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Abstract. This paper introduces a new approach for designing an adaptive fuzzy model
predictive control (AFMPC) using the Particle Swarm Optimization (PSO) algorithm.
The system to be controlled is modeled by a Takagi-Sugeno fuzzy inference system whose
parameters are identified using recursive least square algorithm. These parameters are
used to calculate the objective function based on predictive approach and structure of RST
controller. The controller design methodology is formulated as an optimization problem
solved by PSO algorithm to obtain the optimal future control. The approach was applied
for controlling two non linear systems CSTR and Tank system. The results are en-
couraging compared with those obtained using the Proportional Integral-Particle Swarm
Optimization (PI-PSO) and adaptive fuzzy model predictive control (AFMPC).
Keywords: Adaptive fuzzy logic systems, Predictive control, Particle swarm optimiza-
tion (PSO)

1. Introduction. Model predictive control (MPC) has been an active field of research
during the last three decades, driven by numerous successful applications of the technology
[1-4]. Most industrial plants exhibit a substantial level of nonlinearity and uncertainty.
They present difficulties from the perspective of control engineering and the design of
controllers. However, the continuous and batch processes in chemical and petro-chemical
plants are nonlinear where some of these plants show a high degree of nonlinearity. For a
highly nonlinear system, MPC algorithm does not give satisfactory dynamic performance.

However, the fuzzy models of the Takagi-Sugeno (T-S) type proved to be suitable for
the use in nonlinear MPC, because of their ability to give an accurate approximation of
the complex nonlinear systems. This can be done by combining the data with the prior
knowledge [5-9]. An adaptive fuzzy logic systems (AFLS) is employed to determine the
controller structure as well as the free parameters of the adaptive fuzzy logic systems
[10-15]. In the AFMPC, the AFLS is used as the prediction model of the nonlinear
plant and the system performance is greatly dependent upon the online optimization.
Recently, several algorithms have been found to be effective in control of a wide class of
nonlinear process [16,17]. However, most previous works usually provide local optima,
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require the AFMPC cost function differential, and they are still a complex procedure
for calculating the Jacobian and inverse Hessian matrix at each sampling step which is
difficult to achieve in real time even under some simplifications. Another reason, a major
problem in nonlinear programming when the function optimized is highly non-convex,
which will in general have several local minima [18]. Due to the mentioned difficulties
related to AFMPC and nonlinear programming, the intelligent evolutionary algorithms
are more suitable for the optimizing in AFMPC [19-21]. The particle swarm optimization
(PSO) is recently proved to be successful approach to solve complex optimization problem
[22]. This algorithm iteratively explores a multidimensional search space with a swarm
of individuals (referred to as ‘particles’), looking for the global optima (minimum or
maximum) [23-27].
This paper proposes improved PSO which combines an AFMPC approach, called PSO-

based AFMPC, to obtain the optimal future control input for predictive control algorithm.
Firstly, the fuzzy logic is used to identify the parameters of the subsystems. These pa-
rameters are updated according to a recursive adaptation, which allows to calculate the
predictive control. The second step can be done by transforming the control law to a
polynomial form [28], which should be employed by the PSO algorithm for parameter op-
timization problem of RST controller. The main idea is based on the minimization of the
predictive cost function maximum. This choice might allow the PSO algorithm to attain
rapidly toward the best optimal RST controller. In addition, one of the advantages of this
algorithm is to avoid the inversion matrices when calculating the predictive control law,
which is difficult to achieve in a real time. The proposed PSO-based AFMPC method is
tested on two nonlinear processes. Numerical results are compared with the other hybrid
PSO methods and non PSO methods available in the usual literature. The performance
study demonstrates the effectiveness and efficiency of the proposed PSO-based AFMPC
approach.
The work is structured as follows. In Section 2, the nonlinear system is modeled by

Takagi-Sugeno fuzzy modeling. Section 3 presents the predictive control in his RST
polynomial form. In Section 4, the RST fuzzy adaptive control is coupled with the
PSO algorithm to get the PSO-based AFMPC structure which optimizes the controller
parameters. In order to show the good performance of the proposal approach, simulation
results are given in Section 5. Finally, Section 6 concludes.

