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Abstract. In this paper, a stochastic distribution control (SDC) algorithm is presented
for nonlinear and non-Gaussian stochastic systems with constraints on control inputs. A
generalized entropy optimization criterion is constructed based on the probability density
function (PDF) of the tracking error. An optimal control law is then obtained using
the penalty function method. Stability analysis for this closed loop system is formulated.
Finally, the comparative simulation results are presented to show that the proposed SDC
algorithm is superior to PID controller. The contributions of the paper are threefold: 1)
the principle of preservation of probability is introduced to deduce the PDF of tracking
error under a relaxed assumption on the controlled systems; 2) the mathematical expec-
tation of the squared error is included in the performance index to reduce the tracking
error; 3) penalty function method is adopted to solve the SDC problem for nonlinear and
non-Gaussian stochastic systems with constraints on control inputs.
Keywords: Stochastic control, Constrained input, Minimum entropy, Penalty function
method

1. Introduction. Due to the inevitable randomness in practical industrial processes,
stochastic control has been playing important roles in control engineering practice. A
number of approaches to controlling stochastic systems have been proposed [1-4]. The
minimum variance control proposed in [1] could be one of the most effective methods in
the early stage. In addition, other ideas such as predictive stochastic control [2], adaptive
nonlinear stochastic control [3] and neural network based control [3] were introduced to
deal with stochastic systems. Most of the existing approaches were established under the
assumption that the disturbances are Gaussian. However, the noises in most practical
systems are not necessarily Gaussian, and the nonlinearity of the systems may lead to
non-Gaussian randomness even if the noises obey Gaussian distribution. Stochastic dis-
tribution control (SDC) strategies have been developed to deal with such practical control
problems in [5-8], in which the controllers were designed so that the probability density
function (PDF) of the system output follows a desired distribution as closely as possi-
ble. B-Spline neural networks were initially used to approximate the output PDF, and a
number of SDC algorithms and practical applications were developed in [9,10]. However,
the output PDFs are not measurable and cannot be approximated via B-Spline models
in some cases. Some SDC methods based on entropy of the output tracking error were
then proposed [6,8,11-13]. In [6], a new recursive optimization control algorithm was pre-
sented for general nonlinear and non-Gaussian stochastic systems described by ARMAX
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Figure 1. Random event description of a stochastic system

models. A novel run-to-run control methodology was presented for semiconductor pro-
cesses with uncertain metrology delay by incorporating the minimum error entropy with
numerical optimization technique [12]. Nevertheless, all the above-mentioned methods do
not consider the constraints on control inputs.
Recently, Li and Chen studied the principle of preservation of probability shown as

Figure 1, and a generalized density evolution equation was established from the view
of the random event description [14,15]. Without loss of generality, let us consider the
following transformation:

gt : Y (t0) → Y (t)

As long as the random event does not disappear in the evolution process of the system,
the probability of the random event will be invariant, i.e.,

Pr(Y (t1)) = Pr(Y (t2))

The principle of preservation can be expressed as [14]

D

Dt

∫
Dt

γ(y, t)dy = 0

where D(·)/Dt is the total derivative. And accordingly the evolution of the PDF of a
random variable can be obtained based on the functional relationship among random
variables.
In order to establish the performance index of a stochastic distribution control system,

it is of great importance to formulate the PDF of the tracking error. Different from the
existing formulations of the PDF in [6], this paper derives the PDF of tracking error
according to the probability preservation principle. The PDF of tracking error can be
obtained without the assumption on the monotonicity of the considered functional rela-
tionship. The mathematical expectation of the squared tracking error is included in the
performance index so as to minimize the tracking error effectively. Due to the constraints
on control inputs, the penalty function method is utilized to solve the SDC algorithm for
nonlinear and non-Gaussian stochastic systems.
The remainder of the paper is organized as follows. The considered system model and

error dynamics are presented in Section 2. In Section 3, the PDF of output tracking
error is established. In Section 4, a novel performance index including entropy of tracking
error, the mean value of squared tracking error and constraints on control input energy
is introduced. The SDC algorithm is presented by minimizing the proposed performance
index with constrained control inputs. The condition of stability is proposed for nonlinear
and non-Gaussian stochastic systems. Comparative simulation results are provided in
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Section 5 to illustrate the efficiency of the proposed method. Conclusions are drawn in
Section 6.

