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ABSTRACT. This paper proposes a method for analysis of statically indeterminate struc-
tures, considering the shear deformations, which is an extension to the slope-deflection
method, which is used to analyze all kinds of structures in the plane. This methodology
considers the shear deformation and flexure. The traditional method takes into account
only the flexure deformation and without taking into account the shear deformation, this
is how it usually develops structural analysis of statically indeterminate rigid frames. It
also makes a comparison between the proposed method and the traditional method as can
be seen in the results tables of the problems considered, and in the traditional method not
all values are on the side of safety. Therefore, the usual practice, without considering
the shear deformations will not be a recommended solution. Then is proposed the use of
considering shear deformations and also is more attached to real conditions.
Keywords: Shear deformations, Poisson’s ratio, Moment of inertia, Elasticity modulus,
Shear modulus, Shear area

1. Introduction. In the structural systems analysis has been studied by diverse re-
searchers in the past, making a brief historical review of progress in this subject.

In 1857, Benoit Paul Emile Clapeyron presented to the French Academy his “theorem
of three moments” for analysis of continuous beams, and in the same way Bertot had
published two years ago in the Memories of the Society of Civil Engineers of France, but
without giving some credit. It can be said that from this moment begins the development
of a true “Theory of Structures” [1-4].

In 1854 the French Engineer Jacques Antoine Charles Bresse published his book “Rech-
erches Analytiques sur la Flexion et la Résistance de Pieces Courbés” in which he pre-
sented practical methods for the analysis of curved beams and arcs [1-4].

In 1867 was introduced by the German Emil Winkler (1835-1888), the “Influence Line”.
He also made important contributions to the Resistance of materials, especially in the
flexure theory of curved beams, flexure of beams, resting on elastic medium [1-4].

James Clerk Maxwell (1830-1879), from the University of Cambridge, published what
might be called the first systematic method of analysis for statically indeterminate struc-
tures, based on the equality of the internal energy of deformation of a loaded structure
and the external work done by applied loads, equality had been established by Clapeyron.
In his analysis presented in the Theorem of the Reciprocal Deformations, which by in its
brevity and lack of illustration, was not appreciated at the time. In another publication
later presented his diagram of internal forces to trusses, which combine in one figure all
the polygons of forces. The diagram was extended by Cremona, by what is known as the
Maxwell-Cremona diagram [1-4].
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The ITtalian Betti in 1872 published a generalized form of Maxwell’s theorem, known as
the reciprocal theorem of Maxwell-Betti [1-4].

The German Otto Mohr (1835-1918) made great contributions to the Structures The-
ory. He developed the method for determining the deflections in beams, known as the
method of elastic loads or the conjugate beam. He also presented a derivation simpler and
more extensive of the general method of Maxwell for analysis in indeterminate structures,
using the principles of virtual work. He made contributions in the graphical analysis of
deflections of trusses, complemented by Williot diagram, known as the Mohr-Williot di-
agram of great practical utility. He also earned his famous Mohr Circle for the graphical
representation of the stresses in a stress biaxial state [1-4].

Alberto Castigliano (1847-1884) in 1873 introduced the principle of minimum work,
which had been previously suggested by Menabrea, and is known as the First Theorem
of Castigliano. Later, it presented the Theorem second Castigliano, to find deflections,
as a corollary of the first. In 1879 his famous book published in Paris “Theoreme de
I’Equilibre de Systemes Elastiques et ses Applications”, remarkable by its originality and
very important in the development of analysis of statically indeterminate structures [1-3].

Heinrich Miiller-Breslau (1851-1925), published in 1886 a basic method for analysis of
indeterminate structures, but was essentially a variation of those presented by Maxwell
and Mohr. He gave great importance the Maxwell’s Theorem of Reciprocal Deflections in
the assessment of displacement. He discovered that the “influence line” for the reaction
or an inner strength of a structure was, on some scale, the elastic produced by an action
similar to that reaction, or inner strength. Known as the Miiller-Breslau theorem is the
basis for other indirect methods of structural analysis using models [1-3].

Hardy Cross (1885-1959) professor at the University of Illinois, published in 1930 his
famous moments distribution method, which can be said that it revolutionized the analysis
of structures of reinforced concrete by continuous frames and can be considered one of
the greatest contributions to the analysis from indeterminate structures. This method
of successive approximations evades solving systems of equations, as presented in the
methods of Mohr and Maxwell. This method declined popularity with the availability of
computers, with which the resolution of equations systems is no longer a problem. The
general concepts of the method were later extended in the study on flow of pipes. Later
became more popular the methods of Kani and Takabeya also of type iterative and today
in disuse [1-6].