2. T-S Fuzzy Modeling. Consider a single-input single-output (SISO) nonlinear sys-
tem. The system is decomposed into ‘r’ subsystems such that each subsystem demon-
strates a linear or nearly linear behavior. Using the Takagi-Sugeno’s modeling methodol-
ogy [5,6,29,30], a fuzzy quasi-linear model, Ri or fuzzy implication, is developed for each
subsystem. In such a model, the cause-effect relationship between control u and output
y at sampling time k is established in a discrete time representation. The subsystems are
defined in the fuzzy regions, Ri, i = 1, 2, . . . , r.
A SISO discrete-time nonlinear system can be described as follows:

x(k + 1) = F (x(k), u(k))
y(k) = H(x(k))

(1)

where u(k) ∈ R and y(k) ∈ R are the system input and output at time k respectively,
x(k) ∈ Rn is the state vector of the system, and F (x(k), u(k)) ∈ Rn and H(x(k)) ∈ R are
nonlinear functions.
It is assumed that F (0, 0) = 0 and H(0) = 0. For both a controllable and observable

system, x(k) can be expressed as function of y(k), . . . , y(k−n+1), u(k), . . . , u(k−n+1),
and n represents the order of the system. Therefore, when the nonlinear system (1) is
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investigated around the origin, its equivalent system can be expressed as follows [31]:

y(k + d) = a1y(k) + . . .+ anay(k − na− 1) + b0u(k) + . . .+ bnbu(k − nb) + l

= ξ(k)T θ + l
(2)

where 1 ≤ d < n corresponds to the time delay of the system, and ξ(k) = [y(k), y(k − 1),
. . . , y(k−na− 1), u(k), . . . , u(k−nb)]

T is referred to as the regression vector θ = [a1, . . . ,
ana, b0, . . . , bnb]

T . When the time delay is d = 1, system (2) can be rewritten as Controlled
Auto-Regressive Integrated Moving Average model (CARIMA) [28]:

A(z−1)y(k) = B(z−1)u(k − 1) +
ζ(t)

∆(z−1)
(3)

where A(z−1) and B(z−1) are polynomials in the backward shift operator z−1{
A(z−1) = 1 + a1z

−1 + . . .+ anaz
−na

B(z−1) = b0 + b1z
−1 + . . .+ bnbz

−nb

ζ(t) is an uncorrelated random sequence and the use of the operator ∆(z−1) = 1 − z−1

ensures an integral control law or a closed loop type I system.
A fuzzy implication (FI) is rule based on and consists of a set of symbolic antecedents in

the IF part (premise) and a linear numerical expression in the THEN part (consequence).
Using a CARIMA model structure, the fuzzy implication of the (3) can be written as
follows [13]:

Ri : IF y(k) is M i
1, y(k − 1) is M i

2, . . . , y(k − na− 1) is M i
na and u(k) is Li

0,

u(k − 1) is Li
1, . . . , u(k − nb) is Li

nb

THEN yi(k + 1) =
Bi(z−1)

Ai(z−1)
u(k), i = 1, . . . , r

(4)

where M i
j fuzzy set is corresponding to output y(k − j) in the ith FI; Li

p fuzzy set is
corresponding to output u(k − p) in the ith FI;

The system output y(k+1) is computed as the weighted average of the individual rules
consequents

y(k + 1) =

∑r
i=1w

iu(k)Bi(z−1)/Ai(z−1)∑r
i=1w

i
(5)

The degree of fulfillment of the ith rule, wi is obtained as the product of the membership
degrees of the antecedent variables in that rule

wi =
na∏
j=1

µM i
j
(y(k − j − 1))

nb∏
p=0

µM i
j
(u(k − p)) (6)

In this paper, the nonlinear system is approximated by the AFLS, where the adaptation
parameters are obtained using the recursive least square (RLS) algorithm. This algorithm
is stopped when the value of ε is lower than the proposed error between the actual
output and estimated output. For more details see [14]. The identification system allows
calculating the predictive control law RST, which will be applied on the nonlinear system.

