International Journal of Innovative
Computing, Information and Control ICIC International ©)2013 ISSN 1349-4198
Volume 9, Number 6, June 2013 pp. 2303-2326

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED
FINITE DIFFERENCE TIME DOMAIN (FDTD) USING
GENETIC ALGORITHM

NORDIN ZAKARIA, ANINDYA JYOTI PAL AND SYED NASIR MEHMOOD SHAH

High Performance Computing Centre
Universiti Teknologi Petronas
Bandar Seri Iskandar 31750, Tronoh, Perak, Malaysia
{ nordinzakaria; anindyajp; nasirsyed.utp }@gmail.com

Received March 2012; revised July 2012

ABSTRACT. In this paper, we explore the use of hybrid genetic algorithm for optimized
clustering and distribution of Finite Difference Time Domain (FDTD) computation over
a large number of desktop computers and servers. Given a large number of computers, we
first attempt to compute an optimal set of clusters. The clustering takes into considera-
tion similarity of machine capability plus the interconnection speed. It considers as well
the predicted availability pattern for each computer. Then, for each cluster, we optimize
the distribution of FDTD workload over its computers. Hence, the overall optimization
procedure optimizes clustered distributed FDTD. We show in this paper how pure as well
as hybrid genetic algorithm can effectively be used to perform the optimization.
Keywords: FDTD, Optimized, Cluster, Distribution, Hybrid, Genetic algorithm

1. Introduction. The Finite Difference Time Domain (FDTD) method, introduced in
[42], is a widely used numerical method for approximating the solution of coupled partial
differential equations, in particular, that which describes the propagation of electromag-
netic (EM) waves. The method performs forward modeling, i.e., given the geometric and
electrical properties of a particular structure, the electric field generated within a region
over a time duration is computed. Forward modeling is at the core of EM inverse model-
ing — reconstruction of the parameters of the structures that are responsible for measured
EM properties. The typical inverse modeling process can be described conceptually as a
generate-and-test optimization procedure, and in certain domain, for example, geophysi-
cal exploration [1,37], requires large number of runs and hence very large computational
resources.

Driven by an EM inverse modeling problem in the context of hydrocarbon exploration,
we consider in this paper the problem of running as many FDTDs as possible, within a
campus grid. A campus grid is a large heterogeneous collection of computing resources
distributed throughout a university campus, interconnected at a physical level through
the local area network and at the operating system level through a middleware (such as
MPT). In the context of this paper, the resources refer primarily to the thousand of desktop
computers and workstations available in the university computer labs. While FDTD
has typically been run on large, shared-memory machines or on tightly interconnected
clusters, we seek to reduce the workload on such available machines in our campus and to
explore instead the possibility of fully utilizing the collective power of the desktops and
workstations. Despite the huge latent computing power, it makes no sense though to run
a single FDTD run over all of the available resources. The inter-processor communication
required in distributed FDTD would result in poor scalability. Clusters of computers

2303

2304 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

need to be formed instead, each one of which is to focus on just a single FDTD run at a
time. The formation of the clusters must take into consideration machines characteristics
and availability, that is the opportunity for high performance. Hence, the clustering
is opportunistic in nature. Once the clusters have been formed, the FDTD workload
must be distributed among the computers within each, again taking into consideration
heterogeneous machine characteristics and availability.

The overall problem can be described formally as follows: We assume an FDTD run to
comprise of a fixed number of temporal iterations, NV, over a fixed workload v = w x h X d.
Given a set M of n computers, M = {mgy, my,...,m, 1}, in order to perform the maximal
number of FDTD runs, we need to form a partitioning, P = {py, p1, ..., ps—1} of M, where
each partition p; denotes a computer cluster. The partitioning should be such that the
average number, Fi,, of FDTD runs completed by the clusters within a given time period
T is maximal.

For the problem posed in this manner, it is very hard to find optimal result in one go, as
it is essentially a two-level problem. At one level, we need to optimize the clustering, while
at another level we need to optimize the FDTD parallelism within each cluster. In other
words, the fitness of a solution at the higher level can only be determined by searching
for the fittest solution at the lower level. While a population-based optimization proce-
dure such as genetic algorithm can, in principle, solve the problem, the computational
requirement is practically forbidding.

To make the problem more tractable, we split the optimization into two stages. In the
first stage, the clustering stage, we compute clustering solution such that the performance
of each cluster is likely to be maximal. Then, in the second stage, the workload distribution
stage, the FDTD workload distribution within each cluster is optimized so as to attain
that maximal performance.

The overall solution performance then depends on two factors — the optimality of the
cluster, and the optimality of the FDTD workload distribution within each cluster. The
primary challenge in addressing this problem is the need, within the setting of a cam-
pus grid, to deal with the heterogeneous machine and interconnection availability factor.
Further, each machine has its own expected availability pattern. While there has been a
steady body of work dealing with parallel FDTD [11,26] or similar computation, none to
our knowledge dealt with a similar context. In fact, to our knowledge, no previous work
considers workload balancing taking into consideration the availability factor.

Due to the nature of the problem, we have chosen to derive a solution based on genetic
algorithm (GA) [10]. The advantage in using GA is that, it makes no assumption about
the mathematical tractability of the problem. Starting with a large set or population
of random solutions, the algorithm applies principles from natural evolution to drive
the population towards optimal solutions. The key to GA’s strength is in fact in its
population-based nature, allowing it to attack and probe the search space from a wide
range of vintage points. The main setback to GA is however in its computational demand,
prohibiting its use for real-time purpose. In our case, however, this is not an issue (so long
as the computational time is reasonable), since our objective is to derive a static resource
allocation plan for clustered distributed FDTD executions.

In the general context of grid computation, GA has been widely used for generic form
of grid resource allocation and scheduling problem. In [32] for example, the use of GA for
resource brokering in grid environment is discussed. In [39], the authors addressed the
optimization of energy efficiency, makespan and user perceived Quality of Service (QoS)
in grid scheduling. In [40], a comprehensive set of experiments to investigate the optimal
form of GA for grid job scheduling was presented. Multi-stages optimization has been
deployed elsewhere in the literature in very different context. For example, T. Tometzki

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2305

and S. Engell [33] investigated a two-stage stochastic mixed-integer programming prob-
lem where an evolutionary algorithm handles the first-stage decisions and mathematical
programming the second. In our context, however, we use GA for both stages of our
solution.

Our main contribution in this work is hence the formulation of a GA-based approach
for optimized clustered distributed FDTD. More specifically, contributions are as follows:

e formulation of a GA based solution to the problem of forming optimal computer
clustering, taking into consideration machine charactheristics, interconnections and
availabilities,

e formulation of a GA based solution to the problem of distributing FDTD workload
within a cluster, again taking into consideration machine charactheristics, intercon-
nection and availability.

We organize the rest of the paper as follows: We provide an overview of FDTD in Section
2. In Section 3, we describe our genetic clustering method. In Section 4, we present our
FDTD workload balancing solution. In Section 5, we present our experimental results,
and finally in Section 6, we conclude the paper.

2. FDTD Review. While a wide range of FDTD variants has been described in the
literature, in this section, as we seek only to impart a sense of the algorithmic structure
of FDTD, we focus on the simplest form, one that simulates the propagation of electro-
magnetic wave in a vacuum. The Maxwell’s equations that describe this propagation are
as shown in Equations (1) and (2).

. OF
H=¢c— 1
V x €0 ot ()
. oH
VX E= “Ho 5 (2)

The equations above describe the evolution of the electric, E , and the magnetic compo-
nent, H , of an electromagnetic wave over a spatial region over time, £. In the equations,
the g9 and po denote respectively the electrical permittivity and magnetivity of the vac-
uum.