2. Plant Description. Let us consider the following stochastic nonlinear systems [6]

yk = f(yk−1, · · ·, yk−n, uk, uk−1, · · ·, uk−m, ωk) (1)

where yk is the output, uk the control input, ωk the external disturbance and f(·) a
nonlinear function. Constants n and m are the known orders of the system. Since the
external disturbance ωk is non-Gaussian, yk determined by (1) is also a non-Gaussian
random variable. In order to simplify the controller design procedures, the following
assumptions which could be satisfied by many practical cases are required.

Assumption 2.1. f(·) is bounded and has continuous partial derivative with respect to its
arguments. At each sample instant, for a specific τ in the definition domain of yk, there

exists the solution t such that τ = f(yk−1, · · ·, yk−n, uk, uk−1, · · ·, uk−m, t) and ∂f(·)
∂t

6= 0
holds for any t in their definition domain.

Assumption 2.2. External disturbance ωk is a random variable with known PDF γωk
(τ)

defined on a bounded interval [a, b].

Assume that the set point rk is bounded as well, then, from the nonlinear stochastic
system (1), the tracking error ek can be given by

ek = yk − rk = f(yk−1, · · ·, yk−n, uk, uk−1, · · ·, uk−m, ωk)− rk

= g(yk−1, · · ·, yk−n, uk, uk−1, · · ·, uk−m, ωk, rk)

= g(ηk, uk, ωk)

(2)

where ηk = (yk−1, · · ·, yk−n, uk−1, · · ·, uk−m, rk)
T , which is known at time k. From Assump-

tion 2.1 and Equation (2), it can be seen that g(·) is also continuous, bounded and first
order differentiable with respect to its variables and invertible with respect to ωk.

The purpose of controller design is to utilize available information of the system input
and output to minimize both magnitude and randomness of the non-Gaussian stochastic
variable ek. Therefore, it is necessary to investigate the PDF of tracking error.

3. PDF of Tracking Error ek. Based on the probability theory, the PDF of tracking
error ek can be obtained from Equation (2) and the known PDFs of ηk and ωk. It can be
seen from Equation (2) that the random event {ek < τ} is equivalent to {g(ηk, uk, ωk) <
τ}. The PDF of tracking error can be obtained no matter whether the function g(·) is
monotonic or not.

3.1. g(·) is a monotonic function. If g(·) is a monotonic increasing function, it leads
to

{g(ηk, uk, ωk) < τ} = {ωk < g−1(ηk, uk, τ)} (3)

and
Pr{g(ηk, uk, ωk) < τ} = Pr{ωk < g−1(ηk, uk, τ)} (4)

It can be further obtained that∫ τ

−∞
γek(ηk, uk, τ)dτ =

∫ g−1(ηk,uk,τ)

−∞
γω(t)dt (5)

Differentiating Equation (5) on both sides with regard to τ yields

γek(ηk, uk, τ) = J̄ γωk
(g−1(ηk, uk, τ)) (6)

where J̄ = dg−1(ηk, uk, τ)/dτ .
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If g(·) is a monotonic decreasing function, then

γek(ηk, uk, τ) = −J̄ γωk
(g−1(ηk, uk, τ)) (7)

Therefore, the following equality

γek(ηk, uk, τ) =
∣∣J̄∣∣ γωk

(g−1(ηk, uk, τ)) (8)

holds for a monotonic function g(·).

3.2. g(·) is a non-monotonic function. If g(·) is a non-monotonic function, the PDF
of the tracking error can be derived using the principle of preservation of probability
[14,15]. Denote the jth sectionally inverse function as g−1

j , then

γek(ηk, uk, τ) =
m̄∑
j=1

∣∣J̄j∣∣ γωk
(g−1

j (ηk, uk, τ)) (9)

where m̄ is the total number of the sectionally inverse functions of g(·).
It should be pointed out that the PDF of tracking error ek can be obtained using the

principle of preservation of probability without the assumption on the monotonic function
g(·) in [6].