In the early 50’s, Turner, Clough, Martin and Topp present what may be termed as
the beginning of the application to structures of the matrix methods of stiffness, which
have gained so much popularity today. Subsequently, it is developed the finite element
methods, which have allowed the systematic analysis of large numbers of structures and
obtain the forces and deformations in complex systems such as concrete dams used in
hydroelectric plants. Its promoters include: Clough, Wilson, Zienkiewics and Gallagher
[1,2,7].

The author Luévanos-Rojas [8] developed a method of structural analysis for statically
indeterminate beams, and this method takes into account the flexure deformations and
shear. That previously was considered only the flexure deformation.

Structural analysis is the study of structures such as discrete systems. The theory
of the structures is essentially based on the fundamentals of mechanics with which are
formulated the different structural elements. The laws or rules that define the balance and
continuity of a structure can be expressed in different ways, including partial differential
equations of continuous medium three-dimensional, ordinary differential equations that
define a member or the theories various of beams, or simply, algebraic equations for a
discrete structure. The more delves into the physics of problem, are developing theories
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that are most appropriate for solving certain types of structures and that prove more useful
for practical calculations. However, in each new theory are made hypotheses about how
the system behaves or element. Therefore, we must always be aware of these hypotheses
when evaluating results, fruit of the theories that apply or develop [9-11].

Structural analysis can be addressed using three main approaches [12]: a) tensor for-
mulations (Newtonian mechanics and vectorial), b) formulations based on the principles
of virtual work, ¢) formulations based on classical mechanics.

In the design of steel structures, reinforced concrete and prestressed, the study of struc-
tural analysis is a crucial stage into its design, since the axial forces, shear forces and mo-
ments are those that govern the design of rigid frames and for the case of beams only shear
forces and moments, and the damage caused by such effects may become predominant
among the various requests to consider for your design.

As regards the conventional techniques of structural analysis of rigid frames, the com-
mon practice is to neglect the shear deformations.

This paper proposes to consider the shear deformations and a comparison between the
proposed method and the traditional method is realized.

2. Development.

2.1. Theoretical principles. The scheme of deformation of a structure member is il-
lustrated in Figure 1, which shows the difference between the Timoshenko theory and
Euler-Bernoulli theory: the first 6, and dy/dz does not necessarily coincide, while the
second is equal [13].

The fundamental difference between the Euler-Bernoulli theory and Timoshenko’s the-
ory is that in the first the relative rotation of the section is approximated by the derivative
of vertical displacement, this is an approximation valid only for long members in relation
to the dimensions of cross section, and then it happens that due to shear deformations are
negligible compared to the deformations caused by moment. On the Timoshenko theory,
which considers the deformation due to the shear, i.e., and is valid therefore for short
members and long, the equation of the elastic curve is given by the complex system of

Y4

FiGURE 1. Deformation of a structure member
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do, M,
E = 2
< dx ) I, 2)

where G = shear modulus, dy/dx = total rotation around axis “z”, §, = rotation around

(1P

axis “2”, due to the flexure, V, = shear force in direction “y”, A, = shear area, df,/dx =

d*y/dz?, E = elasticity modulus, M, = moment around axis “2”, I, = moment of inertia

around axis “z”.
Deriving Equation (1) and substituting into Equation (2), it is arrived at the equation

of the elastic curve including the effect of shear stress:
d*y 1 dv, M,

equations:

A2~ GA, dv | EI ®)
From Equation (1) is obtained dy/dz:
dy Vy
YW _ 0, 4
dv ~ GA, @)
And Equation (2) is given 6,:
M
0, = ~d
5L (5)
Now substituting Equation (5) into Equation (4) is:
dy 'V, M,

ir =~ GA, ) BL™ (6)
2.2. General conditions. The slope-deflection method can be used to analyze all type of
beams and rigid frames statically indeterminate. In this method all joints are considered
rigid; i.e., the angles between members at the joints are considered not to change in
value, when the loads are applied. Thus, the joints at the supports interior of statically
indeterminate beams can be considered rigid joints of 180°; and usually the joints in rigid
frames are rigid joints of 90°. When beams are deformed, the rigid joints are considered
to rotate only as a whole; in other terms, the angles between the tangents to the various
branches of the elastic curve in the joint remain the same as in the original undeformed
structure.

