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Abstract. In this paper, a novel discriminant analysis method for a Gabor-based image
feature extraction and representation is proposed and then implemented. The horizontal
and vertical two-dimensional principal component analysis (HV-2DPCA) is directly ap-
plied to a Gabor face to reduce the redundant information and preserve a bi-directional
characteristic as well. It is followed by an enhanced Fisher linear discriminant model
(EFM) generating a low-dimensional feature representation with enhanced discrimination
power. By the most discriminant features, different types of classes of training samples
are made widely apart and the same category classes are made as compact as possible.
This novel algorithm is designated as the horizontal and vertical enhanced Gabor Fisher
discriminant (HV-EGF) in this paper. By use of various dimensions of features as well
as various numbers of training samples, our experiments indicate that the proposed HV-
EGF method provides a superior recognition accuracy relative to those by the Fisher
linear discriminant (FLD), the EFM and the Gabor Fisher classifier (GFC) methods. In
our proposal, the recognition accuracies up to 99.0% and 97.7% are reached with images
of features dimensions 38× 38× 2 and 10× 10× 2 on the ORL and the Yale databases,
respectively.
Keywords: Gabor Fisher classifier (GFC), Fisher linear discriminant (FLD), Enhanced
Fisher linear discriminant model (EFM), Horizontal and vertical enhanced Gabor Fisher
discriminant (HV-EGF)

1. Introduction. Face recognition has recently attracted wide attention of the research-
ers in the field of biometric authentication. There are a great number of techniques
developed to extract textures from face data, such as Fourier transformation, wavelet
transformation and Gabor filtering, among which the Gabor filtering is demonstrated as
an effective approach for face recognition [1,2], sustaining face recognition performances
under varying illuminations and poses. The Gabor filtering representation is validated
able to capture salient visual properties such as spatial localization, orientation selectivity
and spatial frequency [3,4].

In the face representation and recognition with Gabor filtering, five different scales
and eight orientations Gabor filters are used in most cases to extract different spatial
frequencies and orientation textures, which leads to a large dimensional Gabor face. The
identification recognition is turned into a complex task full of challenges due to the high
dimensional face image data. In an effort to circumvent the above mentioned problem,
there have been plenty of methods proposed for face representation and recognition, one
of which is the Principal Component Analysis (PCA) [5-9] aiming to preserve a global
structure and reduce the dimensionality based on the shared characteristics among the
transformation methods. It is firstly indicated by Sirovich and Kirby that an arbitrary
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human face can be represented along an eigenvector coordinate space [5], and Turk and
Pentland further proposed the well-known Eigenfaces method for face recognition based
on PCA [6]. Dagher and Nachar [7] found a fast incremental principal non-Gaussian
directions analysis algorithm, referred to as IPCA-ICA, which is done by merging the
runs of two algorithms based on PCA and independent component analysis (ICA) run-
ning sequentially. A high average success rate rendered by this algorithm is reached in
contrast to others by simulations on various databases. Furthermore, Xie and Lam [8]
describe a novel improved version of PCA in terms of nonlinear mapping, which is per-
formed in an original feature space. Taking into account the statistical property of the
input features, the proposed nonlinear mapping adopts an eigenmask to emphasize the
facial feature points of interest. By Vaswani and Chellappa in [9], a novel classification
algorithm is proposed on the basis of the principal component subspace (PCA space) for
the entire data, which is designed for classification problems, such as object recognition
where different classes are of distinct and nonwhite noise covariance matrices.
Although the PCA has been proven to be one of the most effective methods in face

recognition, it still undergoes the problem of a high dimensional vector space due to the
vector operation therein. In a vector operation mode, the computation of the eigenvectors
of a covariance matrix is highly time consuming. In the event that the training sample size
is much smaller than the dimensionality of the images, the singular value decomposition
(SVD) technique is found effective in the reduction of computational complexity. Yet it
is seen not as effective to a large size of training sample. PCA in face recognition has
not been extended to two dimensions until recently. As a popular technique widely used
in many applications providing more effective and accurate results, the two-dimensional
Principal Component Analysis (2DPCA) method is a straightforward image projection
technique [10]. In PCA, it is requested that the 2D image matrices be mapped into pattern
vectors. Instead, the 2DPCA extracts directly image features based on 2D image matrices
rather than a 1D vector. In this way the image matrices do not need to be transformed
into vectors. Due to the smaller size of the image covariance matrix required than that
in the original PCA, 2DPCA requires less amount of time to extract image features and
achieves a superior recognition accuracy.
Having been used successfully as a statistical feature extraction in a number of classifi-

