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Abstract. This paper presents controlling of a class of nonlinear systems with struc-
tured and unstructured uncertainties using fuzzy sliding mode control. First known dy-
namics of the system are eliminated through feedback linearization and then fuzzy sliding
mode controller is designed using TS method, based on the Lyapunov method, which is
capable of handling uncertainties. There are no signs of the undesired chattering phenom-
enon in the proposed method. The globally asymptotic stability of the closed-loop system
is mathematically proved. Finally, this method of control is applied to the inverted pendu-
lum system as a case study. Simulation results show the system performance is desirable.
Keywords: Nonlinear systems, Structure uncertainties, Unstructured uncertainties,
Fuzzy, Sliding mode control

1. Introduction. Most of plants in the industry have severe nonlinearity, which causes
researches to develop nonlinear control systems. Thus, great attention has been attracted
from both the academic and industrial communities. To overcome certain difficulties in
the design of a controller for a nonlinear system, various schemes have been developed in
the last two decades, among which a successful approach is fuzzy control.

The fuzzy logic control (FLC) has been an active research topic in automation and
control theory since the work of Mandani (1974) based on the fuzzy sets theory of Zadeh
(1965) to deal with the system control problems which are not easy to be modeled and/or
to be modeled accurately. The concept of FLC is to utilize the qualitative knowledge of a
system to design a practical controller. It is particularly suitable for those systems with
uncertain or complex dynamics. In general, a fuzzy control algorithm consists of a set of
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heuristic decision rules and can be regarded as a nonmathematical control algorithm, in
contrast to a conventional feedback control algorithm.
In recent years, there have been significant advances in the study of the stability analysis

and controller synthesis for the so-called Takagi-Sugeno (T-S) fuzzy systems, which have
been used to represent certain complex nonlinear systems.
For a nonlinear system the overall model is obtained by the fuzzy blending of local

models. For each local linear model, a linear feedback control is designed. The resulting
overall controller is again a fuzzy blending of the individual linear controllers. Originally,
Tanaka and his colleagues have provided certain conditions that are sufficient for the
stability of the T-S fuzzy systems in the sense of Lyapunov [2].
Sliding mode control (SMC) is a robust nonlinear feedback control technique whose

structure is intentionally changed to achieve the desired performance [3-5]. In the design
of SMC, it is assumed that the control can be switched from one structure to another
infinitely fast. However, because of the switching delay computation and the limitation of
the physical actuators which cannot handle the switching of control signal at an infinite
rate, it is practically impossible to achieve high-speed switching control. As a result of this
imperfect control switching between structures, the system trajectory appears to chatter
instead of sliding along the sliding surface. There are essentially two ways to counter
the chattering phenomenon. One way is to use higher order sliding mode [6-8], and the
other most common way for chattering reduction involves introducing a boundary layer
around the sliding surface and using a continuous control within the boundary layer [9,10].
The width of the boundary is normally constant, and the larger the boundary width, the
smoother the control signal. Even though the boundary design alleviates the chattering
phenomenon, it no longer drives the system state to the origin, and steady-state error will
appear. The larger the width of the boundary layer, the larger of the steady-state error.
Some researchers applied fuzzy logic systems to sliding mode control to improve the

performance of SMC. Hence, there are the so-called fuzzy sliding mode control (FSMC)
[11-18] and sliding mode fuzzy logic control (SMFC) [19-26]. The first substantially is
fuzzy adaptive sliding mode control algorithm in which unknown system dynamics are
identified by FLS to form the equivalent control of SMC. The latter is FLC based on
sliding mode or sliding mode control.
In FSMC, continuous part of SMC controller is obtained by using FLS to approximate

the unknown nonlinear dynamics, and the closed-loop system is verified to be stable
based on Lyapunov stability theory. Thereby adaptive law is found directly, which tunes
parameters of the fuzzy set supports, i.e., rule base functions. Temeltas presented a class of
such FSMC based on a kind of special fuzzy reasoning principle for nonlinear systems [11].
The others proposed such an FSMC controller based on feedback linearization [12], and
then researchers studied this method for MIMO nonlinear systems [13]. Other previous
proposed works can be found in [16-18]. For SMFC, there are also many investigations
and reports including some direct or indirect adaptive fuzzy control [25,26] and practical
applications [24]. Palm originally presented sliding mode fuzzy control [19], in which
the main idea is that SMC is acquired firstly, then fuzzy controller is constructed such
that the two controllers are equivalent. Afterwards based on this main idea, researchers
put forward sliding-like fuzzy logic control (SMLFC) [20,21]. In these methods, fuzzy
controller is equivalent to the sliding mode controller pre-designed and the boundary layer
thickness can be self-tuned online after introducing appropriate adaptive laws, wherefore
the controller has no chattering [20,21]. However, in papers [19-21], the methods are only
applicable into systems which represented through second-order dynamics. Furthermore,
as the dead zone parameter converges to zero, input control also has a little chattering.
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For nonlinear systems with high-order dynamics, the controller design should be inves-
tigated in different way to ensure its desired performance. In addition, due to adaptive
law in the control input, computation of control input will be increased. So, the practical
implementation of these methods is difficult.