4. Control Strategy Design.

4.1. Performance index. The stochastic distribution controller designed in this paper
aims to make the shape of the PDF of tracking error as narrow and sharp as possible,
corresponding to a small entropy value [7]. Although the entropy can measure the dis-
persion of the tracking error, it does not change the mean of the distribution. Therefore,
the mean value of the tracking error should be addressed. Moreover, the control energy
should also be minimized. For this purpose, the following performance index was used in
[6]

J(uk) =−R1

∫
γek(ηk, uk, τ) ln γek(ηk, uk, τ)dτ

+R2

∫
τγek(ηk, uk, τ)dτ +R3u

2
k

(10)

where R1, R2 and R3 are weights assigned for entropy, mean value and control input,
respectively. In order to simplify its calculation, in this paper, Shannon entropy of the
tracking error,

∫
γek(ηk, uk, τ) ln γek(ηk, uk, τ)dτ , is replaced by the quadratic Renyi en-

tropy H2(ek). In addition, the mean value of the squared tracking error E(e2k) is included
to minimize the tracking error. Consequently, the performance index is proposed as fol-
lows:

J(uk) = R1H2(ek) +R2E(e2k) +
1

2
R3u

2
k (11)

where H2(ek) = − log
∫ β

α
γ2
ek
(ηk, uk, τ)dτ = − log V (ek), E(e2k) =

∫ β

α
τ 2γek(ηk, uk, τ)dτ .

V (ek) is the quadratic information potential of the tracking error [16]. Since the quadratic
Renyi entropy H2(ek) is a monotonic decreasing function of the quadratic information
potential V (ek), minimization of H2(ek) is equivalent to the minimization of −V (ek).
Therefore, the performance index can be rewritten as

J(uk) = −R1V (ek) +R2E(e2k) +
1

2
R3u

2
k

=

∫ β

α

(−R1γ
2
ek
(ηk, uk, τ) +R2τ

2γek(ηk, uk, τ))dτ +
1

2
R3u

2
k

(12)
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4.2. Constrained optimal controller. Control inputs are always constrained by phys-
ical limitations of actuators in practice. Therefore, it is great significant to study SDC
algorithm with following constraint on control input

|uk| ≤ Umax (13)

where Umax is a known upper bound for uk.
In order to obtain the optimal control input u∗

k, the following constrained optimization
problem needs to be solved: min J(uk) =

∫ β

α
(−R1γ

2
ek
(ηk, uk, τ) +R2τ

2γek(ηk, uk, τ))dτ + 1
2
R3u

2
k

s.t. Umax − uk ≥ 0
uk + Umax ≥ 0

(14)

which is a constrained nonlinear programming problem. The following objective function
can be formulated using penalty function method

Jnew(uk,M) = J(uk) +M [min(0, Umax − uk)]
2 +M [min(0, uk + Umax)]

2 (15)

where the penalty factor M is a large positive number. A recursive decreasing gradient
method is employed to solve the optimal control input u∗

k according to following steps:
Step 1: Choose the initial control input u0 and penalty factor M1, denote k := 1, set the
magnification factor β > 1 and accuracy ε > 0;
Step 2: Regard uk−1 as the initial point and denote t := k−1. Calculate the gradient for

ut, ∇Jnew(ut) =
∂Jnew(ut)

∂ut
. If ∇Jnew(ut) < ε, stop and obtain the optimal solution u∗

k = ut.
Otherwise, turn to Step 3;
Step 3: Set the step length λt and calculate the control input as follows:

ut+1 = ut − λt∇Jnew(ut) (16)

Step 4: Increase t by 1 and return to Step 2. Eventually, the optimal solution u∗
k can be

obtained for the unconstrained problem (15).
Step 5: If Mk {[min(0, Umax − uk)]

2 + [min(0, uk + Umax)]
2} < ε, stop and obtain the

optimal solution u∗
k = uk. Otherwise, set Mk+1 = βMk, increase k by 1 and go back to

Step 2.

4.3. Stability analysis. In order to guarantee the boundedness of the closed loop sys-
tem, the stability of the closed loop system should be studied. A local linearization
approach will be used to analyze the stability. For this purpose, (1) is linearized to read

∆yk =
n∑

i=1

∂f

∂yk−i

∆yk−i +
m∑
j=0

∂f

∂uk−j

∆uk−j +
∂f

∂ωk

∆ωk (17)

where ∆yk = yk − yk−1, ∆uk = uk −uk−1 and ∆ωk = ωk −ωk−1. Using the unit backward
shift operation z−1 to both sides of (17), it leads to(