3. Predictive Control. This part represents the developments of the predictive control
[1,32], where it presents the prediction model under the input/output form obtained by
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Figure 1. Flowchart representation of AFLS algorithm. k: plant simula-
tion counter. IAE: integral of the absolute value of error.

fuzzy adaptive model (5). From the previous model (5), a polynomial optimal predictor
is designed under the following form [1,28]:

ŷ(t+ j) = Fj(z
−1)y(t) +Hj(z

−1)∆u(t− 1)︸ ︷︷ ︸
free response

+Gj(z
−1)∆u(t+ j − 1) + Jj(z

−1)ζ(t+ j)︸ ︷︷ ︸
forced response

(7)
where the unknown polynomials Fj, Gj, Hj and Jj are derived by solving the Diophan-
tine equation. In the further developments, the term related to future disturbances,
corresponding to the prediction of ξ(t+ j), is set to zero. The criterion is a weighted sum
of square predicted future errors and square control signal increments:

J =

N2∑
j=N1

(ŷ(t+ j)− w(k + j))2 + λ
Nu∑

j=N1

∆u(t+ j − 1)2 (8)

Here, ŷ is the output predicted by the nonlinear fuzzy model, ∆u is increment control
signal, w is the future set-point and λ is the control weighting sequence. The parameters
N2, Nu, N1, called the prediction, control and minimum cost horizon respectively, where
they define the intervals over which the optimization is carried out.
In the following, we represent MPC law by polynomial RST form. This representation

allows to identify the RST controller parameters without using the classical computing
(metaheuristic algorithms) of the predictive control.
The MPC controller is implemented under an RST form through the difference equation

[28]:

S(z−1)∆(z−1)u(t) = −R(z−1)y(t) + T (z−1)w(t) (9)

with:
degree[S(z−1)] = degree[B(z−1)],
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degree[R(z−1)] = degree[A(z−1)],
degree[T (z−1)] = N2.
In order to avoid the inversion of predictive matrices required by the FMPC, a new idea

based on the coupling between the prediction algorithm and metaheuristic algorithms is
used to overcome this problem.

4. Particle Swarm Optimization-Based Predictive Control. The PSO is a popu-
lation based swarm algorithm [20-23]. In the PSO computational algorithm, population
dynamics simulates bio-inspired behavior, i.e., a “bird flock’s” behavior where it involves
sharing of the information between all members of the population, and allows particles
to take profit from the discoveries and previous experience of all other particles during
the search of food. In this work, this issue is used to determine the best parameters of
RST controllers. The initial vector that contains the controller parameters is randomly
chosen. The size of this vector consists of N2, na and nb, prediction horizon, degrees of
A(z−1) and B(z−1), respectively.

Each particle in PSO has a randomized velocity, which allows it to move through the
search space and keeps track of its coordinates in the solution space. Each column of
the matrix is an RST regulator represented by a particle. The column parameters that
give a better response from the closed loop system, obtained by minimizing of the cost
prediction function, is used in the next iteration for the following calculus. This value is
called pBest (personal best). Another best value that is tracked by the global version of
the particle swarm optimizer is the overall best value (fitness). Its location, called gBest
(global best), is obtained among all the particles in the population. The past best position
of the particle itself and the best overall position in the entire swarm are employed to
obtain new position for the particle in quest to minimize (or maximize) the fitness. In
each time step, the PSO concept consists of changing the velocity of each particle flying
towards its pBest and gBest location. The velocity is weighted by random terms, with
separate random numbers being generated for velocities towards pBest and gBest locations
respectively [23-26].

At each step n, by using the individual best position, pBest, and gBest, a new velocity
for the ith particle is updated by

vi(t+ 1) = wrvi(t) + c1r1(Xpbest(t)− xi(t)) + c2r2(Xgbest(t)− xi(t)) (10)

xi(t+ 1) = xi(t) + vi(t+ 1) (11)

where each particle represents a potential solution and has a position represented by a
position xi(t), r1 and r2 are two random values in the range [0, 1], while c1 and c2 are the
cognitive and social scaling parameters, respectively; wr is inertia weight which controls
the influence of previous velocity on the new velocity. The global search performance is
good with large inertial weight while a small inertia weight facilitates a local search. The
velocity vi(t) is limited within the range [−vmax,+vmax]. If the velocity violates these
limits, it is forced to its proper values. The variable wr is updated as

wr = (wmax − wmin)
tmax − t

tmax

+ wmin (12)

where wmax and wmin denote the maximum and minimum of wr respectively; tmax is a
given number of maximum iterations.

The pseudo code of PSO is given in Figure 2, where NP and ST denote the number of
particles in the population and the plant simulation time, respectively, f(xi(t)) represents
the objective function value of particle i at position x, while f(xbest(t)) represents the
best function value in the population of solution NP at iteration count t.
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Initializing the velocity vi(t) and the position xi(t) of each particle
For each particle i

Calculate the fitness value f(xi(t)),
If the fitness value f(xi(t)) is better than the

Best fitness value f(xpBest(t)) in history
Then

xpBest(t) = xi(t)

End
If f(xpBest(t)) < f(xgBest(t)) then

xgBest(t) = xpBest(t)

End
Update the particle velocity vi(t+ 1) according to the velocity Equation (10),
Update the particle position xi(t) according to the position Equation (11),

End
While maximum iterations or minimum error criteria is reached.