Equations (1) and (2) can be discretized (see for example [8]) in both temporal and
spatial domain. Three discrete update equations can be derived from Equation (1), each
corresponding to a single component of E. Similarly, three discrete update equations can
be derived from Equation (2) for the computation of the H field. The resulting update
equation for E,, as an example, is as shown in Equation (3):

B, 4, k) = EL(i, 5, k) + 8%Ttscurlh (3)
where
curly, = (HEY2(i5+1/2,k) — HEV2 (6,5 — 1/2,k) — HEV2(36, 4,k +1/2)
+H, Gk~ 1/2))

Equation (3) performs update for the F, value at position 4, j, k. The new E, value,
on the left side of the equation will be at time step ¢ 4+ 1, derived from an expression
involving its value at time step . The spacing between consecutive time step is given
by At. The calculation of curl, in the equation involves a stencil block from the dual
field, that is the H field. Tt is important to note that the discretized E and H values are
staggered spatially and temporally. In other words, E points are not spatially collocated
with the H points, and temporally, both fields are updated in an alternate manner.

2306 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

A further point to note is that the FDTD can be practically applied only within a finite
region or spatial volume. An absorbing boundary condition (ABC) must be in place to
prevent spurious EM reflection from the boundary of the finite region. A number of ABCs
is commonly in use, the most popular of which being the perfectly matched layer proposed
by Berenger [3] and its convolutional variant by Roden and Gedney [28]. In this work,
we assume the ABC cost to be negligible, due to the relatively thin layers required for its
implementation.

In pseudocode, the FDTD updates to be performed at each time step is depicted below:

fori,j,k=0—I1FE, JE,KFE do

ex(i, j, k| :== exl[i, j, k] + stencil(hy, hz)
eyli, j, k] := eyli, j, k] + stencil(hx, hz)

ez[i, J, k] := ezli, j, k] + stencil(hz, hy)

end for
send_blockboundary(e)
accept_blockboundary(e)

fori,7,k=0—I1FE,JE,KFE do

hx[i, j, k] :== hxl[i, j, k] + stencil(ey, ez)
hyli, 3, k] == hyli, j, k] + stencil(ex, ez)

hzli, j, k] := hzl[i, j, k] + stencil(ex, ey)

end for
send_blockboundary(h)
accept_blockboundary(h)

The pseudocode above deals may process either the whole FDTD volume or a single
FDTD block. In parallel or distributed FDTD, the entire volume is partitioned into
blocks, each one of which is to be executed on a different machine using the same FDTD
update operations. While the FDTD is easily parallelizable, due to the stencil computa-
tion, FDTD update at the boundary layer of a subblock will involve communication with
adjacent blocks. The send_blockboundary and accept_blockboundary in the above pseu-
docode performs this communication function. In the case whereby the boundary face is
an external face, i.e., it does not face another block, the functions will then perform the
transfer of data to and from the ABC layers instead.

3. Stage 1: Resource Clustering. We consider in this section the resource clustering
stage. As far as we can tell, there has been very few work in the literature that deals with
resource clustering. The closest is that in [2]. As in our work, in [2], the authors attempted
to create clusters where each cluster focussed on a single task. Their optimization effort
focussed on minimizing the intra-cluster communications. Posing the problem as a bin-
covering problem, a distributed approximation solution was proposed, where each node
autonomously made a decision as to whether or not to join a particular cluster. The
solution was hence distributed in nature. In our context, however, we need only a centrally
computed solution. Furthermore, we consider more factors — resource availability and
processing rate factors, not taken into consideration in [2].

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2307

TABLE 1. Availability profile (1 for true, 0 for false)

machines profile
my 1,0,1,1,0,0,1,1
my 0,0,0,0,1,1,1,1
mo 0,0,0,0,1,0,1,1
ms 1,1,1,1,0,0,0,1

3.1. Resource features. Given a heterogeneous set of computers, we seek to partition
the set into clusters. We assume that for each computer, m;, we know the following
characteristics:

1. The FDTD processing rate, v;, i.e., is the number of FDTD cells that can be pro-
cessed by machine m; per second. A simple FDTD benchmarking program can be
used to obtain this value, and its value is likely to be proportional to the allocated
CPU rate, i.e., the portion of CPU dedicated to grid tasks. In our case, users and
system administrators will typically set the fraction of CPU rate to be dedicated to
grid task, considering factors such as electrical usage and air-conditioning level.

2. The FDTD data transfer rate (i.e., the number of FDTD cells transferable per sec-
ond), ¢;;, to another computer m;. This value can also be obtained using simple
benchmarking.

3. Allocated memory space, |m;|, that is the amount of memory dedicated for the dis-
tributed FDTD tasks. This value may be pre-set by the users or the administrators.

4. Predicted computer availability, A;, over a period of time.

The availability for a computer p; over a period of time of duration 7' is specified in
the form of an availability profile, A; = ag, a4, ...,ar 1, where a; is the availability (true
or false) of the machine at time ¢. To predict resource availability, historical availabil-
ity patterns for the computers available within the grid needs to be collected, and a
prediction technique such as those published in [9,15,17], can be used to predict future
trends. While prediction is probabilistic and uncertain in nature, within a campus con-
text, such extrapolated data is usually reliably accurate. The reason behind this is due to
the usually repeating computer usage patterns induced by university timetables at both
undergraduate and postgraduate levels.

To understand the need to consider availability vector when performing clustering, con-
sider the following: If a machine m; within a cluster has to wait for another machine m;,
m; would be losing time. The longer or the more frequent the wait, the less productive is
a cluster. In the worst possible case, suppose machines m; and m; are running interdepen-
dent processes and their availability alternates indefinitely — that is when m; is available,
m; becomes unavailable, and vice versa. In such a situation, the simulation would simply
stall. Hence, in a good solution, the availability of the machines within the same cluster
is likely to be similar. As an example, suppose we have the availability profile of four
machines as shown in Table 1. The profile in the table shows the availability of each
machine over an eight 15-minutes period. A reasonable clustering based on availability
(alone) would be as follows: {mg, m3}, {mq, ms}.

3.2. Clustering optimization. The clustering strategy should be clear by now: we seek
to group machines with similar capability and availabilty together. Within each cluster,
the computer nodes should be

e as similar as possible in terms of CPU rate and availability vector
e with a maximal average internode data transfer speed

2308 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

Furthermore, the following constraint needs to be satisfied: the collective memory of
the computers within a cluster must be sufficient enough to hold an FDTD workload.

As for the number, K, of clusters to be formed, we adopt a simple strategy, based on
the number of FDTD loads, each of size that can fit into the collective memory of the

given computers. The number of clusters, K, is computed from the collective memory,
|M|, and the FDTD load size, v, as follows:

| M]
== (1)

Of course, if each computer can hold the entire FDTD load by itself, we may well have
clusters of size 1. In our case, this does not matter, as the total number of computers at
our disposal is fixed at M, and if we ignore internode communication, it does not matter
if we use m clusters each with n computers, or n clusters each with m computers, where
M = n x m. Factoring in the communication cost however, we prefer a cluster size which
is tight-fitting, as implied by Equation (4).

