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Abstract. In this paper we propose a Self-Organizing Fuzzy Proportional Derivative
(SOF-PD) tracking controller for robot manipulators, which exploits the simplicity and
robustness of the simple PD control and enhances its benefits. This proposed controller
has a gain-scheduling structure, in which, based on the position error, a SOF system
performs the gains tuning of a simple PD controller in the feedback loop. The SOF
system is a fuzzy system in which the inference rules are continuously updated according
to two performance index tables designed for adjusting – in a separated way – the P and
D gains. The tuning of the gains is performed independently for each joint. By using the
Lyapunov theory, it is shown that, for an arbitrary bounded desired trajectory, uniform
ultimate boundedness of the tracking errors is guaranteed by selecting suitable maximum
and minimum allowed PD gain values. This stability result can be generalized to others
varying gains schemes for PD tracking control, in which the gains are bounded functions
of the tracking errors. Experimental results in a two degrees of freedom robotic arm show
the superiority of the proposed approach over the classic PD control, in terms of the
position errors.
Keywords: Self-organizing fuzzy control, PD control, Robot control, Uniform ultimate
boundedness

1. Introduction. The Proportional Derivative (PD) control is one of the most widely
employed controllers for robot manipulators [1], probably due to its simplicity and ease
of implementation, since it only depends on two gains, and the fact that it is not a
requisite to know the dynamic model of the robot. However, when the control reference
is continually and rapidly changing, as in trajectory tracking control of some robotics
applications, or when there are dynamic parameters variations, a PD controller with
constant gains may not produce adequate results. In order to improve the performance
of this controller, several self-tuning mechanisms have been proposed. One of the most
successfully employed is the fuzzy self-tuning scheme, which has been applied to the
tuning of PD controllers plus dynamic model compensation, as well as other conventional
controllers for robot control [2, 3, 4], process control [5, 6, 7], maritime vehicles [8] and
other plants [9, 10, 11].

The fuzzy logic controllers can be roughly classified in direct action controllers, if the
fuzzy inference system is placed in the forward trajectory of the control loop, or gain-
scheduling controllers, if the fuzzy inference system computes the gains of the controller
in the forward trajectory of the control loop, this is, in a supervisory level [2]. In a
fuzzy gain-scheduling PD controller, the PD gains are continuously computed by a fuzzy
inference system, based on the error or the performance evaluation, which are processed
according to predefined fuzzy inference rules. An important concern in this design is the
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formulation of the rule base. Conventionally, the process of formulation of the rule base
requires an expert knowledge of the plant input-output operation. This dependence may
represent a drawback if the expert knowledge of the plant is partial or is not available.
Moreover, in general the formulated rule base cannot be modified on-line, which could
limit the fuzzy controller ability to respond to parameter variation or uncertainty. One of
the proposed approaches in the literature to cope with these issues is the Self-Organizing
Fuzzy (SOF) controller, proposed by Procyk and Mamdani [12]. In this controller, a set of
initial inference rules is first formulated, then a learning mechanism is started to evaluate
the performance of each rule applied and to generate on-line corrective actions for the
rule, if needed. Since its early applications, several modifications have been proposed
to improve some features of the SOF controller, such as improving the simplicity and
computing efficiency [13, 14], improving the learning strategy by using a performance
index table [14, 15], or using the closed-loop errors directly to modify the linguistic fuzzy
rule table [16, 17]. In [18] the output of a reference model is used as a reference for rule
modification, while in [19] an estimation model is used to calculate the correction for each
fuzzy rule.
Recent applications of the SOF controller in several nonlinear plants include appli-

cations to control of robot manipulators [20, 21], active suspension systems [17], and
biomedical processes [22]. In these works many improvements have been added to the
SOF controller, such as automatic selection of parameters and optimization of the rules
of the performance index table. Since some parameters of the SOF controller, e.g., the
scaling factors, weight distribution or learning rate, are usually hard to adjust by the
trial and error method, there are some alternatives proposed in the literature to achieve
this task. One of these approaches is proposed in [23], where the learning rate and the
weighting distribution are appropriately determined by two additional fuzzy logic con-
trollers. In [20, 21] a self-organizing learning mechanism is employed to modify the rules
of a fuzzy sliding-mode controller, and the scaling factors are adjusted by the so-called
model-matching technique. In [22] a new SOF architecture is proposed, with the inclusion
of a genetic algorithm for the optimization of the rules of the performance index table,
which is dynamic instead of fixed, resulting in robustness with respect to the selection of
scaling factors and parameters variation.
The employment of the SOF controller in a gain-scheduling scheme is proposed in [24]

as a PID controller with gains tuned by a SOF algorithm (SOF-PID controller). In this
controller, the P gain is directly tuned by the SOF algorithm, while the I and D gains are
computed based in the Ziegler Nichols method for PID tuning. Good results in set-point
control of a 2 d.o.f. robot were obtained. This scheme was later applied to trajectory
tracking control of robots [25]. Subsequently, the SOF algorithm was proposed to directly
tune all the gains of the PID controller [26, 27]. However, in [24, 25, 26] the performance
index table is the same for the SOF tuners for each of the PID gains. In [27], two
performance index tables are employed, one for the P gain and the other for the D gain,
and it is proposed a third table for the I gain; however, the table for the D gain needs
the last computed P gain correction as an input, which results in the dependence of the
D gain on the P gain.
On the other hand, an important feature of any control system is its stability. The