In recent years, for controlling of nonlinear systems, sliding mode control technique has
been used in different ways [27-30]. In these methods, there are interesting solutions to
overcome on some issues such as mismatched uncertainties, nonlinear jump systems and
uncertain systems with time delay have been presented. However, these methods are too
complicated and have large computation volume. They also have undesirable chattering
phenomena in overcoming the existing challenges.

In this paper a fuzzy sliding mode control is presented. It is very simple and does not
have complications of the methods which were already mentioned. According to the recent
method first known dynamics of the system are eliminated through feedback linearization.
In the next step TS fuzzy model-based approach is used to design the fuzzy sliding mode
controller. This method can be applied into nonlinear systems of order n. Furthermore,
the globally asymptotic stability of the closed-loop system is mathematically proved.

Simulation results show the control action is free of chattering and the closed-loop
system has good performance.

This paper is organized as follows. Section 2 presents the problem statement. Section
3 provides required bases for the controller design. Sliding mode control design steps are
presented in Section 4. TS fuzzy model-based method is explained in Section 5 and fuzzy
sliding mode control design is illustrated in Section 6. Section 7 deals with key features
of the proposed method. Section 8 explains the simulation results in 4 steps. Finally
conclusions are discussed in Section 9.

2. Problem Statement. In this paper, the single-input single-output (SISO) nonlinear
system is considered. It is supposed that the system can be explained as follows:

X(n)(t) = f(X(t), t) + g(X(t), t)u(t) + d(t)
y(t) = x(t)

(1)

where X(t) = [x(t), ẋ(t), . . . , x(n)(t)]T is nth order state vector of the system, y(t) ∈ R
is the output of the system, f(X(t), t) and g(X(t), t) are not exactly known but smooth
functions, u(t) ∈ R is the control input and d(t) ∈ R is an external disturbance.

The control problem is to force the output y(t) to follow a given bounded reference
input signal yd(t). Let e(t) = y(t) − yd(t) be the tracking error and its forward shifted

values, defined as e(i) = y(i)(t)−y
(i)
d (t) (i = 1, 2, . . . , n−1). So the error vector is defined

as e(t) = [e(t), ė(t), . . . , e(n−1)(t)].
In order to design the control input, the following assumptions are necessary:

1. The states of the system X(t) are measurable.
2. The extent of the imprecision on f(X(t), t) is upper bounded by a known continuous

function of X(t).
3. g(X(t), t) is lower and upper bounded such as 0 < g < g(X(t), t) < g where g and g

are positive constants.
4. d(t) is unknown, but it is bounded, i.e., |d(t)| < D. Where the “D” is an known

positive constant.

3. System Model in State Space and Selecting of Sliding Surface. To have the
system described by Equation (1) in the state space form we define

x(t) = x1(t), ẋ(t) = x2(t), . . . , x
(n−1)(t) = xn(t) (2)
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By substituting Equation (2) into Equation (1), we have

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
...
ẋn(t) = f(X(t), t) + g(X(t), t)u(t) + d(t)
y(t) = xi(t), i = 1, 2, . . . , n

(3)

By transferring the nonlinear system equations to the state space domain, the following
error equations will appear

x1(t)− x1d(t) = e1(t), x2(t)− x2d(t) = e2(t), . . . , xn(t)− xnd
(t) = en(t) (4)

In the above equations, xid(t) is the (i−1)th derivative of the desired path which should
be tracked by the input control. From Equations (2) and (4) we can conclude that

ė1(t) = e2(t), ė2(t) = e3(t), . . . , ėn−1(t) = en(t) (5)

Now we define the sliding surface as

S(t) = c1e1(t) + c2e2(t) + . . .+ cn−1en−1(t) + en(t) (6)

where ci, (i = 1, . . . , n− 1) are constant positive factors.