Given a set of M computers, the K-clustering problem can be posed as a search for a
partitioning P that maximizes:

K

|P| Ipk| Pkl

1

LS (XY 0

k=0 \ i=0 j=0,j#i

where L .
Cij:(— Agj) + (1 —myy) (6)

Cij

(A — Aj)
Ay = Ei) 7

and i — my

mg;| — |,
mij = TJ (8)

The A;; term in Equation (7) is the Hamming distance between the availability vector
for machine p; and that for p;. Hence, A;; is larger for closer availability vectors. In a
similar way, the m;; term in Equation (8) has a value that increases with a decrease in
the difference between |m;| and |m;|. The denominator term, ¢;;, in Equation (6) denotes
the time it takes to transfer an amount of load from machine m; to m;, and acts as the
scaling term. Hence, the less the time it takes for the data transfer, the better the overall
match between the two machines.

We consider the following two ways to optimize the expression in Equation (5):

e performing greedy clustering,
e using genetic algorithm.

Greedy clustering works as follows:
repeat
randomly, select a ‘free’ (yet to be clustered) machine, m;
randomly, rank all other free machines using Equation (6)
form a cluster using m; and its best M/K — 1 peers.
until K clusters are formed
This greedy approach is intuitive and is commonly used in forming computer clusters.
The problem with the method, as with many other greedy algorithms [6] in Computer
Science, is that the solution obtained is unlikely to be optimal for complex dataset. Nev-
ertheless, the method is fast, and can be a good heuristics for a quick guess.
Next, the GA for this approach assumes a standard form, as follows:

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2309

begin
INITTALIZE population with random candidate solutions;
EVALUATE each candidate;
repeat
SELECT parents;
RECOMBINE pairs of parents;
MUTATE the resulting children;
EVALUATE children;
SELECT individuals for the next generation
until no_of_iteration
end

For the GA implementation, we deploy chromosomes of length M, where each gene de-
notes a cluster index. As an example, the sequence (1,1,2,2,2), a clustering chromosome
for a 5-machines set, denotes that the first 2 machines are to be in cluster 1, while the last
3 machines to be in cluster 2. A similar approach was reported in [12,13,22,24]. Given the
linear chromosome structure, uniform crossover, single-point crossover and uniform flip
mutation suffice for our purpose. An initial population of random possible chromosomes
are first generated. We then evolve it for a number of generations, at each generation,
using tournament scheme to select individuals to be involved in producing the next gen-
erations.

Note that due to the nature of the problem, GA approaches that evolves center of
clusters, as in [18,21,23,35], are not likely to be applicable. While consuming less memory
per chromosome, given the multidimensional nature of the problem, such approach cannot
be extended in a straightforward manner to address the problem as expressed in Equation
(5).

We now consider the performance of greedy algorithm relative to the initial GA popu-
lation. This is as plotted in Figure 1. For the result in Figure 1, the number of computers
involved in the clustering is 100. The maximum FDTD processing speed, the maximum
allocated memory space and the maximum interconnection speed is assumed to vary with
normal distribution between the minimum and the maximum values shown in Table 2.
Availability patterns of 100 time duration, each of them with length of 10 minutes, are
randomly generated. The number of GA generations is experimentally fixed at 500, and

avg_init
300 = _ | o g—_
B best_init

400 # . o 0a

B agreedy

500

600

load

700

800

900

0.01 0.04 0.07 0.1 013

fitness

FI1GURE 1. Clustering performance

2310 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

TABLE 2. Min-max setting for result in Figure 1

size/rate cells or cells/sec
max memory 26301781
max cpu rate 23068672
max network rate 54613
min memory 10520712
min cpu rate 9227468
min network rate 21845

the population size at 500 throughout the evolution. The mutation rate is fixed at 0.01,
and the crossover rate at 0.5. We further note that the performance result in this section
is more exploratory in intent, rather than rigorous. More rigorous results are presented
in Section 5.

As shown in Figure 1, as expected, GA largely outperforms the greedy approach. How-
ever, note that the greedy approach obtains result at least close to the best fitness
(best_init) in the GA initial population. In fact, it obtains a fitness value consistently
better than the average fitness (avg_init) in the GA initial population.

What this result suggests is that the greedy deterministic approach may be useful in
helping GA to converge better. We hence consider the combination of GA with the greedy
approach as follows:

Run greedy clustering as pre-optimization stage,

Use its result to seed the GA population after its initialization as follows:

Assume a seeding probability «
For each individual in the population
With a probability «, mark the individual
If (individual is marked)
Compute a seed by greedy clustering with a randomly shuffled machine list
If (the seed is fitter than the selected individual)
Replace that individual by that seed

One would suspect that seeding would improve the average fitness value in the GA
initial population. We examine this, considering the effect of seeding in the case whereby
the input load is 500 x 500 x 500. As shown in Figure 2, seeding does appear to improve
the average fitness of the initial GA population. In fact, the average fitness increases with
the seeding probability. This result is to be expected as we replace an individual within
the population with a seed only if the individual is less fit than the seed.

We proceed on to investigate how seeding affects the final fitness value. Plotting the
variation in final fitness improvement with various seeding rates, we obtain the graph in
Figure 3. One can deduce from the graph that the seeding rate should optimally be of
low value, within the range 0.1 to 0.25.

Hence, seeding does seem to be a promising approach to improve the clustering perfor-
mance. In fact, the benefit of seeding has been reported in a number of works. In [27]
for example, apply case-based reasoning to create individuals forming half of the initial
population. In [16], seeding is applied to speed up GA-based solution for the rectilinear
steiner problem, and in [25], seeded population is considered in the context of a bioinfor-
matic problem. However, there is a certain subtlety in applying seeding in our specific
context, and this we explore more rigorously in Section 5.

4. Stage 2: FDTD Workload Distribution. In a homogeneous environment, an
FDTD workload balancing algorithm can be fairly simple, i.e., simply divide the load

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2311

0.0206 B average
hefore
B average after
0.0202
% after
=
© 00198
gl
2
before
0.0194
0.019
0.1 02 03 D4 05 06 0.7 neg 08 1
seeding probability
FIGURE 2. Typical effect of seeding on average fitness
9 M Ssimprove.
= [
i
=
@
B
£ A
=
=
bl 3

0.1 0.25 05 0.75 1

seeding rate

FiGure 3. Typical effect of seeding on final GA fitness

equally among the available resources. However, in our case the target environment how-
ever is a heterogenous, geographically-dispersed, non-dedicated (or opportunistic) grid

environment. In such an environment, the technical challenge is due to the following
factors:

e Different resources within the grid have different memory and processing capacity.

Furthermore, the network bandwidths due to traffics and configurations are different
too.

e Each resource is non-dedicated.

The work in [30], is the most recent, that addressed the problem of optimizing the
distribution of FDTD workload balancing in a heterogeneous grid. They assumed an
environment where the performance of the machines remain constant throughout the
execution. They posed the problem of distributing FDTD as that of find the partitioning

2312 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

(2 that minimizes the following:

v — Cij
J#

where 0 < i < |P|, €; is the i-th partition or block, |€2;| the size of the block, 0€; N 0Q;

is the intersection between 2 blocks, and 0€2; N 0€) the intersection between block 7 and

the computational boundary. -; is a constant that relate the size of the ABC boundaries

to the cost of execution, and v;, as earlier in the paper, the number of FDTD cells that

can be processed by machine m;.

As said in [30], optimization of FDTD distribution based on Equation (9) is non-
trivial as the geometry and position of the partitions need to be known first before the
overlap between neighboring partitions can be computed. In [30], authors performed the
optimization in a two-stage manner. They first determined the partition sizes by solving
a simplified version of Equation (9) using a nonlinear constrained optimization method.
They then used a partitioning algorithm that recursively subdivide the FDTD domain in
such a way that the sizes of the resulting partitions are as close as possible to the optimal
sizes computed in the first step.