Figure 2. Flowchart representation of PSO algorithm. g: PSO iteration
counter; i: particle counter.

As the aim is to minimize the error between the output of fuzzy model and reference
model, in this paper, the mean cost function (MCF) in Equation (8) is used as a proper
evaluation function. MCF is given by

MCF =
1

ST

ST∑
k=1

J(k) (13)
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where ST is the plant simulation time, J is the cost function predictive and k is the
iteration counter. Since the objective is to minimize cost function value, the fitness
function is defined as follows:

Ffi = max(MCF )−MCFi, i = 1, . . . , NP (14)

This function is evaluated by given the objective Function (8) of all the particles, and
in each iteration we will select the best particle according to the objective function, that
allows us to replace the weakest particles from the previous population with the strongest
particles of the new population, and if the objective function value reaches the defined
tolerance or the maximum iteration number is reached, so the algorithm is stopped (see
Figure 3). The control strategy, of our approach can be represented by the following steps:

1. Initialize the structure and free parameters of the RLS
2. Fuzzify input variables
3. Calculate membership values of input
4. Calculate the Plant’s dynamical behavior using 4th order Runge-Kutta Method
5. Calculate the fuzzy regressor vector
6. Stop condition if ε > error
7. Else if update the parameters of systems by using RLS
8. Initialize the parameter of AFMPC
9. Calculate the matrix of prediction
10. Calculate the predicted output
11. Construct the cost function
12. Deduce the polynomial form of the fuzzy controller.
13. Initialize Particle position X, associated velocities V , tmax, NP, ST
14. Calculate the cost function
15. f(xi(t)) = Ffi
16. Call the PSO algorithm
17. If k < tmax

18. Go step 9
19. End

5. Simulation Study. In this section, two highly nonlinear systems are selected to study
the proposed approach. These systems are modeled by two FIs. The first example is to let
the continuous-stirred tank reactor (CSTR). The second example is to let the surge tank.
The values of the system parameters are realistic and used by several studies. PSO-based
AFMPC is designed to realize closed-loop control for all these systems.

Example 5.1. Control of a continuous-stirred tank reactor (CSTR)

The benchmark plant represents a Continuous Stirred Tank Reactor where the model
is presented in [33,34] and described by the following differentials equations:

dCa(t)

dt
=

q

v
(Ca0 − Ca(t))− k0Ca(t)e

− E
RT (t) (15)

dT (t)

dt
=

q

v
(T0 − T (t)) + k1Ca(t)e

− E
RT (t) + k2qc(t)

(
1− e−

k3
qc(t)

)
(Tc0 − T (t)) (16)

The process describes the reaction that converts the product A into a new product B,
the concentration Ca(t) is the concentration of product A, T (t) is the temperature of the
mixture. The reaction is exothermic and it is controlled by a coolant flow whose rate
is represented by qc(t). The temperature is controlled by changing the coolant flow and
by controlling the temperature, and the concentration is also controlled. Ca0 is the inlet
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Figure 3. Flowchart representation of PSO-based AFMPC algorithm. g:
PSO iteration counter. Algorithm to solve the optimization problem of
PSO-based AFMPC.

feed concentration, q is the process flow rate, T0 and Tc0 are the inlet feed and coolant
temperatures. All these values are assumed constant at nominal values. In the same
way, k0, E/R, v, k1, k2 and k3 are thermodynamic and chemical constants. The numerical
values of these parameters are given in Table 1.

Table 1. CSTR model parameters

Parameter Description Nominal value
q Process flow-rate 100 l/min
v Reaction volume 100 l
k0 Reaction rate constant 7.2× 1010 min−1

E/R Activation energy 1× 104 K
T0 Feed temperature 350 K
Tc0 Inlet coolant temp. 350K
∆H Heat of reaction 2× 105 cal/mol

Cp, Cpc Specific heats 1 cal/g/K
ρ, ρc Liquid densities 1× 103 g/l
ha Heat transfer coeff. 7× 105 cal/min/K
Ca0 Inlet feed concentration 1 mol/l

k1 =
∆Hk0
ρCp

k2 =
ρcCpc

ρCpv
k3 =

ha

ρcCpc
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The nominal conditions for a product concentration Ca = 0.1 mol/l are T = 438.54 K
and qc = 103.41 l/min.

