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Abstract. In this paper, a model of probability fuzzy support vector machines (PFSVMs)
based on the consideration both for fuzzy clustering and probability distributions is pro-
posed. In many applications of traditional support vector machines (SVMs), there are
over-fitting problems due to the fact that SVM is sensitive to outliers or noises. In order
to solve the problem, the fuzzy support vector machines (FSVMs) model is established.
However, in the case that two points are with the same membership, the more information
of their influence cannot be carried out by FSVM. The proposed model is based on the
consideration that there is not only existing classification distribution but also probability
distribution among samples. Experiments show that compared with SVM and FSVM,
PFSVM has a better prediction and the classification performance.
Keywords: Fuzzy support vector machines, Fuzzy clustering, Probability distribution

1. Introduction. Support vector machines (SVMs) proposed by Vapnik in the nineties
of the 20th century have gained wide acceptance due to their high generalization ability
for a wide range of applications and better performance than other traditional learning
machines [3], and have drawn much attention on this topic in recent years [4,5,14,15]. For
the classification case, SVM has been used for isolated handwritten digit recognition [2,5],
speaker identification [1,2], and face recognition [1,18], knowledge-based classification [8],
and text categorization [6,12]. Recently, fuzzy theory and technology lead a promising
way for the application of SVM in data reconciliation, sound classification, and image
de-noising.

However, in the application, standard SVM is sensitive to outliers or noises in the
training sample due to over-fitting. To solve this problem, several techniques have been
managed. For example, in [4], a central SVM method is proposed to use the class centers
in building the SVM. An adaptive margin SVM is developed based on the utilization of
adaptive margins for each training pattern [10]. The original input space is mapped to a
normalized feature space to increase the stability to noise [9], and a robust support vector
machine is proposed aiming at solving the over-fitting problem [16].

Fuzzy support vector machine (FSVM) [13] is another method to solve this problem
which is proposed by Lin and Wang. They defined the decision functions according to the
membership functions in the directions orthogonal to the hyperplane. In order to decrease
the effect of those outliers or noises, FSVM assigns each data point in the training dataset
with a membership and sums the deviations weighted by their memberships. If one data
point is detected as an outlier, it is assigned with a low membership, so its contribution to
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total error term decreases. FSVM can achieve better performance on reducing the effects
of outliers than some existing methods.
In many applications, input point may not be appropriately assigned with member-

ship. There is not only existing classification distribution but also probability distribu-
tion among samples. Though FSVM can be used to reduce even eliminate the influence
of outliers and noises to the whole training model, the probability distribution of sample
points is not neglectable. For example, in the case of two points with the same member-
ship, their position and influence are uncertain. For this reason, we propose a model of
Probability Fuzzy Support Vector Machines (PFSVMs). The model of PFSVM is based
on the idea of building more reasonable classification hyperplane by exploiting more in-
formation hidden in data, which is realized by considering both clustering and probability
distributions with samples in formulation of PFSVM. Experiments show that compared
with SVM and FSVM, Probability Fuzzy Support Vector Machine has a better prediction
and the classification performance.
The remainder of this paper is arranged as follows. In Section 2, standard SVM and

fuzzy SVM are introduced. The new model of PFSVM is proposed in Section 3. In Section
4, experiment results are carried out to illustrate the advantages of the model. Finally,
conclusions are drawn in Section 5.

2. SVM and Fuzzy SVM. In this section, we provide a simple introduction about
support vector machines and fuzzy support vector machines.
Assuming a training set S is given as {xi, yi}, where i = 1, . . ., N , corresponding class

label is yi = {−1,+1}. In the linearly separable case, SVM can find a hyperplane to make
the largest margin between the two classes without any wrong separated points. This is
equivalent to the following quadratic programming (QP) problem:

min
1

2
wTw

Subject to: yi(w · xi + b) ≥ 1
(1)

