f1 −100 ≤ xi ≤ 100 50 ≤ xi ≤ 100
f2 −30 ≤ xi ≤ 30 15 ≤ xi ≤ 30
f3 −600 ≤ xi ≤ 600 300 ≤ xi ≤ 600
f4 −5.12 ≤ xi ≤ 5.12 2.56 ≤ xi ≤ 5.12

5.1. Experiments with PSO and HPSOM. All experiments consisted of 100 runs.
The PSO and HPSOM parameters were set to the values c1 = c2 = 2.0, and a linearly
decreasing inertia weight starting at 0.9 and ending at 0.4 was used. The maximum
velocity (Vmax) of each particle was set to be half the length of the search space in one
dimension.

We had 100 trial runs for every instance and recorded mean best fitness and standard
variation. To investigate the scalability of the algorithm, different population sizes P
are used for each function with different dimensions. The population sizes are 20, 40
and 80, and the maximum generation is set as 1000, 1500 and 2000 corresponding to the
dimensions 10, 20 and 30 for four functions, respectively. Note that the HPSOM has
the additional parameters related to the probability of mutation (pm) that were set to
0.2, u = 0.7, and l = 0.2 for β. These parameters are chosen by simulations through
experiment for good performance of all the functions.

The numerical results in Table 2 show that the HPSOM could reach the optimal solution
with high precision. Because the sphere function has only a single optimal solution on
origin, it usually is employed to test the local search ability of the algorithm. Thus, from
the results, we can see that HPSOM has stronger local search ability than PSO. The
Rosenbrock function is a mono-modal function, but its optimal solution lies in a narrow
area that the particles are always apt to escape. Therefore, it is always used to test the
local and global search ability of the algorithm. The experiment results on Rosenbrock
function show that the HPSOM works better than the PSO algorithm. The advantage
of HPSOM on PSO may be attributed to its local search ability as well as global search
ability. Rastrigrin and Griewank functions are both multi-modal and usually tested for
comparing the global search ability of the algorithm. On both Rastrigrin and Griewank
functions, the HPSOM has better performance than the PSO algorithm.

Figures 6 to 9 provide the comparison of convergence processes of HPSOM and PSO
in the above four benchmark functions averaged on 100 trial runs, when the population
size is 20 and the maximum generation is 2000 according to the dimension 30 for four
benchmarks. The coefficient β also decreases from 0.7 to 0.2 linearly. It can be found out
that HPSOM has faster convergence speed than PSO.

5.2. Experiments with HPSOM, GPSO, HWPSO and WQPSO. Table 6 and
Figures 10 and 11 show the results obtained by comparing the HPSOM with other three
hybrid algorithms, GPSO [27,28], WQPSO [25], and HWPSO [29].

We had 100 trial runs for every instance and recorded mean best fitness and standard
variation. The population sizes is fixed to 20, and the maximum generation is set as
1000, 1500, and 2000 corresponding to the dimensions 10, 20, and 30 for four functions,
respectively.

The probability of mutation for HPSOWM, HPSOM, and GPSO (pm) and the shape
parameter of the wavelet mutation (ζwm) are chosen by trial and error through experiments
for good performance for all functions, and they are set at 0.2 and 0.1, respectively.
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Table 2. The mean fitness value for sphere function (F1)

P D. Iter.
Std. PSO HPSOM
Mean best St. Var Mean best St. Var

20

10 1000 3.16 e-20 6.24e-20 2.2400e-056 1.7300e-058
20 1500 5.28e-11 1.55e-10 2.1449e-049 1.6891e-043
30 2000 2.45e-06 7.17e-06 6.5764e-034 5.6809e-036

40

10 1000 3.11e-23 8.09e-23 6.7701e-89 6.23700e-090
20 1500 4.16e-13 9.56e-14 8.9187e-055 7.17685e-057
30 2000 2.25e-10 4.9e-10 4.8940e-043 2.15420e-044