In the slope-deflection method the rotations and displacements (the end joints are
subjected to unequal movements in a direction perpendicular to the axis of the member)
of the joints are treated as unknowns. Then the end moments can be expressed in terms of
the rotations and displacements. However, to satisfy the condition of equilibrium, the sum
of the end moments which any joints exerted on the ends of union of the members must
be zero, because the rigid joints in question are subject to the sum of these moments at
the ends (Reversed only in the direction). Further, to satisfy the equilibrium condition of
cutting, equation of sum in shear forces must be zero. This condition must apply, making
a virtual cut in the columns base per level, which provides the additional condition that
corresponds to the unknown displacements.

These procedures solve the equations system of rotations and displacements for beams
and rigid frames statically indeterminate. Therefore, it is important to remember the
hypothesis under which the equations are deduced: a) The material is homogeneous,
isotropic and behaves as linear elastic, i.e., the material is of the same nature, have iden-
tical physical properties in all directions and stresses that can withstand are directly
proportional to the deformations that suffer and the factor of proportionality is called
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modulus elasticity, F, i.e., 0 = Ee (Hooke’s Law); b) The principle of the small defor-
mations, which once loaded structure, deformation or linear displacements and angular
of the joints and each of the points of its members are rather small in such a way that in
form do not change, nor are altered appreciably; ¢) The principle of effects superposition,
that supposes the totals displacements and internal forces total of the structure under
a system of loads, can be found separately by the sum of the effects of each one of the
considered loads; d) You can only take into account the first order effects such as: internal
deformations by flexure always, while the shear deformations can be taken into account
or not.

2.3. Slope-deflection equations. The slope-deflection equations, the moments that act
in the ends of the members are expressed in terms of the rotations, displacements per-
pendicular to the axis of the bar and the loads on the members. Then, the member AB
shown in Figure 2(a) can be expressed in terms of 64, 5 and A, also of the applied
loads, P; and P,. Counterclockwise end moments acting on the members are considered
to be positive and clockwise end moments acting on the members are considered to be
negative. Now, with the applied loading on the member, the fixed end moments, Mp4p
and Mpp4, they are moments required to hold the horizontal tangents at the ends fixed
in Figure 2(b). Additionally at the fixed moments in the ends, M g5, and Mpp,, they
are acting on the member in the fixed ends, when the perpendicular displacement to axis
the member appears, according to be seen in Figure 2(c). Then the moments, M/, and
My} 4, should be such as to cause rotations of 04 and fp. If 04, and 0p, are the end
rotations caused by M/ 5, according to Figure 2(d), thus 642 and 6z, due to M}y ,, are
observed in Figure 2(e).
The conditions required of geometry are [14-18]:

04 = —041 + 042 (7a)
0p =01 — Ops (7b)
B
Mas| A B _ (a)

—

M'AB( A Ba1" " %ﬁ\

AZ B (d)

A = %M'an (e)
wz ______ T Y

FIGURE 2. Derivation of slope-deflection equations
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By superposition:
Mup = Mpap + Myp+ Mp,p (8a)
Mpa = Mppa+ Mp, + Mpp, (8b)
Taking into account the element of Figure 2(c) and supposing that M5 = Mpg,

and, V4 = Vg, doing sum of moments in the point B and is obtained M}, in function
of VAI

VL
MII?AB = 9 (9)
Therefore, the shear forces and moments at a distance “z” are:
Ve="Va (10)
L

Substituting M, and V, in function of V4 in Equation (6), and separating the shear
deformation and flexure to obtain the stiffness due to the displacement, is presented as
follows:

Shear deformation:
dy _ Vi

dr  GA,
Integrating Equation (12) is obtained as follows:
Va
GA;
Considering the conditions of border, when x = 0; y = 0; then C; = 0.
YT aa”

dy . VA L
ﬁ_EIZ/<2 x) dx (15)

Developing the integral of Equation (15), it is the following expression:

(12)

Y= z+Cy (13)

(14)