cation problems, another popular method for face recognition is the Fisher linear discrim-
inant (FLD), also known as the Linear Discriminant Analysis (LDA) [11,12]. The FLD
solves a generalized eigenvalue problem so as to maximize the ratio between the traces of
the between-class and the within-class scatter matrices. In face image recognition appli-
cations, there are often a large number of pixels or features needed. However, there is a
limited number of training samples in total, which is commonly less than the dimension of
the feature space. The within-class scatter matrix will be singular in case its rank is found
less than the number of feature. A considerable amount of research has been devoted to
the design of Fisher-based methods, for targeting small sample and high dimensional
problems. In this regard, one popular technique proposed is a combined version of PCA
and FLD [13,14]. In this way, the 2DPCA is first used for dimensionality reduction to
remove the singularity of the within scatter matrix, and then the FLD is implemented
in the 2DPCA subspace. In addition, the conventional 2DPCA method is operated on
row vectors of image, but the information might be contained in column vectors of image.
Therefore, both kinds of information are needed in the representation for face recogni-
tion. Based on this concept, a horizontally and vertical PCA-based discriminant analysis
(HVDA) was proposed [15,16], in which 2DPCA is firstly applied horizontally and ver-
tically on the image matrices in order to achieve a lower computational complexity, and
then the FLD analysis is used for further feature extraction. As a significant feature in
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recognition, HVDA can preserve the covariance information between the horizontal and
the vertical geometric structures in image representation.

One major drawback of FLD is that it requires a large size of training sample to reach
a good generalization. An enhanced Fisher linear discriminant model (EFM) method,
as presented in [17], improves the generalization performance of an FLD-based scheme
by balancing the spectral energy criterion for sufficient representation and the eigenvalue
spectral requirement. Applying the EFM to the integrated shape and texture features, an
Enhanced Fisher Classifier (EFC) is developed by Liu and Wechsler [18]. At the onset, the
dimensionalities of the shape and the texture spaces are reduced by the use of 2DPCA,
and then constrained by the EFM for enhanced generalization.

An excellent face recognition system must acquire the following properties, i.e., sim-
plicity, robustness and a high recognition accuracy. On the simplicity property, it requires
low-dimensional features of the face object with enhanced discriminatory power. On the
robustness property, it should be less sensitive to facial expressions, occlusions and the
illumination variation. Based on these properties, a novel algorithm, referred to as the
horizontal and vertical enhanced Gabor Fisher discriminant (HV-EGF), is developed in
this paper. As illustrated in Figure 1, the Gabor features of different scales and orienta-
tions are firstly extracted in the algorithm by the convolution of the face image with a
set of Gabor filters. The extracted features are then reorganized to form a new feature
matrix, designated as a Gabor face capturing the local structure corresponding to the
spatial frequency, the spatial localization and the orientation selectivity [19,20]. Based on
the Gabor face, the horizontal and vertical 2DPCA are used subsequently to reduce the
dimension and to preserve bi-directional characteristics. The use of the horizontal and
vertical 2DPCA makes a difference between our proposal and [21,22]. It is followed by
EFM generating a low-dimensional feature representation with enhanced discrimination
power. By the most discriminant features, different types of classes of training samples
are made widely apart and the same category classes are made as compact as possible.
Finally, the nearest neighbor classifier is used for classification. In the experiments, the
face recognition tasks were performed based on two well-known face databases, namely
ORL and Yale. The ORL database is composed of 400 images taken from 40 individuals,
each with 10 different images containing variations in facial expression and in some other
details, e.g., wearing eyeglasses or not. However, the Yale face database is made up of
images from 15 individuals, each providing 11 distinct facial expression images with illu-
mination variations. Our proposal is demonstrated to not merely require less amount of
computation but also outperform a number of existing popular face recognition methods,
i.e., the FLD [23,24], the EFM [17] and the Gabor Fisher classifier (GFC) methods [21,22].