stability analysis of SOF controllers has been addressed in several ways. One of these
approaches, previously proposed in [28] but extended to MIMO systems, is employed
in the study of a SOF control for robots [29]. In this approach, the relative stability
and robustness of the equilibrium point at the origin is investigated by employing two
stability indices. In [20, 21], as well as in [30], in which the SOF controllers are used in
hybrid schemes with sliding-mode controllers, the stability of the system is proven using
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the Lyapunov theory. In [2, 31] the studied controllers are of the gain-scheduling fuzzy
type, and the stability analysis is addressed by analyzing the Lyapunov-based stability of
the controllers in the feedback loop. The stability of a simple tracking PD control with
constant gains has been analyzed in [32], where the uniform ultimate boundedness of the
solutions of the closed-loop system is proved, but equal gains are considered for all the
joints, which can be impractical when working with real robots. In [33] the exponential
convergence of the tracking errors to closed spheres is demonstrated, while in [34] a PD-
type output feedback controller is studied, resulting in the boundedness of the tracking
errors.

As it was mentioned above, the PD control is one of the most employed controllers for
robot manipulators. Its parameters are only the proportional and derivative gains, and in
its simplest form, it does not need to compute any dynamic model compensation. These
excellent features motivate us to enhance even more its benefits. The addition of a SOF
controller in a gain-scheduling scheme would give the PD controller better capabilities
to track fast motion trajectories and to be more robust to the variations of the model
parameters. The contribution of this work is threefold: 1) to develop a SOF controller for
robot manipulators based on the PD structure, but now with variable gains depending
on the position errors, which takes advantage of the simplicity and robustness features
of such a controller, but improving significantly its performance; 2) to prove, by using
the Lyapunov theory, that the tracking errors obtained with this class of gain-scheduling
controllers are uniformly ultimately bounded; and 3) to validate these improvements
through real-time experiments.

In this paper, based on the commented previous results, we propose a SOF-PD con-
troller, in which the P and D gains are tuned by a SOF algorithm. One SOF controller
is employed to tune each single gain, resulting in an independent adjustment of these
gains for the n control loops. Moreover, since the P and D gains adjustment should follow
different criteria, we propose to employ two different performance index tables for P and
D gains, unlike [24, 25, 26]. Since it is based on a PD structure, the proposed approach
has the advantages of its simplicity and its good performance in robotic applications,
over the hybrid SOF schemes [20, 21, 23, 30], which have a more complex structure. The
stability analysis of the closed-loop system, an issue not addressed before for SOF gain-
scheduling controllers [24, 25, 26, 27], is carried out by applying the theory of perturbed
systems. As a result, it is proven that, under an appropriate selection of the bounds of
the PD variable gains, the tracking errors are uniformly ultimately bounded, rather than
only exponential convergence to closed spheres with radiuses depending on the PD gains
as in [33]. To the best knowledge of the authors, the presented results have not been
reported before. Furthermore, this is a general result which can be applied to other gain-
scheduling PD tracking controllers, regardless of the tuning mechanism, provided that the
gains are bounded. A procedure to select lower and upper bounds on the variable gains
that meet the error boundedness criterion is proposed. Finally, the better performance of
this controller over a classic fixed gains PD controller is shown by performing real-time
experiments on a 2 d.o.f. robot arm.

The rest of the paper is structured as follows. In Section 2, the SOF-PD controller is
described. Next, in Section 3 the procedure to prove the uniform ultimate boundedness of
the solutions of the closed-loop system is developed, and the tuning procedure suggested
for the bounds of the variable gains is presented. Later, implementation of real-time ex-
periments is described and their results are shown in Section 4. Finally, some conclusions
are given in Section 5.
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In this work the following notation is used: λmin(A) and λmax(A) represent the minimum
and the maximum eigenvalue of a symmetric positive definite matrix A. The norm of the
vector y is defined as ‖y‖ =

√
yTy. Vectors are represented with small bold letters.

2. SOF-PD Controller. The simplified block diagram of the SOF-PD controller is
shown in Figure 1, where q and q̇ are the n × 1 joint position and velocity vectors,
respectively; qd and q̇d are the desired positions and velocities, Kp and Kv are the n× n
diagonal gain matrices, and τ is the n × 1 applied torque vector. The PD control is
in the forward trajectory of the control loop and the SOF mechanism is at the supervi-
sory level. The SOF block comprises the following stages: Input Section, Self-Organizing
Fuzzy Tuners and Output Section.