Fuzzy modeling: the above nonlinear model is used to produce input-output time data.
The sampling time is set to 0.083 min (5 s). The data is then used to develop a global
fuzzy model as follows:

R1 : IF qc is Q
1

THEN C1
A(n+ 1) = a11CA(n− 1) + . . .+ a1naCA(n− na)

+b11qc(n− 1) + . . .+ b1nbqc(n− nb)
(17)

R2 : IF qc is Q
2

THEN C2
A(n+ 1) = a21CA(n− 1) + . . .+ a2naCA(n− na)

+b21qc(n− 1) + . . .+ b2nbqc(n− nb)
(18)

Figure 4. Definition of fuzzy sets Q1 and Q2 for FIs R1 and R2, respectively

The fuzzy model is structurally very simple and requires only two FIs, Figure 4, corre-
sponding to the fuzzy sets Q1 and Q2. The open loop response with various step changes
in the coolant flow rate shows that the identification of the fuzzy model can nearly per-
fectly describe the process dynamic behavior in Figure 5, and it also indicates that the
process is highly nonlinear. The vector of parameters of ith rule is obtained by using the
least squares method [35]:

a11 = −1.7016; a12 = 0.7715; b11 = −0.2006; b12 = 0.2375;
a21 = −1.8480; a22 = 0.8984; b21 = −0.1397; b22 = 0.1973.
The identified model can be observed in Figure 5; it can be observed that the quality of

the model is very good and in fact the two signals appear overlapped; the error is plotted
at the bottom of Figure 5, with another scale to make it visible.

i – Switching system without disturbances
The MPC parameters are selected according to the tuning rules given in Section 2.

Since the minimum cost horizon N1 = 1, the prediction horizon N2 = 10, and the control
horizon Nu = 1. The weight in the increment control λ = 2× 10−3. The PSO algorithm
parameters are chosen as follows:

The maximum number of PSO iteration tmax = 150, number of particles NP = 10,
plant simulation time ST = 50 min, r1 = 0.2, r2 = 0.4, wmin = 0.35, wmax = 0.85,
c1 = 1.5 and c2 = 3.5.

PSO algorithm can initialize the ranges of the research on the worst cases that will
allow controlling the system in very critical situations. Its advantage lies in its ability to
close to the best parameters while maintaining a good compromise between the desired
performance and the various critical situations, so it can adapt to the change of the system
parameters.

In PSO algorithm, the predictive cost function is calculated for each particle, and pBest
and gBest are computed for every final time. A particle velocity Equation (10) is calculated
for each particle and a particle position Equation (11) is updated. Considering the cost
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(a)

(b)

(c)

Figure 5. (a) Validation of the fuzzy model, process output (solid line),
model identified (dashed line), (b) zoom, (c) identification error

function of the prediction, PSO algorithm understands the behavior of the system and
then at each iteration the particles enhance their performances to find the best controller
parameters. This algorithm is run until maximum iteration or minimum cost criteria are
obtained.
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As mentioned in Section 4 for the size of the parameters vector to be optimized, we
choose the degree of A(z−1) and B(z−1) respectively na = 2, nb = 2, and N2 = 10, so the
degree of the RST polynomial is equal to 14, and also we have 14 parameters to search and
optimize. The first three parameters represent the polynomial R, the fourth parameter
represents the polynomial S and the last ten parameters represent the polynomial T . The
initial values of particles are randomly generated in the first generation. The population
size is set to 10 particles. Each particle represents a vector of optimized parameters, the
vector dimension of position and velocity is 14× 10.

The control quality the strategies PSO-based AFMPC controller is studied by a series
of simulations. The response of the system with multi-step reference is given in Figure
6; the reference of Ca was changed from the initial point 0.14 mol/l to 0.12, to 0.11 and
then to 0.09.

The dynamic response of the system is depicted in the same figure. Figure 6 shows
details of the performance comparison between the PSO-based AFMPC and the AFMPC.
It is important to remark the degradation of performance with the AFMPC controller
when the concentration is closed to 0.14 mol/l or to 0.09 mol/l. Observe that the AFMPC
controller is not able to stabilize the plant near this set points, so there is a risk if we
want to reduce the concentration (see Figure 8). PSO is able to obtain good parameters
so we can lower the concentration value down 0.09 mol/l and up 0.14mol/l, the command
may well set the value of the concentration in any moment that gives us a good security
for the reactor.