The rest of this paper is outlined as follows. The proposed algorithm is detailed in
Section 2. Section 2.1 presents the Gabor filtering for feature extraction, Section 2.2
presents the horizontal and vertical 2DPCA to reduce the dimensionality of a Gabor face,
and the EFM analysis is presented in Section 2.3. Compared with other methods, the
experimental results, including the performance analysis, based on ORL and Yale face
databases, are exhibited in Section 3. Concluding remarks are given in Section 4 at the
end of this paper.

2. The Proposed Algorithm.

2.1. Gabor feature analysis. A Gabor representation is optimal and gives good per-
formance for classifying facial actions. Daugman pioneered the use of the Gabor wavelet
representation in computer vision in the 1980s [19,25]. In this paper, the Gabor wavelet
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Figure 1. Block diagram of the proposed face recognition scheme

representation is introduced because it could provide a superior performance for classifying
facial expressions [1].

2.1.1. Gabor filtering. Gabor filters correspond to a family of bi-dimensional Gaussian
functions modulated by an even (cosine function) and odd (sine function) part. In this
paper, Gabor wavelets (kernels, filters), as defined in [21,26], are expressed as

ψµ,v (z) =
‖kµ,v‖2

σ2
e(−‖kµ,v‖2‖z‖2/2σ2)

[
eikµ,vz − e−σ2/2

]
(1)

where z = (x, y), and µ and v define the orientation and scale of a Gabor filter, respec-

tively. eikµ,vz is a function of oscillation, and e(−‖kµ,v‖2‖z‖2/2σ2) is a Gaussian function
reflecting the localization of the Gabor filter and confining the range of the oscillation
function, where σ denotes the standard deviation of the Gaussian, ‖·‖ the norm operator,
and the wave vector kµ,v is defined as

kµ,v = kve
iφµ , kv =

kmax

f
, φµ = µ

π

8
(2)

where kmax represents the maximum frequency, and f the spacing factor between filters in
the frequency domain. The Gabor kernels in Equation (1) are all similar since they can be
generated from a filter, the mother wavelet, by scaling and rotation via the wave-vector
kµ,v. Our proposal is implemented with 40 Gabor wavelet filters, i.e., combinations of
eight orientations µ ∈ {0, . . . , 7} and five scales v ∈ {0, . . . , 4}, on a condition that

kmax =
π

2
, f =

√
2, σ = 2π (3)

Shown in Figure 2 are the real parts of the 40 Gabor filters. All the filters have a
strong representation of spatial locality and orientation, making them a proper choice in
an image feature extraction for face recognition.

2.1.2. Gabor representation. Letting I(z) be the gray level distribution of the input image,
the Gabor transform of I is defined as

Oµ,v(z) = I(z) ∗ ψµ,v(z) (4)

where ∗ denotes a convolution operator, and Oµ,v(z) the convolution result corresponding
to the Gabor filter at the frequency v and the orientation µ. A set S = {Oµ,v : v ∈ (0, . . . ,
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Figure 2. Real parts of the Gabor filters along eight orientations on five scales

(a) (b)

Figure 3. Illustration of a facial image response to 40 Gabor filters for (a)
an original face image and (b) the Gabor representation of the face image
(Gabor face)

4), µ ∈ (0, . . . , 7)} is formed as the Gabor transform representation of the gray level image
I(z). Now, the Fast Fourier Transform (FFT) of Oµ,v(z) is given as

F {Oµ,v(z)} = F {I(z)}F {ψµ,v(z)} (5)

and taking the inverse transform leads to

Oµ,v(z) = F−1 {F {I(z)}F{ψµ,v(z)}} (6)

where F and F−1 denote the Fourier and the inverse Fourier transform operators respec-
tively. As the response Oµ,v(z) to each Gabor filter is a complex function, the real part,
Real {Oµ,v(z)}, is employed to represent the original face image.