80

10 1000 5.11e-28 2.76e-27 4.7651e-108 4.78300e-109
20 1500 2.68e-17 5.23e-17 2.8762e-075 2.78267e-076
30 2000 2.47e-11 7.9e-12 2.3345e-061 1.98310e-062

Table 3. The mean fitness for Rosenbork function (F2)

P Dim. Iter.
Std. PSO HPSOM
Mean best St. Var Mean best St. Var

20

10 1000 72.8943 188.0902 6.9688 0.2730
20 1500 251.9527 423.7695 17.3033 0.2629
30 2000 321.3150 427.2838 27.5645 0.3514

40

10 1000 48.8258 125.9971 6.7682 0.2541
20 1500 112.6777 224.3126 17.1315 0.2210
30 2000 313.8127 455.1794 27.2902 0.2939

80

10 1000 31.3427 77.9028 6.5198 0.2921
20 1500 78.1136 171.0607 16.9633 0.2271
30 2000 146.8898 221.3618 27.1090 0.2624

Table 4. The mean fitness for Griewank function (F3)

P D. Iter.
Std. PSO HPSOM
Mean best St. Var Mean best St. Var

20

10 1000 0.1016 0.0516 4.320507e-011 3.121672e-011
20 1500 0.0282 0.0244 4.003760e-011 3.138521e-011
30 2000 0.0123 0.0172 5.175657e-011 3.014372e-011

40

10 1000 0.0940 0.0496 3.596989e-011 2.835691e-011
20 1500 0.0268 0.0273 4.320946e-011 2.866150e-011
30 2000 0.0102 0.0129 4.387615e-011 3.238821e-011

80

10 1000 0.0863 0.0329 4.558345e-011 3.120239e-011
20 1500 0.0278 0.0266 4.274249e-011 3.214253e-011
30 2000 0.0129 0.0124 4.507656e-011 3.060030e-011

The numerical results in Table 6 show that the HPSOM and HWPSO could reach
the optimal solution with high precision for f1 and f2. Because the sphere function has
only a single optimal solution on origin, it usually is employed to test the local search
ability of the algorithm. Thus, from the result, we can see that the four hybrids (HPSOM,
HWPSO, GPSO and WQPS) algorithms have stronger local search ability than PSO. The
Rosenbrock function is a mono-modal function, but its optimal solution lies in a narrow
area that the particles are always apt to escape. Therefore, it is always used to test the
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Table 5. The mean fitness for Rastrigrin function (F4)

P D. Iter.
Std. PSO HPSOM
Mean best St. Var Mean best St. Var

20

10 1000 5.3666 2.3474 4.155822e-011 3.220292e-011
20 1500 25.546 9.1794 4.140389e-011 3.240292e-011
30 2000 52.942 12.533 4.800711e-011 3.188399e-011

40

10 1000 4.0124 1.9699 3.966093e-011 3.245508e-011
20 1500 18.204 6.0499 4.403972e-011 3.301666e-011
30 2000 39.685 10.586 4.447543e-011 3.075942e-011

80

10 1000 2.9020 1.3847 4.018133e-011 3.202956e-011
20 1500 14.349 4.1029 4.044466e-011 3.237732e-011
30 2000 34.732 8.8271 4.287983e-011 3.018866e-011

Figure 6. PSO versus HPSOM model for Spherical function (F1)

local and global search ability of the algorithm. The experiment results on Rosenbrock
function show that the HPSOM works better than the other hybrid algorithms. Rastrigrin
function and Griewank function are both multi-modal and usually tested for comparing
the global search ability of the algorithm. On Rastrigrin and Griewank functions, the
HPSOM shows the best results on both functions. The advantage of HPSOM may be
attributed to its local search ability and global search ability.