4. Sliding Mode Control Design. In this section, the control action u(t) is designed
in a way that the output is capable of tracking a desired path. Moreover, the tracking
error and all its derivatives will tend to zero. Thus, the control action is defined as follows:

u(t) = ĝ−1(X(t), t)
{
−f̂(X(t), t) + ẋnd

(t) + uf (t)
}

(7)

ĝ(X(t), t) and f̂(X(t), t) are known parts of g(X(t), t) and f(X(t), t) respectively. ẋnd
(t)

is derivative of the desirable path xnd
(t) with respect to time and uf (t) is the sliding mode

control input which is designed to handle structured and unstructured uncertainties. From
now on this section for the sake of brevity, f̂ , ĝ, f and g will be used instead of f̂(X(t), t),
ĝ(X(t), t), f(X(t), t) and g(X(t), t) respectively. Equation (7) is substituted in Equation
(3):

ẋn(t) = f + g
[
ĝ−1

{
−f̂ + ẋnd

(t) + uf (t)
}]

+ d(t) (8)

To Equation (8), ẋnd
(t) and uf (t) are added and subtracted.

ẋn(t) = f + g
[
ĝ−1

{
−f̂ + ẋnd

(t) + uf (t)
}]

+ d(t) + ẋnd
(t)− ẋnd

(t) + uf (t)− uf (t) (9)

Equation (9) can be rewritten as follows:

ẋn(t)− ẋnd
(t) = f − g ĝ−1f̂ + (g ĝ−1 − 1)ẋnd

(t) + (g ĝ−1 + 1)uf (t) + d(t)− uf (t) (10)

To simplify Equation (10), the following equations are used

ėn(t) = ẋn(t)− ẋnd
(t)

η = f − g ĝ−1f̂ + (g ĝ−1 − 1)ẋnd
(t) + (g ĝ−1 + 1)uf (t) + d(t)

(11)

According to Equation (11), η includes all existing uncertainties. That is, if the system
does not have structured and unstructured uncertainties then η = 0. By substituting
Equation (11) in (10)

ėn(t) = η − uf (t) (12)

In sliding mode control design uf (t) consists of two parts, ueq(t) equivalent control and
us(t) switching control [9]:

uf (t) = ueq(t) + us(t) (13)
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In the sliding phase, where S(t) = 0 and Ṡ(t) = 0, the equivalent term ueq(t) is designed
to keep the system on the sliding surface. In the approaching phase, where S(t) 6= 0, the
switching term us(t) is designed to satisfy the reaching condition S(t)Ṡ(t) < 0.

For desigining the part ueq(t) the derivative of Equation (6) is supposed to be equal to
zero:

Ṡ(t) = c1ė1(t) + c2ė2(t) + . . .+ cn−1ėn−1(t) + ėn(t) = 0 (14)

Equation (12) is substituted in Equation (14):

c1ė1(t) + c2ė2(t) + . . .+ cn−1ėn−1(t) + η − uf (t) = 0 (15)

In design of ueq(t), it is assumed that the sliding surface is zero. So, the task of ueq(t)
is preventing the sliding surface from changes. According to this assumption, us(t) in
this part of the design may be considered as zero. By considering the above points and
substituting Equation (13) in (15):

c1ė1(t) + c2ė2(t) + . . .+ cn−1ėn−1(t) + η − ueq(t) = 0 (16)

Finally ueq(t) is derived from the above equation:

ueq(t) = c1ė1(t) + c2ė2(t) + . . .+ cn−1ėn−1(t) + η (17)

Concerning Equation (17) we can conclude that

‖ueq(t)‖ ≤ ‖c1ė1(t)‖+ ‖c2ė2(t)‖+ . . .+ ‖cn−1ėn−1(t)‖+ ‖η‖ (18)

Where the ‖◦‖ symbol is norm. According to Equation (18), ueq(t) can be set as

ueq(t) = ‖c1ė1(t)‖+ ‖c2ė2(t)‖+ . . .+ ‖cn−1ėn−1(t)‖+ ‖η‖ (19)

Now, the us(t) is designed in a way that the sliding surface tends to zero. Therefore,
the following Lyapunov candidate function is introduced:

V (S(t)) =
1

2
S2(t) (20)

Derivative of the Lyapunov candidate function with respect to time is

V̇ (S(t)) = Ṡ(t)S(t) (21)

From Equations (6) and (21), we conclude that

V̇ (S(t)) = (c1ė1(t) + c2ė2(t) + . . .+ cn−1ėn−1(t) + ėn(t))S(t) (22)