Using a family of 40 Gabor filters, the Gabor representation of a face image is shown
in Figure 3. The 40 Oµ,v, as seen in Figure 3, are treated as an entity and referred to as
a Gabor face O. Salient local features, such as eyes, nose and mouth that are suitable
for visual event recognition [27], are characterized in a Gabor representation. Since it
consists of different localities, scales and orientation features, it makes sense to perform
operation on a Gabor face directly.
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2.2. The 2DPCA. Low dimensionality is a requirement for learning and computation
in practical applications. Since a Gabor output is expressed in a two-dimensional matrix
form, it is required to reduce the dimensionalities accordingly. In comparison, 2DPCA is
a preferred choice in face recognition, aimed at the dimensional reduction and efficient to
represent a face image. Yang et al. [10] proposed a novel technique, coined 2DPCA, in
which face recognition is directly performed on a 2D matrix representation, that is, there
is no need to transform the image matrix into a one-dimensional vector. The eigenvectors
of the original image covariance matrix are directly evaluated in the absence of a matrix-
to-vector conversion. Hence, it requires a much smaller size of image covariance matrix
than the PCA. Suppose that there are N training samples, Oi (i = 1, · · · , N), where Oi is
an m× n Gabor representation matrix of a face image. The N training samples are then
applied to the 2DPCA, which is followed by EFM generating a low-dimensional feature
representation with enhanced discrimination power. The following section outlines two
versions of 2DPCA, namely, the horizontal and the vertical 2DPCA.

2.2.1. Horizontal 2DPCA. The goal of the horizontal 2DPCA is to find a set of orthogonal
projection axes U = [u1, u2, · · · , ud] satisfying an identity matrix constraint UTU = I.
In this way the projected vectors xk = Oiuk (k = 1, 2, · · · , d) achieve a maximum total
scatter. Denoting the mean of all Gabor face image samples as Ō, Gt, the image covariance
matrix of the horizontal 2DPCA, is given as

Gt =
1

N

N∑
i=1

(
Oi − Ō

)T (
Oi − Ō

)
(7)

The optimal projection axes, u1, u2, · · · , ud, are the orthonormal eigenvectors of Gt

corresponding to the first d largest eigenvalues. The image linear transformation of the
horizontal 2DPCA is defined as

Xi =
(
Oi − Ō

)
U (8)

Thus, an m-by-d projection feature matrix Xi = [x1, x2, · · · , xd] is formed with column
vectors xk (k = 1, 2, · · · , d), referred to as the project feature vector of an image Oi, where
d is the number of the horizontal projections waiting to be found. The matrix Xi =
[x1, x2, . . . , xd] is the principal component containing the horizontal 2DPCA features of
the image Oi.

2.2.2. Vertical 2DPCA. By analogy with Equation (7), the image covariance matrix of
the vertical 2DPCA is defined as

Ht =
1

N

N∑
i=1

(
Oi − Ō

) (
Oi − Ō

)T
(9)

Letting V = [v1, v2, . . . , vp] be the orthonormal eigenvectors of Ht corresponding to the
p largest eigenvalues, the image linear transformation of the vertical 2DPCA is given by

Yi =
(
Oi − Ō

)T
V (10)

where Yi = [y1, y2, . . . , yp] denotes the principal component containing the vertical 2DPCA
features of the image Oi.

2.2.3. Properties. There are three properties in both the horizontal and the vertical
2DPCA, i.e., the invariance, the uncorrelation and the minimal mean square error (MSE)
properties. The transform matrix of horizontal (vertical) 2DPCA is invariant to any
change in image row (column) sequence. Any change in the sequence of image rows
(columns) of a training image demonstrates no effect on Gt (Ht). The invariance property
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(a) d = 3 (b) d = 10 (c) d = 20 (d) p = 3 (e) p = 10 (f) p = 20

Figure 4. (a)-(c) Images reconstructed by the horizontal 2DPCA, and
(d)-(f) images reconstructed by the vertical 2DPCA

is an advantage of 2DPCA over PCA in the aspect of image representation. The uncor-
relation property of 2DPCA is due to the fact that the projection axes of 2DPCA are the
set of orthonormal eigenvectors of the covariance matrix. Thus, the projection feature
vectors satisfy the conditions Cov (xi, xj) = 0, i 6= j, i, j = 1, · · · , d and Cov (yi, yj) = 0,
i 6= j, i, j = 1, · · · , p.