The following assumptions in [30] render it unsuitable for our purpose:

e In the first stage of the approach in [30], it was assumed that the communication
speed from a particular resource to any other resource is the same, that is 3;; = ;.
This is certainly untrue for our target grid environment.

e The memory constraint of each of the participating resource was not considered.
Even if Equation (9) can be optimized while respecting memory constraints, in the
second stage, adjustment of the volume block size to accomodate 3D partitioning
tends to result in violation of the constraints.

e A dedicated set of machines is assumed, so the availability is not a concern.

4.1. GA design for FDTD workload distribution. Due to the limitations in [30], we
consider using a GA-based approach. The basic idea in our approach is to search for an
optimal way to subdivide the FDTD load recursively along one of the major axis, until
the number of blocks is equal to the number of machines in the cluster. The optimality
of a subdivision is a function of the expected number of FDTD iterations that can be
executed by the cluster, and this is predicted using a full-scale simulation.
Assuming that the set of neighboring blocks, or simply the neighboring set S;, for each
block € has been computed, the pseudocode for the simulation is as shown below:
fori=0—1|Q| do
if || < |m;| then
return 0
end if
status; < READY
procTime; < processingTime(m;, |Q])
numaiteration; <— 0
commTime; < 0
for k =0 — |S;| do
m; <— Szk
commTime; < commT'ime; + c;;
end for
end for

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2313

for T=0— |A| do
for t =0 — lengthofperiod do
fori=0— Q| do
if m; not available then
continue
end if
if status; is PROCESSING then
procltme; < proclime; — 1
if procTime; is 0
status; <+ COMMUNICATING
end if
end if
if status; iIs COMMUNICATING
commIime; < commTime; — 1
if commTime; is 0
status; < PROCESSING
numiter <— numiter + 1
end if
end if
end for
end for
end for

4.1.1. Chromosome design. We design our chromosome as shown in Figure 4. As can be
seen in the figure, the chromosome comprises of a linear sequence of pairs of numbers.
Each pair forms a code. A chromosome is hence a linear sequence of codes. The first
number in a code is an integer, which indicates the axis to be used for subdivision, while
the second, a real number, indicates the position, normalized from 0 to 1, along that axis.
Applying the instructions in a chromosome, we obtain a list of FDTD blocks. Hence, to
generate m blocks, m — 1 instruction steps or genes are needed.

The blocks formed by a chromosome is mapped index-wise to the corresponding ma-
chines in the machine list. Hence, block 1; is mapped to machine m;. A mismatch may
occur, that is, v;, may be mapped to m; with insufficient memory. To resolve the mis-
match, we search for a machine m; such that |¢;| < |m;| and |¢;| < |m;]|. If the search is
successful, we perform a swap such that 1; is mapped to m; and v; to m;. Otherwise, we
assume that the mismatch is irrepairable, and a penalty is imposed onto the chromosome.
Note that we could have applied other forms of correction, for example, by spreading

Visual Phenotype

Chromosome

0 0.5 1 0.5 -

IR]
f ; ¥
Divide along x Divide along y
atpoint 0.5 atpoint 0.5

Instruction Phenotype

FI1GURE 4. Chromosome for load balancing

2314 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

out the excess load, ||1;| — |m;|| over the remaining machines that still have free memory
space. However, this will result in multiple chromosomes mapping to the same phenotype,
and subsequently a loss of phenotypic diversity in the population.

4.1.2. Genotype-to-phenotype mapping subtlety to be considered in mutation. At the esse-
nce, given a chromosome as discussed in the previous section, mutation simply involves
random perturbation of the gene values. A code within the chromosome comprises of an
axis and a split point value. An axis is perturbed by randomly changing its value to any
of the other 2 possible values. A split point mutation involves the addition of a small real
value to the current split value.

There is a certain subtlety however in mapping the a mutated split point value to the
corresponding phenotype. Along the chromosomes, going from the left to the right, a
small fixed change in the split point value will be mapped to increasingly large change
in the phenotype. To understand this, recall that the chromosome is a list of instruction
codes, interpretated from left to right. Each code results in the split of the input volume.
As we go to the right, we are splitting smaller and smaller volume subblock. The smaller
a volume subblock, the more significant a change in the split value will be. For example,
a fixed change of 0.1 means a change of 1 unit along the chosen split axis if the volume
subblock being considered has a dimension of 10 along that axis, but a change of 100 units
if the volume dimension is instead 1000 along that axis. Therefore, when mutating the
split point value, the size of the volume subblock along the chosen axis must be considered,
and the perturbation size appropriately scaled.

Hence, the form of the mutation as used in this work is one with non-uniform prob-
ability rate within the same chromosome which is specific to the problem of volume
partitioning. In fact, there has been many problem-specific operators used in many work
on real-world GA application problems. In the work of [34] for example, authors proposed
a problem-specific crossover operator, named “conflict-free partition crossover” in formu-
lating a GA-based solution to the compiler register allocation problem. In [4], authors
reviewed knowledge-based operators, especially crossover operators, required in solving
permutation-based problems. The general emphasis in problem-specific operator design
in the literature is on the crossover design. In our context here, however, the mutation is
more of concern.

The performance impact of the proposed scaled mutation rate scheme, as proposed in
this section, is investigated in Section 5. Statistical analysis of the results, as will be
elaborated upon in the section, indicates a significant improvement due to the scheme.

4.1.3. GA application strategy. There are two primary concerns in applying GA to the
workload distribution problem:

1. Firstly, the concern is with the feasibility of the solutions evolved. While penalty
functions may be applied to encourage the evolution of solutions that respect the
memory constraints of machines within the input cluster, a sizable fraction of the
overall population will likely be infeasible, as shown in Figure 5, and have to be
penalized. Ideally, the optimal solution is derived based on a population of legal
individuals.

2. The full-scale simulation to be deployed is computationally taxing, and makes prac-
tical only smaller GA population sizes.

4.1.3.1. Concern 1: feasibility of solutions. The first concern is addressed by first evolving
the GA population with a view of producing legal chromosomes. In this first stage, only
the penalty function is applied. A load-resource memory mismatch results in deduction

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2315

Histogram of Fitness Gen 0 (Basic)

Normal
600+ Mean 0.3609
SiDev 0.4000
[N 1000
500-
400-
=
Q
i =
S 300-
o
@
s
200-
100-
072 -036 000 03 072 108 144 1.80
Ftness Gen 0 (Basic)
FIGURE 5. Fitness histogram for generation 0
Histogram of Fitness Gen 100 { Basic)
Normal
5004 Mean 16885
B SiDev 6158
M 1000
4004 i
Z 300-
=
2
g
& 200-
100+

12 6 20 24 28
Ftness Gen 100 (Basic)

.
oo}

FIGURE 6. Fitness histogram for generation 100

of a small penalty from an initial score value. Only when the average fitness of the pop-
ulation reaches a certain threshold, do we proceed on to the second stage, where a more
stringent fitness function is applied. A similar approach was reported in [36]. In this
work, they noted that in the early phase, it is more important to optimize the ‘feasibility’
of solutions rather than its actual fitness. However, they do not totally disregard the
actual fitness function in this first stage. Instead they proposed the use of non-dominated
individual selection scheme to evolve feasible solutions. In our case, we do not find a
need to use sophisticated selection mechanism to evolve feasible individuals. Using the
standard tournament selection, our GA implementation does not seem to have any prob-
lem in passing by the first stage, and converging to a balanced population comprising
largely feasible solutions, with a healthy dose of infeasible ones, as shown in Figure 6.
We did probe the use of an alternative selection mechanism, Fitness Uniform Selection
Scheme (FUSS) [14], and noted no significant improvement in performance, indicating, as
suggested in [19], that the load balancing problem is not likely to be a highly deceptive
problems.

