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ABSTRACT. The PID neural network model was proposed for complex control systems
in order to achieve desirable control performance. However, the conventional backward-
propagation (BP) algorithm restrains the model’s wide applications in control field due to
the known reasons. In this paper, a novel variant of particle swarm optimization (PSO),
named membrane optimization algorithm based on mutated particle swarm optimization
(MO-MPSO) is proposed. The MO-MPSO algorithm is an appropriate combination of
membrane computing, evolution rules of PSO algorithms and a mutation operator. Com-
parison experiments on benchmark functions and the case study show the effectiveness
and advantages of the presented algorithm.
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1. Introduction. Membrane computing, firstly introduced by G. Paun in 2000, is a new
attractive research field of computer science aiming to abstract computing models from
the functioning and structures of living cells as well as from the way the cells are organized
in tissues or higher order structures. The obtained models, called membrane systems or
P systems, are distributed and parallel computing models [1]. Under the same running
conditions, the rational utilization of optimization technique can not only improve pro-
ductivity effect, but also decrease the energy wastage and allocate resources reasonably.
Therefore, the investigations about optimization technique attract many scholars coming
from both home and abroad. As a novel class of bio-inspired computing models, mem-
brane computing has attracted so much attention and has been gradually applied into
different areas [2], such as optimization [3]|, fuzzy knowledge representation [4], image
processing [5], fault diagnosis [6]. The computing units that abstract from biological cells
can accomplish specific computing independently with maximum parallel manner, so the
computing efficiency of this kind of systems will surpass the current electronic computer.
Therefore, it possesses tremendous potentiality of application to optimization field. In
recent years, some researchers have introduced P systems into optimization field. The
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basic idea of these works is to combine the membrane structures and their characteristics
in membrane computing with evolution operations of the existing evolutionary computa-
tions, such as tabu search [6], DNA computing [7], particle swarm optimization (PSO)
[8], quantum calculation [9].

The traditional PID controller has been widely employed in industrial control system,
but it was inadequate for complicated nonlinear systems, which were usually restricted
by real-world environment. In order to effectively control strong coupled nonlinear multi-
input and multi-output (MIMO) systems, Shu and Shu [10] proposed a novel dynamic
neural network model named PID neural network (PIDNN), which was a multi-layer for-
ward network. This kind of models, which were constructed by proportion, integral and
differential neurons that were mutually linked with each other, were adequate for many
different kinds of systems without measuring and identifying internal structure and pa-
rameters of the controlled plant, so they were better than other conventional controllers.
Besides, this kind of models combined advantages of both PID controller and neural
network, such as shot training time, good dynamic property, legible hierarchical struc-
ture. However, the BP algorithm (i.e., gradient descent algorithm) restrains the wide
applications of these models due to its known shortcomings, such as weakly global search-
ing ability, easily trapping into local optimum and the sensitivity of initial weight and
learning rate. The training process of PIDNN controller can actually be regarded as an
optimization problem that searches for the optimum in the solution space of weight caus-
ing minimum output error. So far, some bio-inspired algorithms and their variants have
been employed to train PIDNN, such as GA [11], PSO [12]. In [12], cooperated particle
swarm optimization (CPSO) was proposed to optimize the design of PIDNN controllers
in order to obtain a good control performance. However, this method usually needs big
population size which will increase the amount of calculation and slow down running
speed.

A new algorithm combined the idea of membrane computing and PSO, called parti-
cle swarm optimization based on P systems (PSOPS) algorithm, was first presented in
[13], and experiments based on seven bench function optimization problems and time-
frequency atom decomposition addressed its effectiveness and optimization ability. The
global searching ability of PSOPS is improved due to the introduction of membrane struc-
ture, but particles of the algorithm may show great homoplasy in the searching process
and then lead the algorithm into prematurity due to the small size of populations in each
elementary membrane. In order to fully make use of the parallelism feature to overcome
this problem, a novel evolutionary algorithm called membrane optimization algorithm
based on mutated PSO (in short, MO-MPSO) is proposed in this paper and a number
of trial function experiments are done. Furthermore, we develop a MIMO PID neural
network (MPIDNN) controller based on PIDNN and employ the proposed MO-MPSO
instead of BP algorithm to control the strong coupled nonlinear MIMO system. Com-
parison results of the MPIDNN controllers based on BP, PSO, CPSO and MO-MPSO
indicate that MO-MPSO-based MPIDNN controller is more effective than the other three
in controlling MIMO systems.