Mention may also be based on the work published in the book [6] that the command
with the PID control deteriorates when working in a concentration 0.12 mol/l. We see
that the PID control is not able to stabilize the system around this point.

Figure 6. Comparison of the closed-loop dynamic responses by the PSO-
based AFMPC (dash line) and an AFMPC (solid line)

ii – Switching system with disturbances
In a second test, the disturbances on the system output in different times have been

applied to validate the tracking of the reactor concentration. Thus, a disturbance of
0.002 mol/l at time t = 66.4 min and t = 107.9 min is added. Figure 9, illustrates
the disturbance rejection performance of the PSO-based AFMPC controller. The results
show that the adaptive controller has the ability to keep the process stable and regulate
the outlet concentration at its desired set-point value. These features prove the good
performance of the control law, even in the presence of the step changes of the disturbances
and of the set-point value (see Figure 10).
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Figure 7. Control performance of the PSO-based AFMPC controller

Figure 8. Control performance of the AFMPC controller

Figure 9. Response of the CSTR using a PSO-based AFMPC with exter-
nal disturbances

Example 5.2. Control of surge tank model

The behavior of the surge tank system, shown in Figure 11, it is fed by a pump driven
by a current i(t).



NEW APPROACH FOR FUZZY PREDICTIVE ADAPTIVE CONTROLLER DESIGN 3753

Figure 10. Control performance of the PSO-based AFMPC with external disturbances

Figure 11. The surge tank system

In Figure 11, Q(t) is the feed rate, i(t) is the supply current of the pump, H(t) is the
liquid level in the tank, Qs(t) is the output Flow, a is the section of the output channel,
A is the section of the tank and Hs is the water level in the output channel. This system
can be represented by the following differential equations:

Model of the valve:
dQ(t)

dt
+ k0Q(t) = k1i(t) (19)

The change in water level in the tank is given by:

dV (t)

dt
= A

dH(t)

dt
= Q(t)−Qs(t) (20)

where Qs(t) = 0.6a
√

2g (H(t)−Hs).

Table 2. Specification of the surge tank

Parameter Description Normal operation condition
H0 Initial value of tank level 0.15 m
Hs Initial value of the output channel level 0.015 m
a Section of the channel output 0.0001 m2

A Section of the tank 0.04 m2

q0 the initial flow 0.0001 m3/s
K0 Constant 1
K1 Constant 0.1
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Figure 12. Definition of fuzzy sets Q1 and Q2 for FIs R1 and R2, respectively

Fuzzy modeling: The fuzzy model was identified using data from the real process,
sampled with the period Ts = 0.1 s. For a good approximation of the plant, we suppose
that the subsystems are in the third order. The model consists of two rules of the form

R1 : IF i0 is Q1

THEN H1(k + 1) = a11H(k − 1) + . . .+ a1naH(k − na)

+ b11i0(k − 1) + . . .+ b1nbi0(k − nb)

(21)

R2 : IF i0 is Q2

THEN H2(k + 1) = a21H(k − 1) + . . .+ a2naH(k − na)

+ b21i0(k − 1) + . . .+ b2nbi0(k − nb)

(22)

The fuzzy model is structurally very simple and requires only two FIs, Figure 12 cor-
responds to the fuzzy sets Q1 and Q2. The vector of parameters of ith rule is obtained
by using the recursive least squares (RLS) [35]. This fuzzy model is used to represent the
process model in the controller:
a11 = 1.941; a21 = −0.0409; a31 = −0.0526; b11 = −0.1129; b21 = −0.1107;
a12 = 0.8419; a22 = 0.0810; a32 = 0.0763; b12 = 0.1667; b22 = 0.1682.

The predictive controller was implemented using the following parameters:
Prediction horizon N2 = 10, control horizon Nu = 1, minimum horizon N1 = 1, the weight
in the increment control λ = 40. We choose the degree of A(z−1) and B(z−1) respectively
na = 3, nb = 2, and N2 = 10, so the degree of the RST polynomial is equal to 15, and
consequently we have 15 parameters to search and optimize.
The first four parameters represent the polynomial R, and the second fifth parameter

represents the polynomial S. Finally, the last ten parameters represent the polynomial
T .
The PI-PSO algorithm uses the objective function, which is the Integral of the absolute

value of Error (IAE), whose values are minimized. In order to show the differences between
the PSO-based AFMPC controller and PI-PSO controller, a comparative study will be
necessary to show the differences in their performances.