2316 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

4.1.3.2. Concern 2: need for surrogate fitness function. The second concern, the com-
putationally taxing nature of the full simulation-based fitness function, is addressed by
running the GA with a surrogate function using a large population, before rerunning it
with the full-simulation based evaluation using a smaller population. The use of surro-
gate function has been considered in several other GA work. For example, in the work
of [5], they proposed the use of Markov network to approximate various fitness functions.
In [31], authors proposed the use of an adaptive fitness approximation GA (ASAGA) to
overcome the problem of selecting appropriate approximation model. ASAGA adaptively
chooses and adapt the appropriate model type. In [20], authors developed a framework
for determining optimal surrogate functions. Most of the major work on surrogate-based
GA to date requires building up approximation models. A problem with this approach,
as noted in [29], is that a large number of exact fitness evaluations, in the first place, has
to be performed to develop the model. In this work, for the FDTD workload subdivision
problem, we avoid this problem, and instead directly use Equation (9) as the surrogate
function. Further, we use the surrogate as a mean of producing seeds for a latter full-
scale evolutionary optimization process, rather than as a complete replacement of the
full-simulation evaluation.

Adaptation of Equation (9) as a surrogate function requires that for each machine in
our data set, we compute it is average network transfer rate. Further, we need to ensure,
through penalty function, that the optimization of Equation (9) takes memory constraints
into consideration.
4.1.3.3. 2-substage load distribution. Based on the the way we are addressing the two
concerns in applying GA to workload balancing, it is clear that our approach requires
running the second-stage GA in 2 substages. The substages are as follows:

(1) large-population GA with evaluation function based on surrogate and penalty.
(2) small-population GA with evaluation function based on full-simulation and penalty.

The input from the first substage goes on to be part of the population for the second
substage.

Note that the same penalty function applies in both stages. Since constraint violation
translate to lower fitness value, the essence of our constraint-handling approach is similar
to that in [7]. In our tournament selection scheme, for two randomly selected solutions,
the followings rules are implicit:

(1) a feasible solution is selected rather than an infeasible solution.
(2) between two feasible solutions or between two infeasible solutions, the one with the
higher fitness value is selected

5. Experimental Results. We investigate the efficacy of our proposed multi-stage GA
approach using 3D cubical FDTD volumes with dimension D? where where D is a multiple
of 100, with values from 300 to 900. The size of each of the load used are as shown in
Table 3.

Each experimentation is repeated multiple times, typically 15 or 20 times, each time
using a randomly generated set of 100 computers. As before, the maximum FDTD pro-
cessing speed, the maximum allocated memory space and the maximum interconnection
speed for each set is assumed to vary with normal distribution between the minimum and
the maximum values shown in Table 1. Availability patterns of 100 time periods, each of
which with length of 10 minutes, are randomly generated.

5.1. Clustering results and analysis. We present in this section the result for our
GA-based resource clustering approach. The number of GA generations is fixed at 500,
and the population size at 500 throughout the evolution. The mutation rate is fixed

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2317

at 0.01, and the crossover rate at 0.5. We have used tournament selection scheme to
select better individuals for the next generations. Table 4 shows the performance of our
clustering approach for different FDTD workloads. A 2-tailed t-test with a confidence
interval of 95% was performed, comparing the results of GA with and without seeding.
The significance values computed are as shown in Table 5.

First, we consider the performance for a workload of 300 x 300 x 300. From the result,
it is clear that GA vastly outperforms the greedy approach. The question is whether or
not seeding does have any actual impact. As can be seen in Table 5, there is a significant
difference between the performance score when the seeding rates are 0.1, 0.25 and 0.75.
Based on the difference value, for a load of 300 x 300 x 300 the best seeding rate seems
to be 0.25.

For an FDTD workload of 400 x 400 x 400, as can be seen from the significance values
in Table 5, the differences seems to be negligible, between seeded and unseeded GA. In
other words, seeding does not help in the case of an FDTD workload of this size. A similar
result is obtained for an FDTD workload of 500 x 500 x 500.

The situation is more positive for seeding in the case of an FDTD workload of size
600 x 600 x 600. As indicated in Table 5, there is a significant performance difference
between GA with no seeding and GA with seeding rates of 0.1, 0.25 and 0.75. Similarly,
seeding seems to be beneficial for an FDTD workload of 700 x 700 x 700. For an FDTD
workload of 800 x 800 x 800, however, the result obtained is surprising as GA without
seeding (with mean .0548286) actually outperforms GA with seeding 0.25 and 1.0, as can
be seen in Table 4 and in the significance values shown in Table 5.

Finally, for an FDTD workload of 900 x 900 x 900, as indicated in the tables, seeding
does not bring significant difference in the resulting performance. In fact, an interesting
observation that can be made from Table 4 is that the performance difference between
the greedy approach and GA-based methods is less (but still significant, with significance
value of 0.0298) compared with that for smaller FDTD loads.

As shown in this section, seeding benefit seems to depend on both the workload and the
seeding rate. For the largest workloads, that of sizes 800 x 800 x 800 and 900 x 900 x 900,
seeding seems to bring no effect. This is likely due to the ineffectiveness of the greedy
algorithm used to generate the seeds. In all, however, a seeding rate of 0.1 seems to be
the safest option, as at the very least, its performance is not significantly worse than that
of an unseeded GA.

5.2. Load balancing based on surrogate fitness function. As discussed in Section
4.1.3, for the load balancing stage, we perform a 2-substage optimization. In the first
phase, a surrogate function based on Equation (9) [30] is used to evaluate each candi-
date load-balancing solution. Since the chromosomes used, a sequence of split codes, are

TABLE 3. Volume size for D? load, assuming 24 bytes per cell

D Number of cells Volume (MBytes)
300 27000000 617.98

400 64000000 1464.84

500 125000000 2861.02

600 216000000 4943.85

700 343000000 7850.65

800 512000000 11718.75

900 729000000 16685.49

2318

N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

TABLE 4. Fitness scores for clustering

Load | Measure | Greedy | No Seed 01 0.25 Seedltr)l.gs) Rate 075 1.0
3003 Mean .0713231 | .1310968 |.1326767 | .1340032 | .1318901 | .1329446 | .1322749
Std Dev |.0028727 | .0021347 | .0017210 | .0018685 | .0015264 | .0021070 | .0023479
4003 Mean .0499110 | .0982985 |.0981946 | .1009446 | .0981732 | .0994386 | .0989339
Std Dev |.0082562 | .0041648 |.0048529 | .0039827 | .0052687 | .0055425 | .0064056
£00° Mean .0265770 | .0706665 |.0692137 | .0706865 | .0701461 | .0697806 | .0710531
Std Dev |.0065858 | .0047343 |.0042349 | .0030689 | .0053325 | .0040543 | .0037248
6003 Mean .0303977 | .0587311 |.0601778 | .0603163 | .0596500 | .0601137 | .0600630
Std Dev |.0056142 | .0019601 |.0014886 |.0010832 | .0015760 | .0011649 | .0015437
700° Mean .0448715 | .0554987 | .0574946 | .0572647 | .0570652 | .0572530 | .0572472
Std Dev |.0124122 | .0028864 | .0008634 | .0005057 | .0005857 | .0007204 | .0011080
8003 Mean .0370232 | .0548286 | .0546098 | .0537228 | .0541613 | .0543691 | .0014850
Std Dev |.0033298 | .0010559 |.0013779 |.0014034 | .0013423 | .0532479 | .0008378
9003 Mean .0493121 | .0511232 |.0516863 | .0513298 | .0515099 | .0511947 | .0512364
Std Dev |.0044781 | .0017430 |.0018039 | .0015753 | .0016087 | .0015168 | .0015605