This paper is organized as follows. Structure of PIDNN and its control system are
presented in Section 2. In Section 3, membrane optimization algorithm based on mutated
PSO (MO-MPSO) is described. In Section 4, performance measurements of the proposed
algorithm based on benchmark functions are carried out. One case study is given in
Section 5. Finally, conclusions are discussed in Section 6.

2. Structure of PIDNN and Its Algorithm. The PID neural network (PIDNN) is a
new dynamic neural network model proposed by Shu and Shu [10]. This kind of model
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defines neurons possessed function of proportion (P), integral (I) and differential (D).
So, it combines the ability of approximating arbitrary functions of neural network and
dynamic characteristic of quick input-output response which especially suit for controlling
the complex and nonlinear objects. PIDNN generally can be categorized into two kinds:
single argument PIDNN (SPIDNN) and multivariable PIDNN (MPIDNN). The MPIDNN
can be constructed by SPIDNN because their activation function of neurons in each layer,
performance index and learning algorithm are about the same. So, we only introduce the
structure and algorithm of SPIDNN.

2.1. Structure of PIDNN and its control system. The basic form of PIDNN is
SPIDNN, which is a three layer structure of 2 x 3 x 1 form, called input layer, hidden
layer and output layer. Its network structure and single argument control system are
shown in Figure 1. The input layer is constructed by two proportion neurons used to
input the setting value and feedback value. The output layer is a proportion neuron
used to export the control quantity of control system. The hidden layer is the hard-core
part which is constructed by three neurons that are proportion neuron, integral neuron
and differential neuron, used to complete proportion, integral and differential operation,
respectively (i.e., deal with and convert the input data).

Controlled y
Object

FIGURE 1. Structure drawing of PIDNN control system

2.2. Forward-propagation algorithm of PIDNN. The function of forward-propagat-
ion algorithm is to accomplish the network’s output on the basis of input data, current
weights and state function in each layer. This algorithm is composed by three parts: input
layer, hidden layer and output layer.
Input layer: the input and output definitions of the two neurons in this layer are
described as:
¢, u(k)>q,
zi(k) =< wi(k), —q<ui(k) <gq, (1)
=, uw(k) < —q.
where ¢ = 1,2 is number mark of proportion neurons in input layer; k is sample time; ¢
is the upper limit; ¢’ is the real output value when ¢ surpasses its maximum limit; u;(k)
and z;(k) are input and output values of the ith neuron at time k , respectively.
Hidden layer: the input definition of the neurons is written as:

u; = Zwij -z (k) (2)

where j = 1,2,3, is number mark of neurons in hidden layer; w;; is weight between
input layer and hidden layer. The input and output definition of proportion, integral and



2966 J. WANG, T. WANG, P. SHI, M. TU AND F. YANG

differential neurons are shown in Equations (3)-(5), respectively:

,7 ull(k) Z qa

i (k) = vi(k), —g<ui(k) <q, (3)
—q',  u(k) < —q
,7 ul2(k) Z QJ

zo(k) = x’Q(k—1)+u’2(k), —q < u'y(k) < q, (4)
—q, u'y(k) < —q;
,7 UIS(k) Z QJ

ry(k) =< o (k)+u3(k—1), —q < u'3(k) < q, (5)
—q', u's(k) < —q.

Output layer: this layer contains only one proportion neuron which exports the sum
value of the network, and its input definition is written as:

3
up = w7 (k) (6)
j=1

where h = 1, is number mark of the output neuron; wj, is weights between hidden layer
and output layer. The input and output definition of proportion neuron in this layer is
shown as:

qla u”h(k) Z q,
zy(k) = q u'n(k), —q<u"w(k)<q, (7)
—q', u"y (k) < —q.