Flexure deformation:

dy Vi (L z?
A - = 1
do Elz<2x > +02> (16)
Taking into account the conditions of border, when x = 0; dy/dx = 0; it is obtained
that CQ =0.
dy Vi (L z?
hal A - = 1
dz  EBL (2:” 2 ) (7
Integrating Equation (17) is presented the following:
VA L 9 :L'3
= - = = 1
=51 (3-S5 va) (15)
Taking into account the conditions of border, when x = 0; y = 0; it is obtained that
03 - 0
VA L 2 .T:3
= —x° — — 1
YT EL <4x 6) (19)

It is developed the sum Equation (14) due to shear deformation and Equation (19) due

to flexure presents as follows:
. VA VA L 9 .T:3
Y= Ga, T EL (4:” 6 (20)
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Replace x = L; y = A, for to find the displacement in the B support, is as follows:

VuL? [ 12FI,
A= 1 21
12EL <GASL2 * ) (21)
Substituting [19]:
12E1,
[ e — 22
GA,L? (22)
It is obtained G as follows: .
- = 2
“= o (23)

where @ = form factor, v = Poisson’s ratio.
Substituting Equation (22) into Equation (21) and obtaining the value, V, is of the

form:
12E1,

Vi= ot 24
AT @ +1) (24)
When substituting V4 into Equation (9) is the following way:
6F1
Mg =——"A 25
FAB Lg(g + 1) ( )
Then like M} 45 = Mpp4, appear the following equations:
6E1
Mpap = w5—=A 26
FAB LQ(Q + 1) ( a)
6E1
Mpp, = ——"—A 26b
FBA LQ(Q + 1) ( )

Analyzing the element of Figure 2(d) for to find 64, and 0p; in function of M’ 5: It is
considered that V4 = Vg, doing sum of moments in B and obtaining M/, in function of
V4 is presents:

MYz =VaL (27)
Therefore, the shear forces and moments at a distance “x” are:
Ml
V, =28 28
. (25)
MI
M, = 2‘3 (L — ) (29)

Substituting Equations (28) and (29) into Equation (6), then separating the shear
deformation and flexure for obtain stiffness is presented as follows:
Shear deformation:
dy M}
dr  GA,L
Integrating Equation (30) is presented as follows:

(30)

_ Mg
T WAR (31

Taking into account the conditions of border, when z = 0; y = 0; it is C; = 0.
_ Mg
Y= Gar”

dy — Myp
dr = BLL /(L —z)dz (33)

(32)

Flexure deformation:
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It is developed that the integral of Equation (33) is obtained:

dy Mg x?
—= = Ly — —+C 34
dr ELL\"" T2 7% (34)
Integrating Equation (34) is presented:
My (L , 2
_ Lo 2 35
Considering the conditions of border, when z = 0; y = 0; it is C3 = 0.
My (L , 2*
- - 40 36
Y EIZL<2x g T (36)
Now taking into account the conditions of border, when x = L; y = 0; it is obtained:
L2
Then, substituting Equation (37) into Equations (34) and (36) is shown as follows:
dy Mg N P
A Ly —— —— 38
dv  ELL\"" 2 3 (38)
M, (L, % L?
_ Lo o L7 39
YT ELL (2:’7 6 3" (39)

Substituting x = 0 in Equation (38) to find the rotation in support A due to the flexure
deformation 6415, it is as follows:

M gL
3B,

Now substituting # = L, in Equation (38) to find the rotation in support B due to the
flexure deformation 0gr, it is obtained as follows:

M zL
6F1,

If it is considered that they have his curvature radius in the inferior part. Then, the
rotations are positive:

(40)

QAIF = -

(41)

B1F —

ML
=+ 42
Oarr 3E1T, (422)
M)z L
=4+ 42b
Op1r 6E1, (42b)

The rotation due to the shear deformation, 64,5 and #p;s, taking into account the

curvature radius is: ,
dy B Mg

Oris = — = 43
AIS = s T GALL (432)
dy Mg
Opis = — = — 43b
PIS ™ de —  GA,L (43b)
Adding the shear and flexure rotation in the joint A, it is obtained:
011 = O0a1r + 015 (44)
Substituting Equations (42a) and (43a) in Equation (44), it is as follows:
M\zL M
9,41 — AB AB (45)

3E1, GA,L
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The common factor which is obtained in Equation (45) for M/, is as follows:

M 5L 12E1
0 =222 (4 : 46
Al 12Elz< +GASL2> (46)
Substituting Equation (22) into Equation (46):
M 5L
O =-"L"(4+0 A7
M= Topr, 49 )

Adding the shear and flexure rotation in the joint B, and make the simplifications
corresponding, it is presented:
M\ ;L
22— 48
oEL ( ) (48)
Analyzing the beam in Figure 2(e) to find 645 and p, in function of M}, of the same
way as was done in Figure 2(d), it is obtains following:

B1 —

M., L
Qg = —BAZ (2 _ & 49
A2 12Elz( ) (49)
My, L
= 44+ &

Now, substituting Equations (47) and (48) into Equation (7a) and Equations (49) and
(50) into Equation (7b) presents as follows:

ML ML
04 = — 5T, (4+®)+12E1 (2 - 2) (51)
ML M],BAL
AN ] 4+ 2
05 = 12F1, ( )~ 12F1, (4+9) (52)
We develop Equations (51) and (52), to find M/, and M}, in function of #4 and 6p,
it is as it follows: A
+ o 2—o
M’ —|—10 53
AB = { 1+@> A <1+®> B] (53a)
EI 449 2 -9
M, — | ——)0g———10 53b
BA = "7 { <1+@> B <1+@> “} (53b)

Finally substituting, Equations (26a, 26b) and (53a, 53b) into Equation (8a, 8b), respec-
tively, we obtain the slope-deflection equations for statically indeterminate rigid frames:

ElT, 44+ 2—O 6F1,
Map = I {_ <1+®>9“_<1+®> HB]+L2(®+1)A (54a)
ElT, 44+ @ 2— 9 6F1,
Mgy =M S (i el 7 Y b A 4
BA FBAY 7~ { <1+@>93 <1+@> 9/*] L2(2+1) (54b)

3. Application. It developed the structural analysis of the steel rigid frame, in three
different problems, as shown in Figure 3, by the classic method and the proposed method,
i.e., without taking into account and to consider the shear deformations, on the basis of
the following data that appear next:

w = 34.335kN/m

L = 10.00m; 5.00m; 3.00m

P = 49.05kN

h = 5.00m

E = 20019.6kN/cm?

Properties of the beam W24X94
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- :‘I'l‘l'l‘I‘l'l‘1"I'I'l'l-'I'.il'1-I-I'l'l"l'l'l'l"fl;

e —]

Ficure 3. Rigid frame of steel of three lengths equal for beams, with
uniformly distributed load and a discrete load in joint A

A =178.71cm?

A, = 80.83cm?

I, = 111966cm*

Properties of the column W24X61

A = 116.13cm?
A= 64.06cm?

I = 64100cm*

v =0.32

Known conditions: 0 = 0 =0 =07 =0
Unknown conditions: 64, 05, 0c, 0p and A = A g = Apr = Acqg = Apr
Using Equation (23), it is obtained the shear modulus, as follows:

20019.6 )
G = = 7583.182kN
2(1+0.32) fem

Once that is obtained the shear modulus is found the form factor through Equation
(22) as follows:

For beam of 10.00m is:

12(20019.6)(111966)
7583.182)(80.83)(1000)?

Dap =Dpc =9¢cp = ( = (0.04388324626

For beam of 5.00m is:

12(20019.6)(111966)

= 0.175532985
7583.182)(80.83)(500)2

DaB = Dpc = Dcp = (

For beam of 3.00m is:

12(20019.6)(111966)

— 0.4875916251
7583.182)(80.83)(300)2

Dap = Dpc = Dcp = (

For column of 5.00m is:
12(20019.6)(64100)
7583.182)(64.06)(500)2

The fixed moments for beams with uniformly distributed load are:

= (0.1267991228

DA = 9pr = 9ce = 9pa = (
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For beam of 10.00m is:
wL? (34.335)(10.00)?