TABLE 5. T-test between clustering GA with and without seed

Seeding Rate

Load 0.1 0.25 0.5 0.75 1.0

3003 0.021 0.00 0.230 0.024 0.170
4003 0.947 0.086 0.941 0.525 0.750
500° 0.35 0.989 0.776 0.585 0.808
6003 0.018 0.011 0.152 0.024 0.051
700° 0.005 0.027 0.032 0.026 0.038
3003 0.618 0.026 0.137 0.344 0.00
9003 0.366 0.745 0.520 0.905 0.856

hierarchical in nature, the mutation rate should vary at each level, along with the chro-
mosome. The mutation rate should be lowest at the highest level, that is the root, and
highest at the lowest level of the hierarchy. Specifically, the mutation probability rate, p;,
for each code, code;, along the chromosome varies as follows:

(10)

Hence, the primary experimental variable is the mutation probability intra-chromosome
scaling factor, s, used in the mutation. In our experiments, we vary the scaling factor,
using the following values for s : 0.01, 0.05 and 0.1. Further, we study as well the effect
of the following two extensions:

pi:pbase+i'5

(1) feasibility preservation: a mutation is reattempted for as long as it causes a feasible
chromosome to become unfeasible.
(2) hill-climbing: a mutation is reattempted for as long as it causes a reduction in fitness.

Each of the figures reported in this section, as in the previous section, was obtain
through multiple repetitions (15 to 20). For each load, we consider a single clustered
resource pool, and subject the load to GAs with different scaling factor for the mutation.
We then use paired t-test to compare the performance results, between GA with scaled
mutation rate and GA with a flat mutation rate. We further note that we do not consider
the performance measures for load of size 300 x 300 x 300. The reason is that most of the

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD

TABLE 6. Fitness scores for surrogate GA

2319

Load

Measure

No scaling

scaling rate

0.01

0.05

0.1

fp

hec

4003

Mean

33.3202176

33.3296765

33.3445706

33.4102000

33.3386706

33.3029706

Std Dev

1.9154159

1.9295433

1.9213180

1.9698149

1.9520860

1.9099438

5003

Mean

21.8757764

21.9065235

18.9642529

21.9020118

18.9795847

16.0774953

Std Dev

1.9502061

1.9382335

1.4700516

1.9568354

1.4848580

1.2000089

6003

Mean

23.4223706

23.5532000

23.5200352

23.4690647

23.5857823

23.1826412

Std Dev

1.9146713

1.9399559

1.9341907

1.9303716

1.9483175

1.9133611

7003

Mean

24.8240824

25.3901353

25.1115294

25.1601882

25.0460647

24.2824000

Std Dev

4641067

4904735

2733610

.1608548

4459373

5617687

8003

Mean

23.3983235

23.8981176

24.0033176

24.0728059

23.9981353

24.0414647

Std Dev

303451642

27519376

.358154325

1921679034

.523278514

.266695723

9003

Mean

24.9756118

25.7712353

26.4510353

26.5882529

26.2889824

25.9858059

Std Dev

.5234993

5285765

5242757

3709963

7208470

7515927

TABLE 7. Paired t-test between GA with and without scaled mutation

Scaling rate

Load 0.01 0.05 0.1 fp hc

4007 0.138 0.138 0.000 0.510 0.275
5007 0.008 0.041 0.004 0.041 0.002
6007 0.023 0.139 0.465 0.016 0.009
7007 0.000 0.016 0.001 0.182 0.128
8007 0.000 0.001 0.000 0.000 0.000
9007 0.000 0.000 0.000 0.000 0.001

clusters formed for this load comprises of only 2 computers, resulting in a load balancing
solution which is too trivial for consideration here.

As in the previous section, the number of GA generations is fixed at 500, and the
population size at 500 throughout the evolution. The mutation rate is set to be at 0.01,
and the crossover rate at 0.5. And again, we have used tournament selection scheme to
select better individuals for the next generations.

As shown in Tables 6 and 7, for a workload of 400 x 400 x 400, a scaling factor of 0.1 leads
to a significance difference (increase) in performance compared with a GA with unscaled
mutation rate. For all other scaling factors, the significance values are insignificant. One
would expect the two extensions above — feasibility preservation and hill-climbing — to
result in the best performance, but as can be seen here, this is not the case. More
discussion on this will be in the subsections to follow.

A different situation can be seen in the context of FDTD workload of size 500x 500 x 500.
While a scaling factor of 0.01 results in a significant (but slight) improvement from a
non-scaled version, there is significant degradation for scaling factor of 0.05, and for
the feasibility-preserving and hill-climbing extension. For an FDTD workload of size
600 x 600 x 600, favorable figure are obtained for mutations scaling of 0.01, with and
without feasibility preserving extension. In the context of workload of size 700 x 700 x 700,
the tables show significantly better performance for mutation scaling factor of 0.01, 0.05
and 0.1. There is however no significant difference when it comes to feasibility-preserving
and hill-climbing mutation. For an FDTD workload of 800 x 800 x 800. Scaling factor of
0.01, 0.05 and 0.1, and the feasibility-preserving scheme show significantly better results

2320 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

25 B max (no hc)
B max (he)
20
2 he no he
D 18
=
10 |
5
0 70 140 210 280
generations
FiGURE 7. Fitness evolution for 500 x 500 x 500
25 B max(no he)
— B maz (hc)
20
% _ he no hec
;FQ,_ 15
L]
0 70 140 210 280
generations

Fi1GURE 8. Fitness evolution for 600 x 600 x 600

compared with the zero-scaling scheme. Finally, in the case of an FDTD workload of size,
900 x 900 x 900, all the mutation attempts with non-zero scaling, including that with hill-
climbing and feasibility-preservation, show significantly better performances compared
with non-scaled mutation.

Based on the results presented in this section, we can derive the following conclusion:
Feasibility preservation rarely help in improving performance of GA with scaled mutation
rate. Hill-climbing does not help at all. The apparent lack of performance boost from
both forms of extensions, can be explained with reference to the plot in Figures 7 and
8. The figures show evolution of best fitness for GA with (hc) and without hill-climbing
(no hc), in the case of 500 x 500 x 500 and 600 x 600 x 600 workloads. It can be seen
that hill-climbing can actually help in accelerating convergence. However, the final fitness
value, as shown in the graphs, is significantly better or different compared with that when

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2321

1.2 B div(no he)
B div (hc)
0.9
4
% 0.6 no hc
@
S
0.3
hc
0
0 70 140 210 280
generations
FIGURE 9. Diversity evolution for 500 x 500 x 500
2 M div (no he)
B div (hc)
1.5
=
w0
AL
g !
3
no he
0.5
he
0
0 70 140 210 280

generations
FIGURE 10. Diversity evolution for 600 x 600 x 600

hill-climbing is not deployed. In fact, as can be seen in diversity plots in Figures 9 and 10,
hill-climbing may lead to more rapid loss of diversity, which may in turn result in inferior
performance. The observation and explanation here applies to our all other test volumes,
and to the feasibility-preservation scheme as well.

Hence, the best form of mutation for the surrogate-based load-balancing optimization
appears to be that with seeded scaling factor between 0.01 and 0.1. Interestingly, the
impact of scaled mutation rate seems to be higher for the bigger volumes. Of course, the
conclusion we draw here is based on the experimentations done so far. More work will be
done to further validate our observations here.