1−
n∑

i=1

∂f

∂yk−i

z−i

)
∆yk =

(
m∑
j=0

∂f

∂uk−j

z−j

)
∆uk +

∂f

∂ωk

∆ωk (18)

Denote N(z−1, k) = 1−
n∑

i=1

∂f
∂yk−i

z−i and ξk =

(
m∑
j=0

∂f
∂uk−j

z−j

)
∆uk +

∂f
∂ωk

∆ωk, then

N(z−1, k)∆yk = ξk (19)

It can be seen from (13) that
|∆uk| ≤ 2Umax (20)

Moreover, ∆ωk is bounded according to the Assumption 2.2. Therefore, ξk is also bounded.
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Let N(z−1, k) = 1−
n∑

i=1

αi(k)z
−i and X(k) = [∆yk−n ∆yk−n+1 · · · ∆yk−1], the following

state-space representation of ∆yk can then be formulated as

X(k + 1) =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

αn(k) αn−1(k) · · · α1(k)

X(k) +


0
...
0
1

 ξk (21)

Denote

A(k) =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

αn(k) αn−1(k) · · · α1(k)

 (22)

If ∆yk is bounded, then the linearized closed-loop system is stable. Consequently, the
closed-loop stability condition for the nonlinear and non-Gaussian stochastic system (1)
with the constrained input (13) is formulated in the following theorem.

Theorem 4.1. For a given positive constant ε < 1, the closed-loop stability condition of
the system (1) with the constrained input (13) is ‖Ak‖ < ε.

5. A Numerical Example. To illustrate the use of the proposed control algorithm, let
us reconsider the following nonlinear system [6]:

yk =
(
0.5− 0.2ωk

(
1.2 + tan−1 uk

))
yk−1 + 0.2uk (23)

where the noise ωk has the following PDF:

γω (x) =

{
3

4
√
5
(1− 0.2x2) , |x| ≤

√
5

0, otherwise
(24)

In this example, the bound of the control input is set as Umax = 10. The initial values
are u0 = 8 and y0 = 3.2. The set-point is set to rk = −1. The weights assigned to the
entropy, the square error and the control input are R1 = 0.98, R2 = 0.01 and R3 = 0.01,
respectively.
The advantage of the proposed method is shown by comparing with a PID controller

whose transfer function is GPID(s) = kp + ki/s + kds. The optimal PID parameters are
tuned using the Matlab NCD toolbox: kp = 2.5, ki = 1.2 and kd = 1.2. The comparative
results are shown in Figures 2-6.
The responses of the closed loop system under PID control and the proposed SDC

strategy are presented in Figure 2. The variations of the control input are shown in
Figure 3. It can be seen from Figure 4 that the information potentials Ve of the tracking
error under PID control and SDC both decrease along with time, while the performance
indices J decrease with time. It is clear from Figure 5 that the shapes of PDFs of the
tracking error become narrow and sharp, which can also be verified by the PDFs at typical
instants in Figure 6. Both PID controller and the proposed SDC law can drive the system
towards a smaller randomness direction, but it is obvious from Figure 5 and Figure 6 that
the proposed SDC algorithm has smaller settling time than PID controller. Figure 3(a)
shows the control input produced by the PID controller violates its lower limit, which
may damage actuator in practice. Therefore, the proposed SDC strategy is more suitable
for nonlinear and non-Gaussian systems with constraints on control inputs.
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(a) PID (b) SDC

Figure 2. Response of system output

(a) PID (b) SDC

Figure 3. Variations of control input

(a) PID (b) SDC

Figure 4. Information potentials and performance indices
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(a) PID (b) SDC

Figure 5. PDFs of tracking error

(a) PID (b) SDC

Figure 6. PDFs at typical instants

6. Conclusions. This paper has presented a new SDC algorithm for nonlinear and non-
Gaussian systems with constraints on control inputs. The PDF of tracking error is formu-
lated using the principle of preservation of probability. An improved performance index of
closed-loop system is proposed, which includes the information potential of tracking error,
mathematic expectation of squared tracking error and constraints on control input. The
optimal control algorithm is obtained using penalty function method. Moreover, the local
stability condition is derived. The presented SDC strategy and PID control method are
both applied to an illustrative nonlinear and non-Gaussian stochastic system with con-
straint on control input, and the comparative simulation results verify the effectiveness
of the given control algorithm.
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