From Equations (12), (13) and (22), it results that

V̇ (S(t)) = (c1ė1(t) + c2ė2(t) + . . .+ cn−1ėn−1(t) + η − (ueq(t) + us(t)))S(t) (23)

We substitute Equation (19) in Equation (23):

V̇ (S(t)) = c1ė1(t)S(t) + c2ė2(t)S(t) + . . .+ cn−1ėn−1(t)S(t)
+η S(t)− ‖c1ė1(t)‖S(t)− ‖c2ė2(t)‖S(t)− . . .− ‖cn−1ėn−1(t)‖S(t)
−‖η‖ S(t)− us(t)S(t)

(24)

It is resulted from Equation (24) to have the inequality V̇ (S(t)) < 0 satisfied, the
following condition has to be met:{

us(t) = ρ if S(t) > 0
us(t) = −ρ if S(t) < 0

(25)

where ρ is a constant positive factor. Concerning (13), (19) and (25) we have{
uf (t) = u+(t) = ueq(t) + ρ if S(t) > 0
uf (t) = u−(t) = ueq(t)− ρ if S(t) < 0

(26)



2718 M. R. SOLTANPOUR, B. ZOLFAGHARI, M. SOLTANI AND M. H. KHOOBAN

5. T-S Fuzzy Model. T-S fuzzy logic system is given in the following form of IF-THEN
rules:

Ri : IF x1(t) is A1i and . . . and xq(t) is Aqi THEN ui(t) = fi(X(t), t), i = 1, . . . , r
(27)

where Ri represents the ith fuzzy inference rule, xj and Aij (i = 1, . . . , r and j = 1, . . . , q)
are the premise variables and fuzzy sets, and r is the number of fuzzy IF-THEN rules.
Following the fuzzy inference method of T-S fuzzy system, the control input U(t) of the

overall system can be obtained in the weighted average form along the trajectories X(t):

U(t) =

r∑
i=1

wi(X(t))fi(X(t), t)

r∑
i=1

wi(X(t))
(28)

where U(t) ∈ Rp, and X(t) ∈ Rq, the weight functions are defined as

wi(X(t)) =

q∏
j=1

Aij(xj(t)) (29)

where Aij(xj(t)) is the grade of membership of xj(t) in the fuzzy set Aij. The weight
functions wi(X(t)) are nonnegative and measurable, and usually satisfy

r∑
i=1

wi(X(t)) > 0, for all t > 0 (30)

6. Fuzzy Sliding Mode Control Design. The proposed T-S fuzzy model-based sliding
mode control is based on the intuitive feedback control strategy. Thus, the fuzzy inference
rule base is established as

R1 : IF S(t) is positive THEN uf (t) = u1(t) = u+(t)
R2 : IF S(t) is negative THEN uf (t) = u2(t) = u−(t)

(31)

Finally, the system control uf (t) can be obtained through centre of gravity defuzzifica-
tion method

uf (t) =

2∑
i=1

wi(S(t))u
i(t)

2∑
i=1

wi(S(t))

(32)

where wi(S(t)) is as same as the one defined in (29). Therefore, the designed control
input in its general form is as follows:

u(t) = ĝ−1(X(t), t)
{
−f̂(X(t), t) + ẋnd

(t) + uf (t)
}

uf (t) =

2∑
i=1

wi(S(t))u
i(t)

2∑
i=1

wi(S(t))

u1 = ueq(t) + ρ
u2 = ueq(t)− ρ
ueq = ‖c1ė1(t)‖+ ‖c2ė2(t)‖+ ...+ ‖cn−1ėn−1(t)‖+ ‖η‖

(33)

Note 1. To calculate ‖η‖, the assumptions of Section 2 and Equation (11) can be used:

‖η‖ = f̄ + g ĝ−1f̂ +
(
ḡ ĝ−1 − 1

)
‖ẋnd

(t)‖+
(
ḡ ĝ−1 + 1

)
‖uf (t)‖+D (34)
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where f̄ is an upper bound of f . Considering (34) reveals that ‖η‖ is directly related to
‖uf (t)‖. So, for choosing the positive constant ρ, there must be appropriate watchfulness.
It is because of the reason that if the coefficient of ρ was chosen very large, consequently,
the boundaries of uncertainties would be increased literally. Thus, the control input
increases and the actuators may be leaded to saturation.