ROBOT

Kp

Kv

+

+

+

+

-

-

qd

qd

q

q
t

SOF

Figure 1. SOF-PD controller

2.1. Input section. This section is designed to perform the scaling and discretization
of the input signals, which are the position error and the change in the position error.
The objective of these operations is to normalize the input signals to levels that can be
used in the next stages. The block diagram of this section is shown in Figure 2, where
e(t) represents the position error vector q̃ = qd − q as a function of time t, and ∆e(t) is
the change in the position error, which is computed as the difference between the error in
the current time period and the error in the past time period: ∆e(t) = e(t) − e(t − T ),
with T as the sampling period. A single scaling factor is employed for scaling e(t), while
two scaling factors are employed for scaling ∆e(t). For both error and change in error,
two different quantizations are performed: QI and QF . QI produces one value from the
discrete set SI = {1, 2, 3, 4}, for each continuous input value. These values represents
the following linguistic values assigned to the current position error and change in the
position error: Z, S, M and B, that mean Zero, Small, Medium and Big, respectively. QF

produces one value from the discrete set SF = {−6.0,−5.5, . . . , 0, . . . , 5.5, 6.0}, for each
continuous input value. For the scaled position error, the outputs of the quantization
blocks are eQ = [eQI eQF ], and for the scaled change in the position error, the outputs
are ∆eQ = [∆eQI ∆eQF ].
The current PD gains are also scaled and quantized. One scaling factor is used for each

gain. Quantization QF is also used here, producing one value from the set SF , named kQ,
for each continuous scaled gain value.

2.2. Self-organizing fuzzy tuners. In order to tune the PD gains, a tuner for each
of these gains is implemented, e.g., if we are controlling the joint position of a 2 d.o.f.
robot, four gain tuners are implemented: two for the P gains for both joints, and two
for the D gains. In Figure 3 a block diagram of a self-organizing fuzzy tuner is shown.
The Performance Index Table is addressed by eQI and ∆eQI from the Input Section. The
value produced in this block is then added to the output of the Past States Buffer, in
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Figure 3. Self-organizing fuzzy tuner

which several past values of the discretized gain kQ are buffered. The resulting sum is
considered a rule, and it is then passed to the Rule Buffer, where four consecutive values
or rules, R1, R2, R3 and R4, are stored. In a strict sense, the so-called four rules are only
a single rule computed at four different instants of time.
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In the Fuzzification block, four triangular membership functions with constant width are
used. The centers of these functions take the values of R1, R2, R3 and R4; the fuzzy mem-
bership grades corresponding to the variables eQF and ∆eQF are obtained from each one of
these functions. These grades are named {µ1e, µ2e, µ3e, µ4e} and {µ1∆e, µ2∆e, µ3∆e, µ4∆e},
corresponding to eQF and ∆eQF , respectively (see Figure 3).
In the Inference Mechanism block, the min inference on each pair of the obtained

membership values from each membership function is performed, that is to say, the output
of this block is comprised of the result of the min inference on each pair of values µie and
µi∆e:

G = {min(µ1e, µ1∆e),min(µ2e, µ2∆e),min(µ3e, µ3∆e),min(µ4e, µ4∆e)} .
The defuzzification is carried out by employing the Mean of Maxima method [35]. This

algorithm was chosen due to its simplicity and speed of computation. The result ∆k of
this algorithm is:

∆k =
GuRu +Gu−1Ru−1

2
,

where Gu and Gu−1 are the greater two values of G, and Ru and Ru−1 are the respective
rules from which Gu and Gu−1 are obtained.

2.2.1. Performance index tables. We propose to employ two distinct fuzzy rule bases,
which are subject to be modified by two different sets of performance index values, one
for proportional gains tuning, and the other for derivative gains tuning. The purpose
of using these two tables is that the P and D gains can be tuned in an independent
way. These performance index values are shown in Tables 1 and 2, respectively, and were
selected according to the following criteria. Concerning to the P gain, if eQI or ∆eQI are
both zero, the rule does not need to be changed, or if eQI is big and ∆eQI is small, we
can infer that the current position is approaching to the desired position, and the rules
does not need to be changed, thus the performance index table output is zero. If eQI is
small, medium or big, the rule needs to be modified either upwards or downwards, so that
an appropriate value can be produced by the algorithm to modify the current P gain.
Concerning to the D gain, if eQI or ∆eQI are zero, the rule does not need to be corrected,
or if eQI is big, the D gain is not going to contribute in reducing this error. If eQI is
small or medium, the rule is modified either upwards or downwards so the algorithm can
produce a value to modify the current D gain.

2.3. Output section. In this section, updated values for PD gains are obtained. The
output of the defuzzification process is multiplied by a reverse scaling (or descaling) factor,
and the result is added to the past value of the respective PD gain:

k(t) = k(t− T ) + ∆k ∗ dk, (1)

where dk is the reverse scaling factor, k(t − T ) is the past value of the gain and k(t) is
the new value. The factor dk is implemented as a means to keep the gain increment or
decrement within a predetermined range.

Table 1. Performance index for P gains

eQI\∆eQI Z S M B
Z 0 0 0 0
S 0 –2 –2 –2
M 0 4 4 4
B 0 0 2 2
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Table 2. Performance index for D gains

eQI\∆eQI Z S M B
Z 0 0 0 0
S 0 –2 –2 –2
M 0 2 2 2
B 0 0 0 0

3. Stability Analysis. We now present the stability analysis based on the Lyapunov
theory. For this purpose, the SOF-PD controller can be simply considered as a PD
control with variable gains which are functions of the position error. In this section is
shown that, in order to assure the uniform ultimate boundedness of the solutions of the
closed-loop system, these functions must be upper and lower bounded functions. We
begin this analysis by introducing the dynamic model of the robot.