Mpap = Mppc = Mpcep = T + 5 = +286.125kN-m
L? 34.335)(10.00)?
Mppa = Mpcg = Mppe = —w1—2 = —( 1); ) = —286.125kN-m
For beam of 5.00m is:
L? 34.335)(5.00)?
MFAB = MFBC = MFC’D = ’1111—2 = ( 1)2( ) = +71531kN—m
L? 34.335)(5.00)?
Mppa = Mpcp = Mppe = _wl_2 = —( 1)2( ) = —71.531kN-m
For beam of 3.00m is:
L? 34.335)(3.00)?
Mpap = Mppc = Mpcp = w1—2 = +( 1)2( ) = +25.751kN-m
L? 34.335)(3.00)?
Mrps = Mpcp = Mppe = _11)1_2 = —( 1)2( ) = —25.751kN-m

Calculation of “EI” is:
For all beams is:

ET = (20019.6)(111966) = 2.241514534 x 10°kN-cm? = 224151.4534kN-m?
For all columns is:
ET = (20019.6)(64100) = 1.283256360 x 10°kN-cm?® = 128325.6360kN-m”

Then, substituting, all these values into the corresponding equations for each member
in the traditional method and the proposed method.
The slope-deflection equations, neglecting shear deformations (traditional method) are:

El, 6E1,
Myp = Mpap + (—49,4—293)4— Iz A

El, 6FE1,
Mpa = Mppa + (—40p — 204) + 72 A

The slope-deflection equations, considering shear deformations (proposed method) are:

EI, 4+ 2 -9 6E1,
Map = Mpap + {-( >9A—< >9B]+L27A

L 1+@ 1+@ (@+1)
ET, 4+ o 2—-0 6F1,
Mps =M - 0 — | —— )0 ——A
A= Mrpat —p { <1+®> B <1+®> A]+L2(®+1)

Once that is obtained the moments in each member as a function of rotations and
displacements, it is applied the condition equilibrium of moments at the joints, which are:
Joint A:
Map+ Mg =0

Joint B:

Mpa + Mpc + Mpr =0
Joint C':
Joint D:

Mpc + Mpyg =0
Below is generated equilibrium condition of shear forces at the base of the frame, as
shown in Figure 4, which is:

P—Hpy— Hpp — Hge — Hgp =0
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5 :"I'1'1'1'1'1'1'11'l'1'fl'"I'I'I'l"ﬂ'l'l"l'll
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(=]

FIiGURE 5. Free body diagram of each column

Shear forces on the base of frame are expressed in terms of the final moments, as shown
in Figure 5, which are:

Hpn = Mg —}il- MEA; Hpp = Mpr —;L- MFB;
Heo = Meca —;t MG’C; Hup = Mpw —;t Mpup

These equations are presented in terms of rotations and displacement, in this case there
are 5 equations with 5 unknowns (04, 05, 0¢, 6p and A), and these are developed to find
their values. Once that are found rotations and the displacement, were subsequently
substituted into the slope-deflection equations to localize the final moments at the ends
of the members. Now by static equilibrium, shear forces are obtained for each member.
Then, it is obtains the diagram of shear forces and moments diagram.

Below are the results in the tables and figures, for the three different cases.

4. Results. According to Table 1 and Figure 6 which present the rotations and displace-
ment in each of the joints, it is observed that the values are minor in all cases for the
traditional method in absolute value, which does not consider shear deformations, and is
quite considerable for short members. For example, for L = 3.00m, the major difference
exists, is in the joint B, as soon as to the rotation of a 74% and the minor difference, for
the horizontal displacement which occurs in the joints A, B, C' and D is of 14%.
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TABLE 1. The rotations and displacement in each one of the joints
Case 1 Case 2 Case 3
Deformations L = 10.00m L = 5.00m L = 3.00m
S S S
NSD | CSD | 2B | NSD | CSD | &5 | NSD | CSD | &5
04 x 10* +17.14 | +18.5710.92 | +3.91 | +4.30 | 0.91 | +1.47 | +1.85 | 0.79
05 x 10 —-1.92 | —2.02 | 0.95| —0.18 | —0.30 | 0.60| +0.08 | +0.31 |0.26
0o x 10* +3.96 | +4.13 |0.96| +1.15 | +1.19 [ 0.97| 4+0.47 | +0.59 | 0.80
0p x 10* —13.61| —-14.50({094| —1.59 | —1.69 |0.94| +0.05 | +0.17 |0.29
A x 10* +13.67 | +15.08 | 0.91 | +12.00 | +13.57 | 0.88 | +11.25 | +13.04 | 0.86

0; = the angle that forms the tangent due to the deformation in the joint 7, in radians

A = the horizontal displacement that undergoes the joint A, B, C' and D, in meters
NSD = Neglecting the shear deformations
CSD = considering the shear deformations

Nomenclature:

+ The rotations are shown as clockwise

— The rotations are shown as counterclockwise

With regard to Table 2 and Figure 7 which show the axial forces in the members
between both methods. According to the results, there are also differences, for L = 3.00m
is lower a 5% of the AF member in the traditional method with respect to the proposed
method, and for L = 10.00m is higher a 5% of the CD member in the traditional method
with respect to the proposed method.