As in PCA, the original face Oi in the 2DPCA method can be reconstructed by

Õi =
d∑

j=1

xju
T
j (11)

where Õi, the same size as Oi, denotes a reconstructed image of Oi. Illustrated in Figure
4 is the invariance property of the reconstruction of the horizontal and vertical 2DPCA
methods. The reconstruction MSE can be computed as

ε2 = E
∥∥∥Oi − Õi

∥∥∥2

(12)

where ‖·‖ denotes the Frobenius norm of a matrix. The optimal projection axes, u1, u2,
· · · , ud (v1, v2, · · · , vp) are the orthonormal eigenvectors of Gt (Ht) corresponding to the
first d(p) largest eigenvalues. The reconstruction MSE is thus minimized by use of the
first d(p) eigenvectors to represent Oi.

2.3. The enhanced Fisher linear discriminant model (EFM). As illustrated in
Figure 1, an HV-2DPCA is cascaded with an EFM to generate a low-dimensional feature
representation with enhanced discrimination power. By this most discriminant features,
different types of classes of training samples are made widely apart and the same category
classes are made as compact as possible. Viewed as an enhanced FLD, the EFM method
employs a more efficient numeric by which the FLD procedure is decomposed into a
simultaneous diagonalization of the within-class and the between-class scatter matrices.
Assuming that the principal components of the horizontal 2DPCA, Xi, i = 1, · · · , N , as
defined in Equation (10), are clustered into classes

∏
1, · · · ,

∏
c, and that there are Nj

images in the class
∏

j, then there is a total of N1 + · · · + Nc = N images. Define the
between-class and the within-class scatter matrices respectively as

Sb =
c∑

j=1

Nj (Mj −M) (Mj −M)T (13)

and

Sw =
c∑

j=1

∑
Xi∈

∏
j

(Xi −Mj) (Xi −Mj)
T (14)
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where Mj =
1
Nj

∑
Xi∈

∏
j
Xi denotes the mean of the jth class, and the global mean M is

given by

M =
1

N

c∑
j=1

∑
Xi∈

∏
j

Xi (15)

The EFM method first whitens the within-class covariance matrix as

SwΞ = ΞΓ and ΞTΞ = I (16)

Γ−1/2ΞTSwΞΓ
−1/2 = I (17)

where Ξ ∈ Rm×m represents the eigenvector matrix of Sw, I the unitary matrix and
Γ ∈ Rm×m the eigenvalue matrix of Sw with diagonal elements in descending order. The
EFM then computes the new between-class scatter matrix as

Kb = Γ−1/2ΞTSbΞΓ
−1/2 (18)

Now, the new between-class scatter matrix is diagonalized as

KbΨ = ΨΛ and ΨTΨ = I (19)

where Ψ ∈ Rm×m denotes the eigenvector matrix of Kb and Λ ∈ Rm×m the eigenvalue
matrix of Kb. The overall transformation matrix of the EFM can be defined as

T = ΞΓ−1/2Ψ (20)

and the ith horizontal feature matrix Zi of dimension d× e is defined as

Zi = XT
i T (21)

By analogy with Equation (21), the ith vertical feature matrix, denoted by W , of EFM
can be expressed as

Wi = Y T
i R (22)

where Yi is defined as in Equation (10), and the overall transformation matrix R is ob-
tained by replacing Sb and Sw in Equations (16) and (18) with S ′

b and S
′
w, respectively. (S

′
b

and S ′
w are the between-class and the within-class scatter matrices obtained by replacing

Xi in Equations (13) and (14) with Yi, respectively). W is a feature matrix of dimension
p× q.

3. Experiments and Discussions. In this section, the performance of the proposed
HV-EGF is evaluated in comparison with a number of popular face recognition methods,
i.e., the FLD [23,24], the EFM [17] and the Gabor Fisher classifier (GFC) methods [21,22],
for a face recognition task based on the well-known ORL and Yale face databases.

3.1. ORL database. The ORL database consists of 400 images taken from 40 individu-
als, each with 10 different images. These 10 images were taken at different time instants,
containing variations in facial expression (open or closed eyes, smiling or non-smiling),
facial position (there are slightly rotated faces) and variations in some other details like
wearing eyeglasses or not. In the experiment, each original input image is of the size
56 × 46 pixels. Through the Gabor filters, there are 40 Gabor feature images to form a
Gabor face with a spatial resolutions of 280× 368 pixels, namely, the Gabor face is of the
dimension 280× 368.
The first performance analysis is made with a focus on the dimensionality reduction of

the HV-EGF method because a low dimensionality representation is critical for learning
[6]. Tabulated in Table 1 is a series of experimental results obtained by applying different
dimensions of feature space of size d×e(= p× q), where d(p) and e(q) respectively denote
the numbers of projection vectors of U(V ) and T (R). For each recognition evaluation,
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five training samples are selected randomly and the remaining five are used as a testing
set. Eight tests were performed with successive subspace dimensions varying as 10, 15,
20, 25, 30, 37, 38 and 39. As can be seen in Table 1, dimension 38× 38 is the case with
the best recognition accuracy and training efficiency at the same time. Therefore, in the
subsequent sets of experiments, the same choice of the dimensionality is made on the ORL
database.