5.3. Load balancing based on simulation-based fitness function. The use of sur-
rogate GA in this paper is meant to produce seeds for a smaller population GA that uses
full-simulation for the evaluation of its individuals. In this section, we present the perfor-
mance results for both seeded and unseeded full-simulation GA. We assume a population

2322

TABLE 8. Performance of simulation-based GA

N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

Load | Measure 0 5Number of S(:'i-e5ds 30

400° Mean 16.0293867 | 6886.6666667 | 7216.8666667 | 7346.2000000
Std Dev | 10.7292388 | 870.7542434 139.9269537 168.9937446

5007 Mean 9.7062180 | 5605.86666667 | 5600.00000000 | 5600.00000000
Std Dev 1212901 15.4820941 0 0

6003 Mean 9.5686220 | 3596.8000000 | 3755.4666667 | 3743.6000000
Std Dev 1872287 136.8305521 59.82458485 117.8108654

700° Mean 7.4635940 | 6040.4000000 | 6445.0666667 | 6351.5333333
Std Dev 7873739 315.5172171 547.0791881 261.9320704

800° Mean 9.5686220 | 3596.8000000 | 3755.4666667 | 3743.6000000
Std Dev 1872287 136.8305521 59.8245848 117.8108654

900° Mean 3.7743073 | 5955.0000000 | 6003.6000000 | 5879.1333333
Std Dev | 3.2278751 | 147.2582765 192.4632806 248.4827866

TABLE 9. Paired t-test between GA with number of seed = 30 and others

Number of Seeds

Load 0 5 15

4003 0.000 0.051 0.012
5003 0.000 0.164 -NA-
6003 0.000 0.005 0.727
7003 0.000 0.014 0.604
8003 0.000 0.114 0.250
9003 0.000 0.404 0.216

size of 50 for the full-simulation GA, and we use the following number of seeds: 5, 15
and 30, evolving the GA population over just 50 generations (to minimize computational
cost). The results are shown in Tables 8 and 9.

As can be seen in the tables, for a load of 400 x 400 x 400, the results for seeded full-
simulation GAs are obviously better than unseeded GA. In fact, the unseeded GA could
not even find feasible solutions. As explained in Section 4.1.3, our GA implementation
first evolve based only on minimization of the penalty function. Each individual starts
with a score of 20. Violation of memory constraint results in deduction from the score.
If no violation happens, the score is then added with the number of FDTD iterations
performed over a fixed time period. Apparently, with the limited population budget and
number of generations, the unseeded GA could not even find a feasible solution.

Due to the clear performance superiority of seeded GA compared with the unseeded
version, we choose to have the significance values in Table 9 which addresses a different
question: Taking 30 as the maximum number of seeds, we consider the question of whether
or not a lesser number of seeds will result in a significantly (based on paired t-test) different
performance. Table 9 shows the paired t-test significance values of the differences between
GA with 30 seeds and that with lesser number of seeds. As can be seen in the table, for a
400 x 400 x 400 workload, there is a significant difference between 30-seeds GA and GAs
with 15 seeds or no seed at all.

For a load of 500 x 500 x 500, that table shows that again, unseeded GA failed to find a
feasible solution. Further note that 30-seed and 15-seed GA produced the same constant

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2323

value (with O standard deviation). As shown in Table 9, no t-test can be performed
between the values for the 2 GAs. For a load of 600 x 600 x 600, unseeded GA has a very
much lower score. The score for 30-seed GA is significantly better than that for 5-seed
GA. The same conclusion can be derived for 700 x 700 x 700. For a load of 800 x 800 x 800,
again unseeded GA is shown to perform poorly, as in the previous cases. As can be seen
in the table, there is no significant differences between a 30-seed GA and GAs with lesser
number (5 and 15) of seeds. The same conclusion can be derived for 900 x 900 x 900.

A conclusion that we can draw from the results in this section is as follows: Seeded
full-simulation GA certainly perform better than the unseeded counterpart. Further, the
actual number of seeds matters less for the largest volumes considered here (800 x 800 x 800
and 900 x 900 x 900) compared with the case for smaller volumes.

An interesting question to ponder upon at this stage is as to whether or not there was
actually any fitness improvement in the simulation-based GA during its iterations. Was

6000 B fitness

4500

3000

fithess

0 10 20 30 40

generations

FiGUuRrE 11. Fitness evolution for 500 x 500 x 500

4000 B fitness

3000

2000

fithess

1000

0 10 20 30 40

generations

FIiGURE 12. Fitness evolution for 600 x 600 x 600

2324 N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

the final fitness value obtained due to the simulation-based GA or solely due to the results
obtained from the previous surrogate substage? To address this question, it is insightful
to look at the fitness plots for the various workloads. Figures 11 and 12 show the fitness
evolution for 500 x 500 x 500 and 600 x 600 x 600 workloads. As can be seen in the graph,
the fitness values in the simulation-based GA does improve with increasing generations.
We made similar observations in the case of other workloads considered in this paper.

6. Conclusion. We have presented in this paper the clustering and distribution of FDTD
workload over a large set of computers. Given a large set of computers, as is typically
the case in the context of a campus grid, we consider the problem of forming clusters of
computers, each of which is to run a single FDTD at a time. The optimization required
is two-fold: We need to optimize the clustering, and we need as well to optimize the
distribution of FDTD workload within a cluster.

For both optimizations, we proposed some hybrid methods which are centered on GA.
For both, we show the benefit of population seeding. Specifically, for the clustering
optimization, we use a greedy deterministic method that works quickly to produce fit
possible solutions, to be used as seeds for the full GA-based optimization, while for the
workload distribution problem, we use a large-population surrogate GA to generate the
seeds for a smaller-population full-simulation-based GA. It is worth repeating again that
here in this paper, we use surrogate not as a replacement of the actual evaluation function,
as is generally the case in existing work, but to prepare the stage for the actual GA
optimization.

The method proposed in this work is specific to the problem of workload balancing
for FDTD (and other numerical computations that requires similar volume partitioning).
Unavoidably, its lack of generality may limits its applicabllity. However, as has been con-
firmed in the well-known work in [38], a general-purpose universal optimization strategy
is impossible, and we have to accept that the optimal strategy is one which has been
specialized to the structure of the specific problem under consideration.

Future work includes actual implementation and empirical experimentation with the
distributed FDTD, using the clustering and workload distribution strategy as proposed
in this paper. Further, we believe that the GA methods proposed here deserve further
empirical work that deploy even more rigorous experimentation and statistical analysis.

REFERENCES

[1] E. Abenius, Time-Domain Inverse Electromagnetic Scattering Using FDTD and Gradient-Based
Minimization, Master Thesis, Department of Numerical Analysis and Computer Science, Royal
Institute of Technology, Sweden, 2004.

[2] O. Beaumont, N. Bonichon, P. Duchon and H. Larchevéque, Distributed approximation algorithm
for resource clustering, Proc. of the 15th International Colloguium on Structural Information and
Communication Complezity, SIROCCO, Switzerland, pp.61-73, 2008.

[3] J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of
Computational Physics, vol.114, pp.185-200, 1994.

[4] C. Bierwirth, D. C. Mattfeld and H. Kopfer, On permutation representations for scheduling prob-
lems, Proc. of the Jth International Conference on Parallel Problem Solving from Nature, PPSN,
Germany, pp.310-318, 1996.

[5] A.Brownlee, O. Regnier-Coudert, J. McCall and S. Massie, Using a markov network as a surrogate
fitness function in a genetic algorithm, Proc. of the IEEE Congress on Evolutionary Computation
CEC, Spain, pp.1-8, 2010.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, The MIT
Press, 2nd Edition, 2001.