Note 2. According to the above discussion, the procedure for designing a fuzzy sliding
mode controller is described as:

1. Define the tracking error variable ei(t)s.
2. Specify S(t) sliding surface by selecting c1, c2, . . . , cn−1 as positive constant coeffi-

cients.
3. Specify f̂ and ĝ as known parts of f and g. Then specify upper and lower bounds

of f and g.
4. Design the T-S fuzzy model control law u1(t) and u2(t), and the related fuzzy mem-

bership functions.
5. Build fuzzy inference rule base.
6. Defuzzify the fuzzy variables through centre of gravity method to get the crisp control

law uf (t).
7. Implementation.

7. Discussion. In the proposed control design, there are some points have been consid-
ered which have a prominent role in its practical implementation. These points respec-
tively are as follows:

1. In this control method, the bound of uncertainties can be decreased as much as pos-
sible because of using the feedback linearization. Then the fuzzy sliding mode controller
is designed through applying the TS fuzzy model and an inference engine composed of a
very brief rule base (only two rules).

2. This control method is free of undesirable chattering phenomenon. Moreover, it
can handle structured and unstructured uncertainties while adaptive methods are weak
in coping with unstructured uncertainties [31-33].

3. Another benefit of the designed controller is its light burden of computations which is
an important figure in practical implementation and online control cases. In the control
of industrial complex systems the computational burden of the control action is very
significant as the heavy computational burden of the control action is not only expensive
but also can cause instability of the closed-loop system [34-35].

4. In the design step of controller design in many industrial nonlinear systems such as
robot manipulator, there are a lot of challenges due to existence of the structured and
unstructured uncertainties in dynamics equations [31-35]. On the other hand, if we also
want to consider the actuator dynamics in the design of controllers for these industrial
systems, the role of unstructured uncertainties would be highlighted. Beside of these
existing issues, we should point to the volume of the calculations and being soft and
smooth of the control input, as well. Hence, it is observed that the controller design
for these nonlinear systems is very difficult and it can be a part of the research issues
nowadays. All above mentioned points are considered in proposed design controller. Thus,
the proposed method can be very powerful in controlling of theses nonlinear systems.

8. Simulation Results. In this section, illustrative numerical simulation examples are
provided to demonstrate the effectiveness and robustness of the proposed approach. The
problem to be considered is a pole-balancing of an inverted pendulum as shown in Figure
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1. The system is represented by{
ẋ1 = x2

ẋ2 =
mlx2

2 sin(x1) cos(x1)−(M+m)g sin(x1)

ml cos2(x1)−( 4
3
)l(M+m)

+
− cos(x1)

ml cos2(x1)− (4
3
)l(M +m)

u(t) + d(t) (35)

where x1 angle θ (in radians) of the pendulum from the vertical, M mass of cart, mmass of
the pole, u(t) force applied to the cart and d(t) is an external disturbance. The parameters
employed in this simulation are given as follows: M = 1kg, m = 0.3kg, l = 0.5m and
g = 9.8m/s2

In this simulation, the known parts of f(X(t)) and g(X(t)) are listed as follows: f̂(X(t)) =
m̂l̂x2

2−(M̂+m̂)ĝ

m̂l̂− 4
3
l̂(M̂+m̂)

ĝ(X(t)) = −1

m̂l̂− 4
3
l̂(M̂+m̂)

(36)

The values of parameters m̂, l̂, M̂ and ĝ are considered to be 90 percent of their real
values. The error and the sliding surface equations are defined as e1(t) = x1(t) − x1d(t),
e2(t) = x2(t)−x2d(t) and S(t) = 20 e1(t)+e2(t) respectively. The equivalent control input
is ueq(t) = ‖20 ė1(t)‖+ ‖η‖. ‖η‖ and it would be calculated as follows:

‖η‖ = 0.01x2
2 + 0.8 + 0.01 ‖ẋ2d(t)‖+ 0.01 ‖uf (t)‖ (37)

Having calculated ueq(t), control inputs u
1(t) and u2(t) are:{

u1(t) = ueq(t) + ρ if S(t) > 0
u2(t) = ueq(t)− ρ if S(t) < 0

(38)

S(t) is introduced as premise variable and the fuzzy membership functions are defined as:{
w−(S(t)) = 1

1+exp(rS(t))
if S(t) is negative

w+(S(t)) = 1
1+exp(−rS(t))

if S(t) is positive
(39)

where r is equal to 100. In this simulation, initial condition of x1(t) is 0.1 which is
equivalently 5 degrees. In this paper to highlight the good performance of the system,
simulations are presented in 4 steps.
Simulation 1. In this stage of the simulation, the x1d(t) = 0 and the system is

considered without external disturbance d(t). To apply the proposed control method, the
coefficient ρ is chosen equal to 23. Simulation results are depicted in Figures 2 and 3. It is
resulted from Figure 2 that during the simulation the system performed well. In presence
of the parametric uncertainties in less than 0.5 seconds the error converges into “0” and

Figure 1. Inverted pendulum system
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Figure 2. Error signals with no external disturbance

Figure 3. Control input with no external disturbance

finally it has persistent error of 0.003 radian. As it appears in Figure 3, control input is
free of chattering and also it is in acceptable range.