3.1. Robot dynamics. The model of a revolute joints rigid robot, in absence of friction,
is [1, 36]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (2)

where q̈ is the n×1 joint acceleration vector, M(q) is the n×n symmetric positive definite
inertia matrix, C(q, q̇) is the n×n Coriolis and centripetal forces matrix, and g(q) is the
n× 1 gravitational forces vector. Next, some definitions and properties, which are useful
for this analysis, are presented.

Definition 3.1. (Based on [2]). The gain matricial functions Kp(q̃) : Rn → Rn×n and
Kv(q̃) : Rn → Rn×n are defined as follows:

Kp(q̃) =


kp1(q̃1) 0 · · · 0

0 kp2(q̃2) · · · 0
...

...
. . .

...
0 0 · · · kpn(q̃n)

 ,

Kv(q̃) =


kv1(q̃1) 0 · · · 0

0 kv2(q̃2) · · · 0
...

...
. . .

...
0 0 · · · kvn(q̃n)

 .

Assumption 3.1. There exist positive constants kpl, kpu, kvl and kvu, where kpu > kpl > 0
and kvu > kvl > 0, such that kpu ≥ kpi(q̃i) ≥ kpl and kvu ≥ kvi(q̃i) ≥ kvl, for all q̃i ∈ R
and i = 1, · · · , n, where kpi(q̃i) and kvi(q̃i) are the i-th elements of the matrices Kp(q̃)
and Kv(q̃) in Definition 3.1.

Property 3.1. (This property has been reported in [2], inspired in [37]). Constants kpl,
kpu, kvl and kvu are the upper and lower bounds of certain continuously integrable func-
tions, as follows:

1

2
kpl‖q̃‖2 ≤

∫ q̃

0

σTKp(σ)dσ ≤ 1

2
kpu‖q̃‖2,

1

2
kvl‖q̃‖2 ≤

∫ q̃

0

σTKv(σ)dσ ≤ 1

2
kvu‖q̃‖2.
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Property 3.2. The minimum and maximum eigenvalues of Kp(q̃) and of Kv(q̃) are
bounded as follows:

kpl ≤ λmin {Kp(q̃)} ≤ λmax {Kp(q̃)} ≤ kpu, ∀ q̃ ∈ Rn,

kvl ≤ λmin {Kv(q̃)} ≤ λmax {Kv(q̃)} ≤ kvu, ∀ q̃ ∈ Rn.

Proof: Since Kp(q̃) is a diagonal matrix, then λmin {Kp(q̃)} = mini {kpi(q̃i)}. To
complete the proof, notice that according to Assumption 1, kpl ≤ kpi(q̃i) for all q̃i ∈ R and
i = 1, . . . , n, and also notice that mini {kpi(q̃i)} ∈ {kpi(q̃i)} for all q̃i ∈ R and i = 1, . . . , n.
The same procedure can be followed for kpu, kvl and kvu.

3.2. Closed-loop equation. By considering the output k(t) of the i-th SOF tuner (see
(1)) for proportional and derivative gains as the entry kpi(q̃i) of matrix Kp(q̃) and kvi(q̃i)
of matrix Kv(q̃), for i = 1, . . . , n, respectively, the proposed control law is

τ = Kp(q̃)q̃ +Kv(q̃) ˙̃q. (3)

Taking the joint position error vector q̃ = qd − q and the joint velocity error vector
˙̃q = q̇d − q̇ as state variables, from (2) and (3) we obtain the closed-loop equation

d

dt

[
q̃
˙̃q

]
=

[
˙̃q

M(q)−1
[
−Kp(q̃)q̃ −Kv(q̃) ˙̃q − C(q, q̇) ˙̃q + d(t,x)

] ]
, (4)

where x =
[
q̃ ˙̃q

]T
is the state vector and

d(t,x) = M(q)q̈d + C(q, q̇)q̇d + g(q), (5)

can be considered a perturbation of the system. When d(t,x) = 0 ∈ Rn, the origin of
the state space is the only equilibrium point. However, since tracking control is being
considered, q̇d is not zero and presumably q̈d is not zero, then d(t,x) is not zero. Hence,
the origin cannot be considered as an equilibrium point of the system. Therefore, in the
current case, instead of studying the problem of stability of the origin, the problem of the
uniform boundedness of the solutions of the closed-loop system should be studied. In the
rest of the current section, an analysis is carried out in order to find conditions to assure
that the solutions of the closed-loop system are bounded.

3.3. Lyapunov function candidate. The following Lyapunov function candidate is
proposed:

V (q̃, ˙̃q) =
1

2
˙̃q
T
M(q) ˙̃q +

∫ q̃

0

σTKp(σ)dσ + αq̃TM(q) ˙̃q + α

∫ q̃

0

σTKv(σ)dσ,

where α is a positive constant. It can be proven that V (q̃, ˙̃q) can be bounded as follows:[
‖q̃‖
‖ ˙̃q‖

]T
P1

[
‖q̃‖
‖ ˙̃q‖

]
≤ V (q̃, ˙̃q) ≤

[
‖q̃‖
‖ ˙̃q‖

]T
P2

[
‖q̃‖
‖ ˙̃q‖

]
, (6)

where

P1 =
1

2

[
kpl + αkvl −αλmax {M}
−αλmax {M} λmin {M}

]
(7)

and

P2 =
1

2

[
kpu + αkvu αλmax {M}
αλmax {M} λmax {M}

]
, (8)

where Properties 3.1 and 3.2 have been used. (6) can also be written as:

k1‖x‖2 ≤ V (t,x) ≤ k2‖x‖2,
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where k1 and k2 are the positive constants

k1 = λmin {P1} , k2 = λmax {P2} . (9)