[7] K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods in
Applied Mechanics and Engineering, vol.186, no.2/4, pp.311-338, 2000.

STAGEWISE OPTIMIZATION OF DISTRIBUTED CLUSTERED FDTD 2325

[8] A. Elsherbeni and V. Demir, The Finite Difference Time Domain Method for Electromagnetics with
MATLAB Simulations, SciTech Publishing Inc, 2009.

[9] V. Galtier, K. Mills, Y. Carlinet, S. Bush and A. Kulkarni, Predicting and controlling resource
usage in a heterogeneous active network, Proc. of the 3rd Annual International Workshop on Active
Middleware Services, USA, pp.35-44, 2001.

[10] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Kluwer Academic
Publishers, 1989.

[11] C. Guiffaut and K. Mahdjoubi, A parallel fdtd algorithm using the mpi library, IEEE Antennas
and Propagation Magazine, vol.43, no.2, pp.94-103, 2001.

[12] E. R. Hruschka, R. J. G. B. Campello and L. N. de Castro, Improving the efficiency of a clustering
genetic algorithm, Proc. of the 9th Ibero-American Conference on Advances in Artificial Intelligence
— IBERAMIA, Mexico, pp-861-870, 2004.

[13] E. R. Hruschka and N. F. F. Ebecken, A genetic algorithm for cluster analysis, Intelligent Data
Analysis, vol.7, no.1, pp.15-25, 2003.

[14] M. Hutter and S. Legg, Fitness uniform optimization, IEEE Transactions on Evolutionary Com-
putation, vol.10, no.5, pp.568-589, 2006.

[15] S. Hwang, E. J. Im, K. Jeong and H. Park, An idle computer cycle prediction service for com-
putational grids, Proc. of the jth International Conference on Computational Science, Poland,
pp.116-123, 2004.

[16] B. A. Julstrom, Seeding the population: Improved performance in a genetic algorithm for the
rectilinear steiner problem, Proc. of the 199/ ACM Symposium on Applied Computing, SAC’9/,
USA, pp.222-226, 1994.

[17] N. Kapadia, C. Brodley, J. Fortes and M. Lundstrom, Resource usage prediction for demand-based
network-computing, Proc. of the 17th IEEE Symposium on in Reliable Distributed Systems, USA,
pp.372-377, 1998.

[18] P. Kudové, Clustering genetic algorithm, Proc. of the 18th IEEE International Workshop on Data-
base and Exzpert Systems Applications (DEXA 2007), Germany, pp.138-142, 2007.

[19] S. Legg, M. Hutter and A. Kumar, Tournament versus fitness uniform selection, Proc. of the IEEE
Congress on Evolutionary Computation (CEC-2004), USA, pp.2144-2151, 2004.

[20] D. Lim, Y. Jin, Y. S. Ong and B. Sendhoff, Generalizing surrogate-assisted evolutionary computa-
tion, IEEE Transactions on Evolutionary Computation, vol.14, no.3, pp.329-355, 2010.

[21] H. Lin, F. Yang and Y. Kao, An efficient ga-based clustering technique, Tamkang Journal of Science
and Engineering, vol.8, no.2, pp.113-122, 2005.

[22] Y. Lu, S. Lu, F. Fotouhi, Y. Deng and S. J. Brown, Fgka: A fast genetic k-means clustering
algorithm, Proc. of the 2004 ACM Symposium on Applied Computing, SAC’04, USA, pp.622-623,
2004.

[23] U. Maulik and S. Bandyopadhyay, Genetic algorithm-based clustering technique, Pattern Recogni-
tion, vol.33, no.9, pp.1455-1465, 2000.

[24] C. A. Murthy and N. Chowdhury, In search of optimal clusters using genetic algorithms, Pattern
Recognition Letters, vol.17, no.8, pp.825-832, 1996.

[25] R. Pham, A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots,
Master Thesis, San Jose State University, 2008.

[26] O. Ramadan, Three dimensional mpi parallel implementation of the pml algorithm for truncating
finite-difference time-domain grids, Parallel Computing, vol.33, no.2, pp.109-115, 2007.

[27] C. L. Ramsey and J. J. Grefenstette, Case-based initialization of genetic algorithms, Proc. of the
5th International Conference on Genetic Algorithm, ICGA, USA, pp.84-91, 1993.

[28] J. Roden and S. Gedney, Convolution pml (cpml): An efficient fdtd implementation of the cfspml
for arbitrary media, Microwave and Optical Technology Letters, vol.27, no.5, pp.334-339, 2000.

[29] M. Schmidt and H. Lipson, Coevolution of fitness predictors, IEEE Transactions on Evolutionary
Computation, vol.12, no.6, pp.736-749, 2008.

[30] R. Shams and P. Sadeghi, On optimization of finite-difference time domain (fdtd) computation on
heterogeneous and gpu clusters, Journal of Parallel Distributed Computing, vol.71, no.4, pp.584-593,
2011.

[31] L. Shi and K. Rasheed, Asaga: An adaptive surrogate-assisted genetic algorithm, Proc. of the 10th
Annual Conference on Genetic and FEvolutionary Computation GECCO’08, USA, pp.1049-1056,
2008.

2326

32]

[33]

[41]

[42]

N. ZAKARIA, A. J. PAL AND S. N. M. SHAH

K. U. Stucky, W. Jakob, A. Quinte and W. Siif}, Tackling the grid job planning and resource
allocation problem using a hybrid evolutionary algorithm, Proc. of the 7th International Conference
on Parallel Processing and Applied Mathematics, PPAM’07, Germany, pp.589-599, 2008.

T. Tometzki and S. Engell, Systematic initialization techniques for hybrid evolutionary algorithms
for solving two-stage stochastic mixed-integer programs, IEEE Transactions on Evolutionary Com-
putation, vol.15, no.2, pp.196-214, 2011.

H. R. Topcuoglu, B. Demiréz and M. T. Kandemir, Solving the register allocation problem for
embedded systems using a hybrid evolutionary algorithm, IEEE Transactions on FEwvolutionary
Computation, vol.11, no.5, pp.620-634, 2007.

Y. Wang, Fuzzy clustering analysis by using genetic algorithm, ICIC' Ezpress Letters, vol.2, no.4,
pp-331-337, 2008.

Y. Wang, Z. Cai, Y. Zhou and W. Zeng, An adaptive tradeoff model for constrained evolutionary
optimization, IEEE Transactions on Evolutionary Computation, vol.12, no.1, pp.80-92, 2008.

Y. M. Wang and W. C. Chew, An iterative solution of two-dimensional electromagnetic problem,
International Journal of Imaging System Technology, vol.1, no.1, pp.100-108, 1989.

D. Wolpert and W. Macready, No free lunch theorems for optimization, IEEE Transactions on
Evolutionary Computation, vol.1, no.1, pp.67-82, 1997.

F. Xhafa, L. Barolli, J. Kolodziej and S. Khan, Genetic algorithms for energy-aware scheduling in
computational grids, Proc. of the IEEE International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing, 3PGCIC, Spain, pp.17-24, 2011.

F. Xhafa, J. Carretero and A. Abraham, Genetic algorithm based schedulers for grid computing
systems, International Journal of Innovative Computing, Information and Control, vol.3, no.5,
pp-1053-1071, 2007.

X. Yao, An empirical study of genetic operators in genetic algorithms, Microprocessing and Micro-
programming, vol.38, no.1-5, pp.707-714, 1993.

K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in
isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, no.3, pp.302-307, 1966.