Simulation 2. In this stage of the simulation, the proposed control coefficients are
set just like the previous section and the external disturbance d(t) is chosen equal to
3.5. Thus, the inverted pendulum system apart from the parametric uncertainty has
unstructured uncertainties as well. By applying the control input to Inverted pendulum
system (Figure 4), it is resulted that error signal in less than 0.5 seconds converges to
zero and the steady-state error would be equal to 0.004 radian. Figure 5 illustrates that
the control input is without chattering and it is in the feasible range. In the next step let
d(t) = −4 sin(0.3t) and ρ = 25. That is, the system has varying external disturbance with
respect to time. Having applied the proposed control method to the system, it is revealed
that the maximum error would be 0.004 radian which shows the good performance of the
designed control input (Figure 6). In Figure 7, there is control input. In this figure the
input control is free of chattering. It is concluded from Figure 8 choosing values of 25,
30 and 40 for coefficient ρ, the maximum error will be decreased massively. This issue is
also another advantage of the proposed control method.

Simulation 3. In this stage of the simulation, for making further challenging onto the
proposed control method, not only the external disturbance is exerted d(t) = −4 sin(0.3t),
but also there will be a square signal with an amplitude of 15 in the time interval from
4 to 5 second which will be added to the inverted pendulum system. In the other words,
we intend to demonstrate the sophisticated control ability and performance by applying
an impulsive disturbance between second 4 and 5. By choosing ρ = 50 control input was
exerted to inverted pendulum system. By considering, Figure 9 shows that the control
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Figure 4. The error signal in presence of external disturbance 3.5

Figure 5. The control input in presence of the external disturbance 3.5

Figure 6. The error signal in presence of external time-varying disturbance

Figure 7. The control input in presence of external time-varying disturbance
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Figure 8. Decreasing the error signal by means of ρ increasing

Figure 9. The error signal in presence of square disturbance signal

Figure 10. The control input in presence of square disturbance signal

input in presence of all existing uncertainties can handle the recent disturbance and it
will keep the closed-loop system stable. The maximum error of 0.006 radian happened at
the second 5. The effect of the square signal is visible in the 5th second in Figure 10. In
Figure 10 we can see that the control action stays in the legitimate range. Having selected
values of 50 and 60 for ρ, Figure 11 illustrates that the maximum error decreases from
0.006 radian to 0.0025 radian.

Simulation 4. In this stage of simulation, the proposed control method will be chal-
lenged in tracking the desirable path varying with respect to time. To do this, let
x1d(t) = 0.2 sin(t), d(t) = −4 sin(0.3t) and ρ = 29 are chosen. Considering Figure
12, reveals that the control input performed well and with the maximum error of 0.004
radian, the desirable path was tracked. The control signal which is shown in Figure 13,
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Figure 11. Decreasing the error signal by means of ρ increasing

Figure 12. The signal error of tracking for the time-varying desirable path

Figure 13. The control input for tracking the time-varying desirable path

there is no sign of any chattering. Considering the amplitude of this control input, ensures
that there is no room for concerns regarding the probable saturation of the actuator.

9. Conclusion. In this paper, by combining the feedback linearization method and the
fuzzy TS model-based method, the fuzzy sliding mode control was presented. The new
method was very simple and free of chattering. The feedback linearization method let the
designer decrease the boundaries of the existing uncertainties. Moreover, the fuzzy TS
model-based part not only compensated lack of information about the remaining of struc-
tured and unstructured uncertainties, but also it decreased the burden of control input
calculation. The mathematical proof illustrated that the closed-loop system along with
the proposed control scheme, was global asymptotic stable. For better demonstration of
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the proposed control system, 4 steps of simulation were presented. In those simulations
it was tried to challenge the control system from different aspects. The results of simula-
tions demonstrated that the control system in presence of various types of uncertainties
overcame the challenges and it showed good performance. The results of simulations
presented that with increasing proposed control coefficients, the error of tracking would
decrease. Then, the desirable path would be tracked more accurately.
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