To assure that (6) is positive definite, it is enough to prove that matrix P1 is positive
definite. It can be proven that P1 is positive definite if we choose α such that 0 < α < α1,
where

α1 =
kvlλmin {M}
2λ2

max {M}
+

[
k2
vlλ

2
min {M}

4λ4
max {M}

+
kplλmin {M}
λ2
max {M}

] 1
2

. (10)

3.4. Time derivative of the Lyapunov function candidate. The time derivative of
(6) is:

V̇ (q̃, ˙̃q) = ˙̃q
T
M(q) ¨̃q +

1

2
˙̃q
T
Ṁ(q) ˙̃q + α ˙̃q

T
M(q) ˙̃q + αq̃TṀ(q) ˙̃q

+αq̃TM(q) ¨̃q + q̃TKp(q̃) ˙̃q + αq̃TKv(q̃) ˙̃q,

where the Leibnitz rule for derivation of integrals has been used. The derivative along
the trajectories of the closed-loop system (4) is

V̇ = − ˙̃q
T
Kv(q̃) ˙̃q + α ˙̃q

T
M(q) ˙̃q − αq̃TKp(q̃)q̃ + α ˙̃q

T
C(q, q̇)q̃ +

[
˙̃q + αq̃

]T
d(t,x), (11)

where the property of skew-symmetry of 1
2
Ṁ(q)− C(q, q̇) has been used (see [38]). The

perturbation d(t,x) can be bounded as

‖d(t,x)‖ ≤ kM‖q̈d‖M + kg + kc‖q̇d‖2M + kc‖q̇d‖M‖ ˙̃q‖,

where ‖q̇d‖M is the largest value of the desired joint velocities vector, ‖q̈d‖M is the largest
value of the desired joint accelerations vector, and upper bounds over terms M(x)y,
C(x,y)z and g(q) [1, 36, 39] have been used. By denoting d1 and d2 as

d1 = kM‖q̈d‖M + kg + kc‖q̇d‖2M , (12)

d2 = kc‖q̇d‖M ,

the last term of (11) can be bounded as[
˙̃q + αq̃

]T
d(t,x) ≤ d1

[
‖ ˙̃q‖+ α‖q̃‖

]
+ d2

[
‖ ˙̃q‖2 + α‖q̃‖‖ ˙̃q‖

]
. (13)

After upper bounding the first four terms of (11) (by using Property 3.2 and the upper
bound of the term C(x,y)z), and substituting (13), V̇ can be bounded as follows:

V̇ ≤ −kvl‖ ˙̃q‖2 − αkpl‖q̃‖2 + αλmax {M} ‖ ˙̃q‖2 + αkc‖q̃‖‖ ˙̃q‖2

+αd2‖q̃‖‖ ˙̃q‖+ d1

[
‖ ˙̃q‖+ α‖q̃‖

]
+ d2

[
‖ ˙̃q‖2 + α‖q̃‖‖ ˙̃q‖

]
. (14)

For analysis purposes, it is useful to divide (14) in two parts,

V̇ ≤ W1 +W2,

with

W1 = −kvl‖ ˙̃q‖2 − αkpl‖q̃‖2 + αλmax {M} ‖ ˙̃q‖2 + αkc‖q̃‖‖ ˙̃q‖2 + αd2‖q̃‖‖ ˙̃q‖ (15)

+d2

[
‖ ˙̃q‖2 + α‖q̃‖‖ ˙̃q‖

]
and

W2 = d1

[
‖ ˙̃q‖+ α‖q̃‖

]
. (16)
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3.5. Bounds over the solutions. In the process of finding a negative definite function
that upper bounds V̇ , we have to prove that W1 is negative definite, then, we have to find
conditions to assure that the sum W1 + W2 is negative definite. In order to reduce the
degree of W1 from third to second, let us consider a ball Br ⊂ D ⊂ Rn centered in the
origin, with radius r > 0, such that

Br =

{
q̃, ˙̃q ∈ Rn :

∥∥∥∥ q̃
˙̃q

∥∥∥∥ < r

}
,

inside of which W1 is negative definite. Equation (15) can now be written as

W1 = −
[
‖q̃‖
‖ ˙̃q‖

]T
Q

[
‖q̃‖
‖ ˙̃q‖

]
, (17)

where

Q =

[
αkpl −αd2
−αd2 kvl − d2 − α [λmax {M}+ kcr]

]
. (18)

It can be proven that the matrix Q in (18) is positive definite if α is chosen such that
0 < α < α2, where

α2 =
[kvl − d2] kpl

d22 + [λmax {M}+ kcr] kpl
. (19)

Equation (17) can now be written as

W1 ≤ −k3‖x‖2, (20)

where k3 = λmin {Q}. Taking in account the fact that ‖q̃‖ ≤ ‖x‖ and ‖ ˙̃q‖ ≤ ‖x‖, by
defining

b = [α + 1] d1, (21)

W2 in (16) can be bounded as
W2 ≤ b‖x‖. (22)

By using (20) and (22), V̇ can be bounded as

V̇ ≤ −k3‖x‖2 + b‖x‖. (23)

In order to cancel the effect of the positive term in (23) (by using a procedure that has
been used in [40] and in [41]), we include a positive constant ε < 1, such that

V̇ (t,x) ≤ −k3(1− ε)‖x‖2 − k3ε‖x‖2 + b‖x‖. (24)

By taking the two last terms of (24), we have that

−k3ε‖x‖2 + b‖x‖ < 0,

when

k3ε‖x‖2 > b‖x‖,

‖x‖ >
b

k3ε
.