Tabulated in Table 2 are the best average recognition accuracies of various algorithms
on a condition that all the training samples are fixed for each class. In the first test, the
first two samples of each class are chosen as a training set and the remaining are used as
test set. In each of the following tests, the numbers of the training and the testing samples
are added and decreased by 1 respectively in each class. This process was repeated until
the same number of the training and the testing samples are seen. It is demonstrated
that the proposed HV-EGF scheme outperforms the others in every test.

In comparison with FLD and GFC on the ORL face database, the recognition perfor-
mance of the proposed HV-EGF approach is plotted in Figure 5 against the dimension of
the feature vectors. Five samples of each class are randomly selected for training and the

Table 1. The recognition accuracy (%) of HV-EGF on the ORL database
against feature dimension under five training samples selected randomly

Dimensions 10× 10 15× 15 20× 20 25× 25 30× 30 37× 37 38× 38 39× 39
Recognition

92.5 93.5 94.0 94.5 96.5 98.5 99.0 99.0
accuracy (%)

Table 2. Comparison of the recognition accuracy (%) of some fixed train-
ing samples using the ORL database

Training samples/class 1 2 3 4 5
FLD – 82.5 84.5 90.0 93.0
EFM – 83.5 89.5 91.5 93.5
GFC – 85.0 89.5 92.0 97.5

HV-EGF – 91.0 93.5 94.0 99.0

Figure 5. A plot of the recognition accuracy vs. the dimension of the
feature vectors
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Table 3. The recognition accuracy (%) of HV-EGF on the Yale database
against feature dimension under training samples randomly selected

Dimensions 8× 8 9× 9 10× 10 11× 11 12× 12 20× 20 30× 30 40× 40
Recognition

92.2 94.4 97.7 96.6 95.5 97.7 94.4 91.1
accuracy (%)

Table 4. Comparison of the recognition accuracy (%) among different
training samples using the Yale database for some sampled fixed

Training samples/class 1 2 3 4 5
FLD – 80.0 84.4 85.6 90.0
EFM – 81.1 85.6 86.7 91.1
GFC – 78.8 88.8 90.0 95.5

HV-EGF – 83.3 91.1 92.2 97.7

remaining are for testing. It is clearly seen that the proposed HV-EGF approach outper-
forms the other two due to the reason that the integrated Gabor filters, the HV-2DPCA
and the EFM are all combined. The Gabor transformed face images are localized and vary
in frequencies and orientations in contrast to the original face images. The HV-2DPCA
method then eliminates redundant features and forms a discriminant representation that
is more compact. The EFM module adopts an eigenvalue spectrum analysis criterion in
the determination of the number of principal components to avoid over-fitting.

3.2. Yale database. The Yale face database contains the images taken from 15 indi-
viduals, each individual providing 11 different facial expression images with illumination
variations. In an attempt to test the sensitivities of the horizontal and the vertical dis-
placements by the proposed HV-2DPCA method, most of the background remains intact.
All images are displayed in grayscale and normalized to a resolution of 61× 80 pixels.
The recognition accuracy of our proposal against feature dimension is given in Table

3 for the Yale database. Among the 11 different facial expression images taken from an
individual, five are chosen randomly as the training samples (75 images in total) and
the remaining are as the testing (90 images in total). Tabulated in Table 3 are the
experimental results against dimensions (8, 9, 10, 11, 12, 20, 30 and 40) of features. It is
seen that a very high recognition accuracy approaching 98% is reached in the case of a
very low subspace dimensions 10× 10 by our proposal.
Next, a performance comparison of some fixed training samples is made among the FLD,