TABLE 2. The normal forces of each member in kN

Case 1 Case 2 Case 3

Normal Force L = 10.00m L = 5.00m L = 3.00m
NSD | CSD | X2 | NSD | CSD |2 | NSD | CSD | 532
Nag +86.2 | +83.3 | 1.03 | 4+46.3 | +45.9 | 1.01 | +39.7 | +39.8 | 1.00
Ngc +63.4 | +61.3 | 1.03| 4+30.9 | +31.0 | 1.00 | +26.1 | +26.4 | 0.99
Nen +58.8 | +56.1 [1.05| +19.7 | +19.5 | 1.01 | +13.7 | +13.8 | 0.99
Nag +150.7 | +150.4 | 1.00 | +65.8 | +67.6 | 1.00 | +28.3 | +29.8 | 0.95
Ngr +362.5 | +361.9 | 1.00 | +186.5 | +185.9 | 1.00 | +118.1 | +115.7 | 1.02
Nea +358.2 | +359.4 ( 1.00 | +179.3 | +179.3 | 1.00 | +103.5 | +104.6 | 0.99
Npu +158.7 | +158.3 | 1.00 | +83.4 | +83.6 | 1.00 | +59.2 | +59.1 | 1.00

N;j = normal force the member ¢j
Nomenclature for the members:
+ Force compression

— Force tension

In Table 3 and Figure 8 which show the shear forces in the ends of the members for
the two methods. For example, for L = 10.00m is lower a 11% of the CG member in
absolute value in the traditional method with respect to the proposed method, and for L
= 10.00m is greater an 8% in the AF member in the traditional method with respect to
the proposed method.
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TABLE 3. The shear forces of each member in kN

Case 1 Case 2 Case 3

Shear Force L = 10.00m L = 5.00m L = 3.00m
NSD | CSD | 235 | NSD | CSD | 32| NSD | CSD | &P
Vag +150.7 | +150.4 | 1.00 | +65.8 | +66.3 | 0.99 | +28.3 | +29.8 | 0.95
Vea —192.6 | —193.0 | 1.00 | —105.9 | —105.4 | 1.00 | —74.7 | —=73.2 | 1.02
Vac +169.8 | +169.0 | 1.00 | +80.6 | 4+80.5 | 1.00 | +43.3 | +42.4 | 1.02
Ven —173.5| —174.4|1.00 | —91.0 | —91.2 | 1.00 | —59.7 | —60.6 | 0.99
Veb +184.7 | +185.0 | 1.00 | +88.2 | +88.1 | 1.00 | +43.8 | +43.9 | 1.00
Voo —158.7| —158.3|1.00 | —83.4 | —83.6 | 1.00 | —59.2 | —59.1 | 1.00
Vg +37.1 | +34.3 [1.08]| —2.8 | —3.1 [0.90| —9.3 | —9.2 |1.01
Var —22.8 | —22.0 [1.03| —15.3 | —14.9 | 1.03 | —13.6 | —13.4| 1.01
Vee —46 | —52 |0.89| —11.3 | —11.6 | 0.97 | —12.4 | —12.7|0.98
Vou —58.8 | —56.1 |1.05| —19.7 | —19.5 [1.01 | —13.7| —13.8 | 0.99

Vij = shear force the member 47, in the joint ¢
Nomenclature for beams:

+ Force shear is above of the axis of reference

— Force shear is under of the axis of reference
Nomenclature for columns:

+ Force shear to the right of the axis of reference
— Force shear to the left of the axis of reference

Being: Vag = —Vga; Ver = —VrB; Vg = —Vae and Vprg = —Vip.

With respect to Table 4 and Figure 9 which illustrates the negative moments and
positive for both methods. As soon as to the results, for L = 10.00m is greater a 26% in
the FA member at the end F, in absolute value in the traditional method with respect
to the proposed method, and for L = 10.00m is lower a 40% in the CG member at the
C, in absolute value in the traditional method with respect to the proposed method.