Therefore, by denoting

µ =
b

k3ε
, (25)

we can write
V̇ (t,x) ≤ −k3(1− ε)‖x‖2, ∀ ‖x‖ > µ. (26)

Notice that the time derivative of the Lyapunov candidate function (26) is a negative
definite function inside the ball Br with radius r. From the previous analysis, we can now
establish the stability result, stated in the following proposition.
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Proposition 3.1. Let consider the dynamic model of the robot (2) together with the
control law (3). The structure of the variable gains matrices Kp(q̃) and Kv(q̃) is given in
Definition 3.1. There exists a positive constant α > 0 that satisfies

α < min {α1, α2} , (27)

where α1 and α2 were defined in (10) and (19). Also, the parameter

µ =
b

k3ε
,

where b = [α + 1] d1, ε is a positive constant lower than 1, and k3 = λmin {Q}, satisfies

µ <

√
k1
k2

r, (28)

where k1 and k2 were defined in (9), and r is the radius of the ball Br inside which the
time derivative of the Lyapunov function (26) is negative definite. Then, the closed-loop
system (4) is stabilizable in the sense that there exists T ≥ 0 such that the solution x(t),

with initial state x0 = x(t0) <
√

k1
k2
r, satisfies

‖x(t)‖ ≤
√

k2
k1

µ, ∀ t > t0 + T, (29)

where (29) represents the ultimate uniform bound. A Lyapunov function to demonstrate
this is (6).

Proof: The proof results from the Theorem 4.18 in [40]. In our case, the functions and
parameters referred in the theorem are:

δ1(‖x‖) = k1‖x‖2,
δ2(‖x‖) = k2‖x‖2,
W3(x) = k3(1− ε)‖x‖2,

µ =
b

k3ε
.

Remark 3.1. The ultimate uniform bound of ‖x(t)‖ is inside the ball Br with radius r,

that is, r >
√

k2
k1
µ. This means that the solution x(t) of the system will stay inside the

ball Br, centered in the origin, after a finite time t0 + T .

Remark 3.2. Notice that since the parameter µ depends on the maximum desired veloc-
ities ‖q̇d‖M and accelerations ‖q̈d‖M (see (12), (21) and (25)), if ‖q̇d‖M and ‖q̈d‖M are

large, the uniform ultimate bound
√

k2
k1
µ over the solutions will be large, and inversely, if

these are small, the uniform ultimate bound will be small. Given a certain desired trajec-
tory, if we want to diminish the bound, we have to increase the values of kvl and kpl (see
(7) and (9)). On the other hand, increasing kvu and kpu can result in a larger uniform
ultimate bound (see (8) and (9)).

The requirement of boundedness of the PD variable gains assumed in this analysis
(see Assumption 3.1) is consistent with the practice of using gain values within a certain
range in order to avoid eventual instabilities of the system such as large oscillations or
high tracking errors. This requirement can be fulfilled through an appropriate design of
the tuning mechanism. Notice that the result of this analysis can be generalized to others
variable gains PD tracking control schemes, regardless of the mechanism used to adjust
the gains, provided that these gains are lower and upper bounded. On the other hand,
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for practical applications, the bounds for the variable PD gains cannot be arbitrarily
selected due to the physical limitations of the actuators and the sensors. This issue will
be addressed in the following section.

4. Tuning and Experiments. The ultimate boundedness of the solutions is assured if
(27) and (28) are satisfied. In this context, tuning stands for the appropriate selection
of the minimum and maximum values of the variable PD gains that can be used to
meet such criterion. Therefore, with the purpose of achieving this objective, a tuning
procedure is proposed. The largest value of the desired velocities ‖q̇d‖M and the largest
value of the desired accelerations ‖q̈d‖M are supposed to be known for the designer,
as well as some parameters from the dynamical model of the robot. These parameters
are kM , kg, kc, λmin {M} and λmax {M}. It is important to remark that although these
parameters (or an estimate of them) are required to assure that the solutions are uniformly
ultimately bounded, they are not required to compute the control law. Moreover, in case
of variation of these parameters, the uniform ultimate boundedness of the solutions can
still be guaranteed by selecting large values of kvl or kpl and no too large values of kvu
and kpu (see (25) and (28)).

4.1. Suggested procedure.

• Propose a value for the radius r.
• Propose bounds for the maximum and minimum eigenvalues of the variable gains
matrices Kp(q̃) and Kv(q̃), that is, propose values for kpl, kpu, kvl and kvu.