EFM, GFC and the proposed HV-EGF. In the first test, the first two images of each class
containing the 11 different facial expression images of an individual as mentioned above
is used as a training sample, and the remaining nine images are used as test samples.
In each of the following tests, the numbers of the training and the testing samples are
increased and decreased by 1 respectively in each class. This process was repeated until
test 4. It is clearly seen that the proposed HV-EGF scheme outperforms the others in
every test.
Finally, the proposed HV-EGF method is plotted in Figure 6 against the dimension of

the feature vectors and compared as well with FLD and GFC on the Yale face database.
The HV-EGF method is demonstrated to characterize most of the effective discriminative
information by use of merely 10 feature dimensions.
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Figure 6. A plot of the recognition accuracy vs. the dimension of the
feature vectors

Table 5. The best accuracy (%) and the corresponding dimension on the
ORL and Yale databases

Method

ORL Database Yale Database
Best recognition Corresponding Best recognition Corresponding
accuracy (%) dimensions accuracy (%) dimensions

FLD 93.0% 11× 11 90.0% 6× 6
EFM 93.5% 10× 10 91.1% 3× 3
GFC 97.5% 39× 39 95.5% 15× 15

HV-EGF 99.0% 38× 38× 2 97.7% 10× 10× 2

3.3. Summary. In summary, Table 5 tabulates the best recognition accuracies and the
corresponding dimensions thereof for the FLD, EFM, GFC and HV-EGF methods on
the two databases. It is noted that the GFC and HV-EGF methods are both of higher
recognition accuracies in situations with different head poses, facial expressions (ORL
database), and illumination variance (Yale database) is Gabor-based. The performances
of the GFC and the proposed HV-EGF methods are analyzed in the same context. Taking
into account the horizontal and vertical sensitivities of the features, the HV-EGF method
outperforms the GFC. The HV-EGF method achieves the highest recognition rates up
to 99.0% and 97.7% on the ORL and the Yale databases, respectively. By contrast, the
best results provided by FLD are merely 93.0% and 90.0% on the ORL and the Yale
databases, respectively. The HV-EGF method takes advantage of the horizontal and
vertical 2DPCA-based properties and the generalization capability of FLD of the Gabor
features to enhance the recognition accuracy for all training/testing percentages. In short,
the HV-EGF method outperforms the FLD, the EFM and the GFC methods in any case.

4. Conclusions. In this paper, a novel discriminant analysis method of the Gabor fea-
tures for an image feature extraction and representation is proposed and then imple-
mented. In the method, the horizontal and vertical 2DPCA is directly applied to a Gabor
face derived from the Gabor wavelet representation of an image. The 2DPCA reduces
the redundant information and preserves a bi-directional characteristic as well. It is fol-
lowed by an EFM obtaining the discriminating features, according to which classification
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is made more reliable. The feasibility of the novel HV-EGF method has been success-
fully tested for face recognition using a data set chosen from both the ORL and the Yale
databases, treated as two standard testing beds for face recognition technologies. In our
experiments, the HV-EGF method is tested by using various dimensions of features and
various numbers of training samples. The experimental results show that our proposed
method not only requires less amount of computation but also outperforms a number of
popular face recognition methods, i.e., the FLD, the EFM and the Gabor Fisher classifier
(GFC) methods. It is also exhibited that best recognition accuracies up to 99.0% and
97.7% are reached by our proposal for the ORL and the Yale databases, respectively. In
addition, the features required for the proposed HV-EGF method on the ORL and Yale
are of the dimensions 38× 38× 2 and 10× 10× 2, respectively.

REFERENCES

[1] J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation opti-
mized by two-dimensional visual cortical filters, Journal of Optical America A, vol.2, no.7, pp.1160-
1169, 1985.

[2] J. G. Daugman, Complete discrete 2D Gabor transforms by neural networks for image analysis and
compression, IEEE Trans. Acoustic Speech and Signal Proc., vol.36, no.7, pp.1169-1179, 1988.

[3] A. C. Bovik, M. Clark and W. S. Geisler, Multichannel texture analysis using localized spatial filters,
IEEE Trans. Pattern Anal. Mach. Intell., vol.12, no.1, pp.55-73, 1990.

[4] C. Liu and H. Wechsler, Independent component analysis of Gabor features for face recognition,
IEEE Trans. Neural Networks, vol.14, no.4, pp.919-928, 2003.