Figures 10 and 11 provide the comparison of convergence processes of the five algorithms
(PSO, HPSOM, HWPSO, GPSO and WQPS) in the two benchmark functions (f1, f3)
averaged on 100 trial runs, when the population size is 20, and the maximum generation
is 2000 according to the function dimension, which is equal to 30. It can be found that in
Figure 10, the HPSOM and HWPSO have the fastest convergence speed than the other
algorithms (PSO, GPSO and WQPSO). However, in Figure 11 using the multimodal
function, the HPSOM and the WQPSO have the fastest convergence speed than the
other algorithms (PSO, GPSO and HWPSO).
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Figure 7. PSO versus HPSOM model for Rosenbrock function (F2)

Figure 8. PSO versus HPSOM model for Griewank function (F3)

6. Conclusions. This paper described the hybrid particle swarm algorithm (HPSOM),
which exhibits the properties of both the PSO algorithm and the AG algorithm. The main
idea is to integrate PSO and GA mutation. Our objective is to apply the new method
to find a good balance between global and local searching abilities of PSO. Simulation
was used to show that the HPSOM algorithm performs better than the standard PSO
algorithm in minimizing functions.
The hybrid algorithms make use of the advantages of both GA and PSO methods;

therefore, it is beneficial in solving optimal problems. The optima found by the hybrid
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Figure 9. PSO versus HPSOM model for Rastrigin function (F4)

Table 6. Comparison between different PSO methods for benchmark test functions

Function D. Iter.
Average (Std. dev.)

PSO HWPSO GPSO WQPSO HPSOM

f1

10 1000 3.16e-20 6.2868e-56 2.1213e-43 2.2922e-056 2.2400e-056
(6.24e-20) (1.506e-55) (1.364e-42) (1.5365e-058) (1.7300e-058)

20 1500 5.28e-11 6.283e-45 9.4791e-37 2.9451e-040 2.1449e-049
(1.55e-10) (2.033e-44) (2.802e-36) (2.8717e-042) (1.6891e-043)

30 2000 2.45e-06 3.794e-36 2.496e-30 3.9664e-033 6.5764e-034
(7.17e-06) (1.406e-35) (9.781e-30) (3.8435e-035) (5.6809e-036)

f2

10 1000 72.8943 36.4736 51.9761 35.8436 6.9688
(188.0902) (0.1844) (0.4737) (0.2843) (0.2730)

20 1500 251.9527 65.6678 136.8782 62.7696 17.3033
(423.7695) (0.5870) (0.6417) (0.4860) (0.2210)

30 2000 321.3150 70.7275 157.4707 70.9525 27.5645
(427.2838) (0.4813) (0.8287) (0.4283) (0.2939)

f3

10 1000 0.1016 0.13333 0.13163 5.6353e-004 4.320507e-011
(0.0516) (0.33993) (0.37993) (5.5093e-004) (3.121672e-011)

20 1500 0.0282 2.9333 2.2333 2.1318e-004 4.003760e-011
(0.0244) (2.7439) (2.3192) (1.0402e-004) (3.138521e-011)

30 2000 0.0123 9.2333 8.1333 2.1286e-004 5.175657e-011
(0.0172) (6.1455) (6.0096) (1.2425e-004) (3.014372e-011)

f4

10 1000 5.3666 4.61 4.1857 4.0567 4.155822e-011
(2.3474) (2.5364) (2.2241) 0.0094 (3.220292e-011)

20 1500 25.546 19.667 16.815 12.1102 4.140389e-011
(9.1794) (6.7661) (6.745) (0.0287) (3.240292e-011)

30 2000 52.942 44.723 34.956 23.5593 4.800711e-011
(12.533) (13.968) (8.2597) (0.0713) (3.188399e-011)
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Figure 10. PSO versus HPSOM, HWPSO, GPSO, WQPSO function (F1)

Figure 11. PSO versus HPSOM, HWPSO, GPSO, WQPSO function (F3)

were better and present faster convergence. As a result, the proposed algorithm has the
automatic balance ability between global and local searching abilities.
In our future work, we will be focused on finding out a more efficient parameter control

for mutation process and, thus, further enhancing the performance of HPSOM.
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