• Compute α1 and α2 according to (10) and (19), so that (27) can be computed.
• For a set of chosen values of α according to the previous step, compute the constants
b, k1, k2, k3 and µ, so that the fulfillment of (28) can be verified. In case of no
fulfillment of (28), the radius r can be increased, or else the maximum and minimum
eigenvalues for the variable gains matrices can be changed.

• Finally, compute the ultimate uniform bound (29). Choose values of α and r that
yield the best value for the ultimate bound.

4.2. Tuning the gains for the CICESE robot of 2 d.o.f. In the following, values
for tuning the variable gains of the PD controller are proposed. The task of the controller
is to obtain good trajectory tracking for a 2 d.o.f. vertical direct-drive robot, designed
and built at CICESE Research Center, Ensenada, Mexico, which is a prototype robot for
research purposes. This robot is at the Control Laboratory of the Instituto Tecnologico de
La Laguna. The following dynamical parameters of this robot are required: kM = 2.533
[kg m2], kc = 0.336 [kg m2], kg = 40.334 [kg m2/s2], λmin {M} = 0.102 [kg m2] and
λmax {M} = 2.533 [kg m2] (see [36]).
The desired trajectories are the following (proposed in [36])

qd1 = a1 + b1

[
1− e−β1t3

]
+ c1

[
1− e−β1t3

]
sin(ω1t),

qd2 = a2 + b2

[
1− e−β2t3

]
+ c2

[
1− e−β2t3

]
sin(ω2t),

with coefficient values shown in Table 3. With these trajectories, the maximum values of

Table 3. Coefficients of the desired trajectory

ai bi ci ωi βi

i = 1 0.7854 0.2 0.17 1.0 0.5
i = 2 0.0872 0.2 0.2 1.0 0.5
units [rad] [rad] [rad] [rad/s]
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the desired velocities and accelerations are ‖q̇d‖M = 0.3985 [rad/s] and ‖q̈d‖M = 0.6012
[rad/s2].

Trivially we propose ε = 0.9999. The procedure of choosing the bounds for the variable
PD gains is outlined below.

• Selecting kpl. In order to avoid the commanded torques from exceeding the largest
allowed motor torques, which are τmax

1 = 150 [Nm] and τmax
2 = 15 [Nm], we compute

the initial tracking position and velocity errors. With initial conditions q1 = 0.0
[rad], q2 = 0.0 [rad], q̇1 = 0.0 [rad/s] and q̇2 = 0.0 [rad/s], the initial position errors
are q̃1 = 0.7854 [rad], q̃2 = 0.0872 [rad] and the initial velocity errors are ˙̃q1 = 0.0
[rad/s], ˙̃q2 = 0.0 [rad/s], which yield the following values for the maximum initial
gains: kp1 ≤ 190.9 [Nm/rad], kp2 ≤ 172.0 [Nm/rad]. Thus we selected kpl = 150.0
[Nm/rad].

• Selecting kpu. This is the largest value that the proportional gains can take. Since
large proportional gains produce small steady state error, it is desirable to set large
values for this bound. However, since a large kpu yields a large uniform ultimate
bound for the solutions (see Remark 3.2), we chose a minimum value that yields
small position errors, Thus we selected kpu = 1100.0 [Nm/rad].

• Selecting kvl and kvu. Notice from (19) that kvl should be larger than d2 = kc‖q̇d‖M
in order to assure the existence of a positive constant α2 and hence the definite
positiveness of Q. For the current desired trajectory, kvl should be set greater than
0.1339 [Nm s/rad]. Large values of kvl are desirable since the derivative action
contributes to cope with a variable reference. On the other hand, in our experimental
platform, joint velocities are estimated via the Euler algorithm, which in the practice
produces a noisy output signal. This noise can be amplified when the velocity error
is multiplied by the derivative gain, which may result in large distortions of the
derivative control action and exceeding the maximum motor torques. In order to
prevent that this condition happen, by trial and error, the values kvl and kvu were
set to 10.0 [Nm s/rad] and 15.0 [Nm s/rad], respectively.

The selected values are shown in Table 4.

Table 4. Bounds for the gains

kpl kpu kvl kvu
150.0 [Nm/rad] 1100.0 [Nm/rad] 10.0 [Nm s/rad] 15.0 [Nm s/rad]

By choosing r = 5× 104, from (10), (19) and (27) we get that α must be smaller than
5.8718× 10−4. If we select α = 5.871× 10−4, by using the minimum and maximum gains
values just proposed, together with the dynamical robot parameters and the trajectory

parameters, from (9) and (25) we obtain
√

k2
k1
µ = 4.9975 × 104, thus the condition r >√

k2
k1
µ (28) is satisfied. The uniform ultimate bound over the solutions, according to (29),

is
√

k2
k1
µ = 4.9975× 104.

4.3. Experiments. Experiments of the controller with gains according to the bounded-
ness criterion were carried out.

• First, experiments of the SOF-PD were carried out. The bounds of the variable gains
were the proposed in the tuning procedure. The initial values of the gains are shown
in Table 5.



2078 F. SALAS, M. LLAMA AND V. SANTIBANEZ

Table 5. Initial gains values

kp1 kp2 kv1 kv2
150.0 [Nm/rad] 150.0 [Nm/rad] 10.0 [Nm s/rad] 10.0 [Nm s/rad]

• Second, in order to compare results, experiments with a classic PD with constant
gains were also done. The employed gain values are shown in Table 6. Notice that
these gains also satisfy the boundedness criterion just obtained.