[5] M. Kirby and M. Sirovich, Application of the Karhunen-Loeve procedure for the characterization of
human faces, IEEE Trans. Pattern Anal. Mach. Intell., vol.12, no.1, pp.103-108, 1990.

[6] M. Turk and A. Pentland, Eigenfaces for recognition, J. Cognitive Neuroscience, vol.3, no.1, 1991.
[7] I. Dagher and R. Nachar, Face recognition using IPCA-ICA algorithm, IEEE Trans. Pattern Anal.

Mach. Intell., vol.28, pp.996-1000, 2006.
[8] X. Xie and K. Lam, Gabor-based kernel PCA with doubly nonlinear mapping for face recognition

with a single face image, IEEE Trans. Image Process., vol.15, pp.2481-2492, 2006.
[9] N. Vaswani and R. Chellappa, Principal components null space analysis for image and video classi-

fication, IEEE Trans. Image Process., vol.15, pp.1816-1830, 2006.
[10] J. Yang, D. Zhang, A. Frangi and J. Yang, Two-dimensional PCA: A new approach to appearance-

based face representation and recognition, IEEE Trans. Pattern Anal. Mach. Intell., vol.26, pp.131-
137, 2004.

[11] R. Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.
[12] X. He, S. Yan, Y. Hu, P. Niyogi and H. Zhang, Face recognition using laplicanfaces, IEEE Trans.

Pattern Anal. Mach. Intell., vol.27, no.3, pp.328-340, 2005.
[13] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, Eigenfaces vs. Fisherfaces: Recognition using

class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intell., vol.19, no.7, pp.711-720,
1997.

[14] H. Yu and J. Yang, A direct LDA algorithm for high-dimensional data with application to face
recognition, Pattern Recognition, vol.34, no.11, pp.2067-2070, 2001.

[15] Y. Zeng and D. Feng, The face recognition method of the two-directional variation of 2DPCA,
International Journal of Digital Content Technology and Its Applications, vol.5, no.2, pp.216-223,
2011.

[16] J. Yang and C. Liu, Horizontal and vertical 2DPCA-based discriminant analysis for face verification
on a large-scale database, IEEE Trans. on Information Forensics and Security, vol.2, no.4, pp.781-
792, 2007.

[17] C. Liu and H. Wechsler, Robust coding schemes for indexing and retrieval from large face databases,
IEEE Trans. Image Process., vol.9, no.1, pp.132-137, 2000.

[18] C. Liu and H. Wechsler, A shape and texture based enhanced fisher classifier for face recognition,
IEEE Trans. Image Process., vol.10, no.4, pp.598-608, 2001.

[19] J. G. Daugman, Two-dimensional spectral analysis of cortical receptive field profiles, Vision Research,
vol.20, pp.847-856, 1980.

[20] J. Jones and L. Palmer, An evaluation of the two-dimensional Gabor filter model of simple receptive
fields in CAT striate cortex, J. Neurophysiol, pp.1233-1258, 1987.



GABOR FEATURE BASED HORIZONTAL AND VERTICAL DISCRIMINANT 2123

[21] C. Liu and H. Wechsler, Gabor feature based classification using the enhanced fisher linear discrim-
inant model for face recognition, IEEE Trans. Image Process., vol.11, no.4, pp.467-476, 2002.

[22] C. Liu and H. Wechsler, A gabor feature classifier for face recognition, The 8th IEEE International
Conference on Computer Vision, pp.9-12, 2001.

[23] M. Li and B. Yuan, 2D-LDA: A statistical linear discriminant analysis for image matrix, Pattern
Recognition Letters, vol.26, no.5, pp.527-532, 2005.

[24] H. Xiong, M. N. S. Swamy and M. O. Ahmad, Two dimensional FLD for face recognition, Pattern
Recognition, vol.38, no.7, pp.1121-1124, 2005.

[25] B. Zhang, W. Gao, S. Shan and W. Wang, Constraint shape model using edge constraint and Gabor
wavelet based search, AVBPA, pp.52-61, 2003.

[26] M. Lades, J. C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R. R. Wurtz andW. Konen,
Distortion invariant object recognition in the dynamic link architecture, IEEE Trans. Computers,
vol.42, pp.300-311, 1993.

[27] S. Edelman, Representation and Recognition in Vision, MIT Press, Cambridge, MA, 1999.