5. Conclusions. The results of the problem considered, through the application of two
different techniques: traditional method (considering flexure deformations) and the pro-
posed method (considering the flexure deformations and shear), allowed to conclude that:

For the traditional method, the rotations and displacement are lower in all cases, with
respect to the proposed method. This is a logical situation, since the rigidities are lower
when considering shear deformations, because the elements are leaner and have higher
rotation and displacement when the load is applied. This condition implies that it must
take into account the deformations permitted by building regulations, because in some
situation could be presented which does not meet the standards established by these
codes.

According to the axial forces, shear forces and moments acting on the members. These
mechanical elements are those which govern the design of a structure. The results show
that differences exist between the two methods, both on the conservative side as of insecure
side with respect to the traditional method. This means that, it is designing wrongly,
on one side some members are exceeded in their cross section dimensions and in another
situation does not comply with the minimum conditions for that a is satisfactory structure.
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TABLE 4. The moments of each member in kN-m

Case 1 Case 2 Case 3

Moment L = 10.00m L = 5.00m L = 3.00m

NSD | CSD | X2 | NSD | CSD |22 | NSD | CSD | &2
Mg | —137.7|-133.4/1.03| —3.1 | —3.3 |0.94| +19.5 | +18.3|1.07
M5 | +193.0 | +195.8 | 0.99 | +59.9 | +60.7 [ 0.99 | +31.1 | +31.2 | 1.00
Mgy | —347.4|—346.61.00 | —103.3 | —101.0 | 1.02 | —50.2 | —46.9 | 1.07
Mpe | —285.6 | —286.3 | 1.00 | —64.5 | —63.7 | 1.01 | —16.4 | —14.2 | 1.15
MEpe | +134.3| +129.4 | 1.04 | +30.2 | +30.7 [ 0.98 | +11.0 | +12.0 | 0.91
Mcp | —313.0 | =313.5|1.00 | —90.4 | —90.3 | 1.00 | —40.9 | —41.4 | 0.99
Mep | —311.6| —311.2[1.00 | —65.2 | —64.3 | 1.01 | —11.1 | —=11.2{0.99
MEcp | +184.9 | +187.40.99 | +48.1 | +48.7 [ 0.99 | +16.9 | +16.8 | 1.00
Mpe | —181.8| —177.5[1.02 | —53.3 | —53.0 | 1.01 | —34.1 | —34.0 | 1.00
Mp | +137.7|+133.4|1.03| +3.1 | +3.3 |0.94| —19.5|—18.3|1.07
Mgs | —478 | —38.0 |1.26 | +16.9 | +18.8 | 0.90 | +27.1 | +27.8 | 0.97
Mpgr | —61.8 | —60.2 | 1.03 | —38.8 | —37.3 | 1.04 | —33.8 | —32.7| 1.04
Mpp | +52.0 | +49.8 |1.04 | +37.9 | +37.2 | 1.02 | +34.2 | +34.3 | 1.00
Mee | —14 | —24 |0.60| —25.2 | —25.9 | 0.97 | —29.8 | —30.1 | 0.99
Mae | +21.8 | +23.6 | 0.92 | +31.1 | +32.0 | 0.97 | +32.2 | +33.1 | 0.97
Mpy | —181.8| —177.5|1.02| —53.3 | —53.0 | 1.01 | —=34.1 | —34.0 | 1.00
Myp | +112.0 | +103.0 [ 1.09 | +45.1 | +44.3 | 1.02 | +34.4 | +34.9 | 0.98

M;; = negative moment the member 4j, in the joint 4
M¢.;; = positive moment the member ij
Nomenclature for moment:

e For horizontal members:

+ Moment that is above of the axis of reference (compression in superior fiber and

tension in inferior fiber)

— Moment that is under the axis of reference (tension in superior fiber and compression

in inferior fiber)

e For vertical members:

+ Moment that is to the right of the axis of reference (compression in right fiber and

tension in left fiber).

— Moment that is to the left of the axis of reference (tension in right fibers and

compression in left fibers).

1965

Since that the principle in civil engineering, with regard to the structural conditions is
that have to be safe and economical.

Therefore, the usual practice of using the traditional method (slope-deflection method
considering flexure deformations) is not a recommended solution.

So taking into account the numerical approximation, proposed method (considering
the flexure deformations and shear), happens to be the more appropriate method for
structural analysis of rigid frames and also more attached to the real conditions.
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