To reduce the impact of abnormal (outlier) data points for SVM training model, Lin
and Wang proposed a model of fuzzy support vector machines (FSVMs) [13]. In FSVM
each sample is given a fuzzy membership in accordance with their importance in class.
Fuzzy Support Vector Machine’s optimal issue is:

min
1

2
wT · w + C

N∑
i=1

miξi

Subject to:
yi(w · xi + b) ≥ 1− ξi
ξi ≥ 0, i = 1, 2, · · ·, N

(2)

where mi denotes the fuzzy membership of a training sample. The optimal decision
function is:

f(x) = sign(w · x+ b) = sign

(
N∑
i=1

αiyiK(xi · x) + b

)
0 ≤ αi ≤ miC

(3)

3. Model of Probability Fuzzy Support Vector Machines. Although FSVM can
reduce the impact of noise and external samples to the training model, the probability
distribution of sample is not taken into account. In FSVM, it is not easy to determine the
influence of the points with the same membership value. As illustrate in Figure 1, x1, x2

have the same membership to the cluster center v1, v2, but have not the same influence.
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Figure 1. The relationship between center and distributed points

In fact, there exists clustering as well as probability distribution features in actual data.
Thus, we propose a new model of Probability Fuzzy Support Vector Machine (PFSVM).

3.1. Probability fuzzy support vector machines (PFSVM). The objective function
PFSVM can be expressed as follows

min
1

2
wTw + C

N∑
i=1

[(um
i + tηi )ξi]

Subject to:
yi(w · xi + b) ≥ 1− ξi
i = 1, 2, · · · , N ; ξi ≥ 0

(4)

where C,m, η are constant. um
i , t

η
i are memberships representing classification and prob-

ability distribution respectively.
By applying Lagrange function, the objective Function (4) can be changed into

L =
1

2
wTw + C

N∑
i=1

[(um
i + tηi )ξi]−

N∑
i=1

αi

[
yi
(
wTxi + b

)
− 1 + ξi

]
−

N∑
i=1

βiξi (5)

where αi, βi are nonnegative Lagrange multipliers.
We have:

∂L

∂w
= w −

N∑
i=1

αixiyi = 0 (6)

∂L

∂b
= −

N∑
i=1

αiyi = 0 (7)

∂L

∂ξi
= C(ui + ti)− αi − βi = 0 (8)

Substituting Equation (6), (7) and (8) into Equation (5), we get the QP problem as follows

max Q(α) = −1

2

N∑
i=1

N∑
j=1

yiyjαiαj(xi · xj) +
N∑
j=1

αj

Subject to:
N∑
i=1

αiyi = 0 i = 1, 2, · · ·, N

0 ≤ αi ≤ C(um
i + tηi ), i = 1, 2, · · ·, N

(9)
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Accordingly, the KKT conditions are

αi

[
yi
(
wTxi + b

)
− 1 + ξi

]
= 0

[C (um
i + tηi )− αi] ξi = 0 i = 1, 2, · · ·N

3.2. Number of class and the cluster center. Assuming there are c classes and
its clustering center is vi (i = 1, · · ·, c) in the same training class (positive or negative
samples), the fuzzy membership of an element xj to clustering center vi is uij ∈ [0, 1], and
probability membership is tij ∈ [0, 1]. By applying fuzzy probability clustering algorithm
[17] we get:

vi =

N∑
j=1

(
um
ij + tηij

)
xj

N∑
j=1

(
um
ij + tηij

) , uij =

(
c∑

k=1

(
‖xj − vi‖
‖xj − vk‖

) 2
m−1

)−1

, tij =

(
n∑

k=1

(
||xj−vi||
||xk−vi||

) 2
η−1

)−1

(i = 1, · · ·, c, j = 1, · · ·, N). uij, tij satisfy the following constraints:

c∑
i=1

uij = 1, j = 1, · · ·, N

N∑
j=1

tij = 1, i = 1, · · ·, c

The best optimal clustering number cbest can be obtained by using partition entropy (PE).
PE is defined as:

H (U, c) =
1

N

N∑
j=1

c∑
i=1

|uij lnuij|

G (T, c) =
1

N

N∑
j=1

c∑
i=1

|tij ln tij|

cbest = arg
N−1

min
c=2

{
min
U,T

{
1

2
[H(U, c)] + [G(T, c)]

}}
(10)

3.3. Assign fuzzy and probability membership for each data point. Once main
body and external data are determined, the fuzzy and probability membership um

i can be
assigned. In order to obtain a more precise classification hyperplane, we assign different
values to main body and external data. For the main body, we defined:

ui = 1− ‖xi − x̄‖
max

j
‖xj − x̄‖

+ ε, xj ∈ M (11)

where ‖·‖ is Euclidean distance, ε is a very small positive number, x̄ is the center data in
main body data set. Therefore, the membership of the main data is defined in scope of
[ε, 1 + ε].
In this way we can separate the main body from the external data after setting the

membership, and reduce the impact of external point to classification.
Assuming that samples obey a certain kind of probability distribution, we calculate the

probability of each training sample, and take this value as probability membership ti of
the sample.
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3.4. Theoretic analysis of PFSVM. We give out the analysis by following theorems:

Theorem 3.1. In the objective function of PFSVM, the role of tηi is to reduce global risk.

Proof: Let (X, Y ) denote a random vector (X ∈ RD, Y ∈ R), DN =
{
(xi, yi)

N
i=1

}
denote the set of training samples with inputs xi ∈ RD, yi ∈ R. The global risk R(f) of
a function f : RD → R with respect to a fixed (but unknown) distribution PXY (x, y) is
defined as follows ([14])

R (f) =

∫
` (y − f (x)) dPXY (x, y)

where ` : R → R denote a loss function (e.g., ` (e) = e2 or ` (e) = |e|).
In the model of PFSVM, f(x) = sign[wTϕ(x) + b]. The risk of a training sample xi

with distribution ti = P xi
X (x) is

∫
` (1− yif (x)) dP xi

X (x) = citi, ci is constant. So, we can
see that the risk is in direct proportion to ti, and therefore with direct proportion to tηi .
When xi is classified correctly, ci = 0, the risk is minimized. The global risk is combined
into objective function by tηi . That is, in the objective function of PFSVM, the global risk
is embodied by tηi . By optimizing the objective function of PFSVM, the risk is reduced.

Theorem 3.2. In the objective function of PFSVM, (um
i + tηi ) has direct influence to

correct classification.

Proof: Let Ki = (um
i + tηi ), ai = a(xi, w) = (w · xi + b), ξi = [1 − yiai]+, where

[u]+ = max{u, 0}. Let D denote data set, H denote a probability model, similar to the
Bayesian interpretation for SVM in [7], we have

p (w|D,λ,H) ∝ p (D|w,H) p (w|λ,H)

where λ is parameter.
Assuming that the patterns are independently identically distributed, then

p (w|D,λ,H) ∝ p (w|λ,H)
∏
i

p (yi|xi, w,H)p (xi) . (12)

Consider the following probability model:

• Gaussian distribution for w: p (w|λ,H) ∝ exp
(
− (λ/2) ‖w‖2

)
.

• The probability density function p (yi|xi, w,H) for yi = ±1 is given by

p (yi|xi, w,H) =
exp

(
−Ki [1− yiai]+

)
exp

(
−Ki [1− ai]+

)
+ exp

(
−Ki [1 + ai]+

) .
Substituting these probabilities into (12), we obtain

− log p (w|D,λ,H) =
λ

2
‖w‖2 −

∑
i

log

(
exp

(
−Ki [1− yiai]+

)
exp

(
−Ki [1− ai]+

)
+ exp

(
−Ki [1 + ai]+

))
−
∑
i

log p (xi) + c.