IAE =

∫
|e(t)|dt (23)

In the case of PI-PSO, the parameters of the algorithm are chosen as follows:
The maximum number of PSO iteration tmax = 200, number of particles NP = 10,

plant simulation time ST = 60s, r1 = rand(dim, NP), r2 = rand(dim, NP), wr = 0.1,
c1 = 0.5 and c2 = 2.5 where dim is the problem dimension (dim = 2).
In the case PSO-based AFMPC the parameters of the algorithm are chosen as follows:
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The maximum number of PSO iteration tmax = 200, number of particles NP = 10,
plant simulation time ST = 60s, r1 = rand(dim, NP), r2 = rand(dim, NP), wr = 1e−3,
c1 = 0.5 and c2 = 4.5, where dim = (N2 + na + nb) = 15.

To evaluate performance of each controller, we consider the whole characteristic of the
each controller, such as maximum overshoot, rise time, settling time and a steady-state
error, to have an accurate comparison.

Figure 13. Comparison of the closed-loop dynamic responses by the PSO-
based AFMPC, an PI-PSO and an AFMPC

Table 3. Comparison of performance of the PI-PSO, AFMPC and PSO-
based AFMPC

PI-PSO AFMPC PSO-based AFMPC
Time (s) 0-15 15-30 30-45 45-60 0-15 15-30 30-45 45-60 0-15 15-30 30-45 45-60

Maximum overshoot (%) 12.5 50 25.75 17.33 8 4.5 28.25 21.66 26.3 15 6.2 5
Rise time (s) 0.7 0.74 0.74 0.748 1.24 2.2 1.09 1.055 0.2 0.8 0.82 0.81

Settling time (s) 4 2.05 5.6 4.48 3 3.72 4.75 4.45 2.04 1.85 1.69 1.6
Steady state error 0.002 0.0 0.002 0.003 0.0 0.0 0.0 0.0 0.0002 0.0 0.0 0.0

This table shows the performances obtained these methods. In each interval time,
we have changed the set point for evaluating each method to control a highly nonlinear
system. The PSO-based AFMPC method can generate a high quality solution within
shorter calculation time and it tends to converge very fast compared to other methods.

The comparison shows some interesting results. The AFMPC is not capable of keeping
the level at the desired value. It is important to observe that with PSO-based AFMPC the
settling time has been reduced 3 times comparing with that obtained from the AFMPC
without any increase in overshoot. Between 45-60 s we can see from the overshot, rise
time and settling time that obtained by the PSO-PI or AFMPC controller are degraded.
With PSO-based AFMPC the overshoot is reduced more than 3 times compared with
that obtained from PI-PSO and more than 4 times compared with that obtained from
the AFMPC controller. The same observation can be made for the settling time, where
in the PSO-based AFMPC case we notice a reduction of nearly 3 times compared with
that obtained from PI-PSO and more than 2 times with AFMPC. So, the PSO-based
AFMPC is able to keep better stability with less control effort applied. As a conclusion,
a large overshoot in the transient response with PI-PSO and AFMPC can damage the
electro-valve of the tank.
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Figure 14. Control performance of the PSO-based AFMPC controller

Figure 15. Control performance of the AFMPC controller

Figure 16. Control performance of the PI-PSO controller
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6. Conclusion. In this paper, we have introduced the PSO-based AFMPC and PI con-
troller applied to highly nonlinear systems. An optimization approach of polynomial
RST fuzzy predictive control is developed using PSO algorithm. The proposed approach
is based on the advantage of the Takagi-Sugeno fuzzy system and the metaheuristic op-
timization PSO algorithm in a new structure RST controller. The advantage of this
structure is their ability to handle highly nonlinear systems and keep a good stability in
terms of overshoot, rise time and settling time including disturbances. Compared with
other similar existing methods, the PSO-based AFMPC algorithm enhances the conver-
gence and accuracy of the controller optimization, which is much easier for implementation
in real time. Indeed, it helps to avoid the computing complexity of the AFMPC control
law. Future work consists of the constraints consideration in the AFMPC problem with
other versions of PSO and ACO algorithm, applied to a real process.
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