Table 6. PD classic gains

kp1 kp2 kv1 kv2
190.0 [Nm/rad] 170.0 [Nm/rad] 10.0 [Nm s/rad] 10.0 [Nm s/rad]

The experiments were carried out using WinMechLab, which is a real-time control test-
oriented software for mechatronic systems [42]. The sampling period used is 2.5 [ms].
Notice that in the experiments of both controllers, we were careful in avoiding to exceed
the maximum allowed torques of the servo-motors.
The tracking errors obtained with the SOF-PD and the classic PD are shown in Figures

4 and 5. The torques delivered by the motors with the SOF-PD controller are shown in
Figures 6 and 7. The gains tuned by the SOF algorithm are shown in Figures 8 and 9.

4.4. Remarks on the experimental results. It can be seen in Figures 4 and 5 that
the errors obtained with the SOF-PD are much smaller than those obtained with the
classic PD. Torques delivered by the SOF-PD (see Figures 6 and 7) are kept under the
maximum allowed torques of the motors. The tuned gains of the SOF-PD are kept within
the established range.
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Figure 4. Tracking errors on q1
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Figure 6. Torque τ1 delivered by the SOF-PD

A significant quantitative comparison of the performance of the controllers can be done
by using the L2 norm criterion, which has been used in [43]. The L2 norm of the tracking
error can be obtained with the following formula:

L2 [q̃] =

√
1

T − t0

∫ T

t0

q̃T q̃ dt
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Figure 8. SOF-PD Gains for joint 1

where t0 and T are the initial and final time of the period of time being considered. The
result of computing this norm on the resulting tracking errors is shown in Figure 10.

4.5. Further experiments. Although good results were obtained from the experiments
with the gains chosen to meet the tuning conditions given in the procedure, in order to
show that the results of the proposed controller can be improved, additional experiments
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Figure 10. L2 norm of the tracking errors

with the SOF-PD controller were carried out, in which the gains were not subject to the
boundedness criterion. The proposed bounds for the variable gains are shown in Table
7. The initial values were the same used in the previous experiments with the SOF-

Table 7. New bounds for the gains

kpl kpu kvl kvu
150.0 [Nm/rad] 3500.0 [Nm/rad] 10.0 [Nm s/rad] 15.0 [Nm s/rad]

PD controller. The gains employed in the classic PD were the same used in the former
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Figure 11. Tracking errors on q1 with the new tuning of the SOF-PD
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Figure 12. Tracking errors on q2 with the new tuning of the SOF-PD

experiments. These values could not be increased for the desired trajectory without
exceeding the maximum torques of the motors.
The tracking errors obtained with the SOF-PD and the classic PD are shown in Figures

11 and 12. The torques delivered by the motors with the SOF-PD controller are shown
in Figures 13 and 14. A comparison of the L2 norm of the tracking errors obtained
with the latter tuning of the SOF-PD controller and the tracking errors obtained with
the PD controller is shown in Figure 15. It can be seen that, in the latter experiments,
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Figure 13. Torque τ1 delivered with the new tuning of the SOF-PD
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Figure 14. Torque τ2 delivered with the new tuning of the SOF-PD

smaller tracking errors were obtained, outperforming the errors obtained with the SOF-
PD controller in the previous experiments (see Figures 10 and 15), this is due to the
fact that the gains could be adjusted without being subject to the tuning constraints.
Nevertheless, it is convenient to remind that the tuning conditions given on the suggested
tuning procedure (see Subsection 4.1) are sufficient but no necessary to guarantee uniform
ultimate boundedness of the solutions of the closed-loop system.
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Figure 15. L2 norm of the tracking errors with the new tuning of the SOF-PD

5. Conclusions. In this paper we have presented a Self-Organizing Fuzzy PD tracking
controller for robot manipulators with a gain-scheduling structure, in which a SOF system
performs the tuning of the gains of the PD controller in the feedback loop, depending on
the position errors. This SOF system has the ability to adjust its own inference rules,
according to two performance index tables designed for independent tuning of P and D
gains. This controller takes advantage of the the simplicity of the PD structure, and its
performance is enhanced by the employment of the SOF system for gain tuning. Based
on the Lyapunov theory, the uniform ultimate boundedness of the solutions of the closed-
loop system of this controller is demonstrated, provided that, for a bounded trajectory,
the variable gains bounds meet the developed boundedness criterion. This analysis, to
the best knowledge of the authors, is carried out for the first time for this class of PD
gain-scheduling controllers.
Moreover, in order to make easier the selection of the bounds of the variable gains that

satisfy the boundedness of the solutions criterion, a tuning procedure is proposed.
Finally, the better performance of the proposed controller in comparison with a classic

PD controller has been verified through real-time experiments on a vertical direct drive 2
d.o.f robot arm, using gain bounds that satisfy the tuning conditions from the boundedness
criterion. Furthermore, additional experiments were carried-out, using gain bounds that
exceed the boundedness criterion, in order to show that the controller performance can still
be improved. The computation of the L2 norm of the resulting position errors confirms
the superiority of the proposed controller.
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