where c is constant.
By taking the approximation that p (yi|xi, w,H) ∼= exp

(
−Ki [1− yiai]+

)
= exp (Kiξi),

we get

− log p (w|D,λ,H) =
λ

2
‖w‖2 +

∑
i

Kiξi −
∑
i

log p (xi) + c.
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In the equation, the last two terms on the right do not depend on w. Let λ = 1/C, then
performing of PFSVM can be regarded as approximately solving probability equation. So
the role of Ki in PFSVM can be evaluated by the probability equation.
From equation

p (yi|xi, w,H) =
exp

(
−Ki [1− yiai]+

)
exp

(
−Ki [1− ai]+

)
+ exp

(
−Ki [1 + ai]+

)
we can see that Ki has direct influence to correct classification of xi. Let Ki = (um

i + tηi ),
we get the conclusion of the theorem.

4. Experimental Analysis and Comparison. The data used in our experiments are
from UCI machine learning database (Table 1) and artificial data which imitates possible
conditions happened in practical use.
A. Experiment 1: UCI machine data
We randomly select 3/4 of the data as training set while the remaining data are used

for test. With experiments two kinds of kernel (polynomial, RBF) are used. The exper-
iment results are shown in Tables 2 and 3. The accuracy is average of 10 times. In the
tables, PFSVM (1) represents performing PFSVM with assumption of samples obeying
Gaussian distribution, PFSVM (2) represents performing PFSVM with samples obeying
t-distribution.
From the experiment results (shown in Tables 2 and 3) we can see that performance of

PFSVM is quite better than that of FSVM and SVM.

Table 1. Data sets

Data set Attribute Class Number
breast 9 2 683
pima 8 2 768
heart 13 2 296
bupa 6 2 345
iris 4 3 150
auto 7 3 392
wine 13 3 178
vehicle 18 4 846
glass 9 7 214

machine 7 8 209

Table 2. Prediction accuracy with polynomial Kernel

Data Polynomial
SVM FSVM PFSVM (1) PFSVM (2)

iris 0.9730 0.9459 0.9730 1.000
auto 0.7857 0.7245 0.8061 0.8061
wine 0.8636 0.9318 0.9545 0.9318
vehicle 0.6303 0.6398 0.6872 0.6872
glass 0.3396 0.3962 0.3962 0.358

machine 0.5296 0.5259 0.5851 0.5777
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Table 3. Prediction accuracy with RBF Kernel

Data RBF
SVM FSVM PFSVM (1) PFSVM (2)

iris 0.9730 0.8919 0.9730 0.9730
auto 0.7755 0.7041 0.8061 0.7857
wine 0.8636 0.8636 0.8864 0.9091
vehicle 0.6967 0.6967 0.7488 0.7583
glass 0.3774 0.3774 0.3962 0.4528

machine 0.4615 0.4423 0.4615 0.4615

B. Experiment 2: Artificial data
In order to test the classification ability of PFSVM, artificial data are provided (see

Figure 2). The classification results of classification by SVM, FSVM and PFSVM respec-
tively (RBF kernel is used) are shown by Figures 3-5. The percentage shown in brackets
is correct rate.

Figure 2. Two-class data Figure 3. Classification
of SVM (69.44%)

Figure 4. Classification of
FSVM (72.22%)

Figure 5. Classification of
PFSVM (75%)

From classification results of artificial data we can see that the classification accuracy
of FSVM increases by nearly 3 percentage points than SVM, PFSVM increases more than
two percentage points than FSVM, and it is clear that distance between positive surface
and negative surface is narrowed greatly by PFSVM.

5. Conclusions. With considering the information of fuzzy and probability distribution
in data, a new model of PFSVM is proposed in this paper. The model aims to extend
classification ability of SVM and FSVM by exploiting more information hidden in data.
In fact, probability distribution of data is non-neglectable in many practical uses. The
model of PFSVM provides a tool to make use of the information of training data. The
experiments show the algorithm of PFSVM outperforms SVM and FSVM, which improves
the generalization ability of SVM and FSVM.



3060 D. YAN, X. LIU AND L. ZOU

Acknowledgments. This work is partly supported by National Natural Science Founda-
tion of China (Grant Nos. 61105059, 61175055, 61173100), International Cooperation and
Exchange of the National Natural Science Foundation of China (Grant No. 61210306079),
China Postdoctoral Science Foundation (2012M510815), Liaoning Excellent Talents in
University (LJQ2011116), Sichuan Key Technology Research and Development Program
under Grant No. 2011FZ00-51, Sichuan Key Laboratory of Intelligent Network Informa-
tion Processing (SGXZD1002-10) and Key Laboratory of the Radio Signals Intelligent
Processing (Xihua University) (XZD0818-09).

REFERENCES

[1] S. Ben-Yacoub, Y. Abdeljaoued and E. Mayoraz, Fusion of face and speech data for person identity
verification, IEEE Transactions on Neural Networks, vol.10, no.5, pp.1065-1074, 1999.

[2] C. J. C. Burges and B. Scholkopf, Improving the accuracy and speed of support vector learning
machines, Advances in Neural Information Processing Systems, pp.375-381, 1997.

[3] J. C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and
Knowledge Discovery, vol.10, no.2, pp.121-167, 1982.

[4] X. G. Zhang, Using class-center vectors to build support vector machines, Proc. of the 6th IEEE
Conf. on Neural Networks and Signal Processing, pp.3-11, 1999.

[5] C. Cortes and V. Vapnik, Support vector networks, Machine Learning, vol.20, pp.273-297, 1995.
[6] K. Crammer and Y. Singer, On the learnability and design of output codes for multiclass problems,

Proc. of the 13th Annual Conf. on Computational Learning Theory, pp.35-46, 2000.
[7] J. T.-Y. Kwok, The evidence framework applied to support vector machines, IEEE Transactions on

Neural Networks, vol.11, no.5, pp.1162-1173, 2000.
[8] G. Fung, O. L. Mangasarian and J. Shavlik, Knowledge-based support vector machine classifiers,

Advances in Neural Information Processing Systems, pp.521-528, 2002.
[9] A. B. A. Graf, A. J. Smola and S. Borer, Classification in a normalized feature space using support

vector machines, IEEE Transactions on Neural Networks, vol.14, no.3, pp.597-605, 2003.
[10] R. Herbrich and J. Weston, Adaptive margin support vector machines for classification, Proc. of the

9th Int. Conf. on Artificial Neural Networks, pp.880-885, 1999.
[11] H. P. Huang and Y. H. Lin, Fuzzy support vector machines for pattern recognition and data mining,

International Journal of Fuzzy System, vol.4, no.3, pp.826-835, 2002.
[12] T. Joachims, Text categorization with support vector machines: Learning with many relevant fea-

tures, Proc. of the 10th European Conf. on Machine Learning, pp.137-142, 1998.
[13] C. F. Lin and S. D. Wang, Fuzzy support vector machines, IEEE Transactions on Neural Networks,

vol.13, no.2, pp.464-471, 2002.
[14] V. Vapnik, Statistical Learning Theory, Wiley Publishers, New York, 1998.
[15] B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Muller, G. Ratsch and A. Smola, Input space

vs. feature space in kernel-based methods, IEEE Transactions on Neural Networks, vol.10, no.5,
pp.1000-1017, 1999.

[16] Q. Song, Robust support vector machine with bullet hole image classification, IEEE Transactions
on Systems, Man and Cybernetics, vol.32, no.4, pp.440-448, 2002.

[17] N. R. Pal, K. Pal and J. C. Bezdek, A mixed C-means clustering model, Proc. of the IEEE Int.
Conf. on Conf. Fuzzy Systems, pp.11-21, 1997.

[18] E. Osuna, R. Freund and F. Girosi, An improved training algorithm for support vector machines,
Proc. of the IEEE Workshop on Neural Networks for Signal Processing, pp.276-285, 1997.

[19] D. Chen, Q. He and X. Wang, FRSVM: Fuzzy rough set based support vector machines, Fuzzy Sets
and Systems, vol.161, no.4, pp.596-607, 2010.