2.3. Backward-propagation algorithm of PIDNN. The function of backward-propa-
gation (BP) algorithm is to complete process of modification, learning and memory of the
weights. Its learning process is to obtain the minimum .J, shown in Equation (8), which
is square mean value of the time sequence error between real output and ideal output of

the nets.
1
=7 Z (8)
k=

where r(k), y(k) are input and output of the control system, respectively; [ is sampling
number.
After nth step, the weights modification formula of BP algorithm is shown in Equation

(2 dy
_Yk;l [’I“(k) - y(k)] : dz" : wjh(k) -1y, Pneurona
dJ 2 dy
A ij = -7 k) —y(k)] - ~win (k) - u'y - i»  Ineuron,
iy = = 8 =5 S ) =y 0] (k) o
2 J dy da’
\ _jkz::l[?"(k) _y(k)] : dz" 'wjh(k) : du’; * Xy, Dneurona
dy
Ay = = “Z O g k),
wij(n+ 1) = wij( ) Awij, (,Ujh(n—i— 1) = wjh(n) — ijh- (9)

where 7 is learning rate;

dm,, and 2 du, are common factors in this formula and their positive

and negative characters determine Changlng direction of the weights. Besides, because the
d:v J

values of

T only have effect in changing pace of weights which can be adjusted
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: (k+1)—y(k) z'j(k)—a'j(k—1)
by learning rate, they can be replaced by sgn (W) and sgn <m),

respectively.

3. Membrane Computing Optimization Algorithm Based on Mutated PSO.
The traditional PSO algorithm has multifarious population in beginning period of itera-
tion, but the particles begin to show great homoplasy and “gathering” phenomena along
with the iterations, which cause falling down in multiformity and premature of the algo-
rithm. The solutions of this problem are usually two ways: (1) enlarging the population
size; (2) introducing mutation operator. The shortcoming of former method is not only
increasing amount of calculation, but also has not solve the problem of premature fun-
damentally. The latter one can maintain multiformity based on small population size
only through proper mutation operator which is neither influencing calculation, nor the
programming and realization. Combining the idea of membrane computing and mutation
operator can strengthen local searching ability of the algorithm through segmentation and
maintain multiformity in each elementary membrane to conquer premature.

3.1. Membrane computing. Membrane computing (known as P systems) is one of the
youngest branches of natural computing, firstly introduced by G. Paun. They consist
of three key ingredients: membrane hierarchical structures (composed by several mem-
branes), multisets of symbol-objects and evolution rules. The membrane structure is
a hierarchical arrangement of membranes; the outermost layer is called skin membrane
which separates P systems from environment; if one membrane contains no more other
one, and it is called elementary membrane. Each membrane defines a region which con-
tains a multiset of objects and a set of evolving rules, where the objects are expressed by
particular symbols. So far, P systems can be categorized into three main types: i) cell-like
P systems, ii) tissue-like P systems, iii) neural-like P systems. The membrane structure
of a cell-like P system can be formalized as follows [2]:

II = (O,H,u,wl,...,wm,Rl,...,Rm,io)

where O and H are alphabets of objects and labels of membranes, respectively; u is a
membrane structure with m membranes; wy,...,w, € O* are strings which represent
multisets; R;, 1 < i < m, represents the set of evolving rules; igc € H U {e} represents the
output membrane, where e is not a reserved symbol of H.

The main kinds of hierarchical structure of membrane optimization algorithm gener-
ally contain two ones: changeless membrane structure and dynamic changing membrane
structure, where the changeless structures can be categorized into three kinds: (1) The
nested type membrane structure (OLMC), shown in Figure 2(a), which contains m mem-
branes [3]. In this kind of structure, the innermost membrane, called output region, is
contained by only one elementary membrane. In each region, some revolution rules, com-
munication rules and solution sets such as multisets are contained. In process of algorithm
performance, revolution rules in each membrane are carrying out independently and the
solutions are transported to adjacent region by the communication rules (the communi-
cation barely takes place between membranes that next door to each other). Usually,
the best and worst solutions, with respect to the optimization criterion, are sent to the
adjacent inner and outer regions simultaneously. (2) The one level membrane structure
(OLMS), shown in Figure 2(b), which contains m elementary membranes and one skin
membrane [13]. Each membrane contains its own evolution rules which can be the same
or not. The rules in each region are working simultaneously and the best solutions of each
elementary membrane are sent to the skin membrane. Then, the global search strategy
is used to get the global optimum solution of this algorithm which will be returned to
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each elementary region to influence the next revolution. (3) The hybrid type membrane
structure, shown in Figure 2(c), which contains m elementary membranes and one skin
membrane [14]. In this kind of structure, both the nested type membrane structure and
the one level membrane structure are contained. When the algorithm is running, evolu-
tion and communication rules in those two types of structures execute according to the
way shown as above, respectively.

Outermost region (region m-1)

Innermost region
(region 0)

(b) ()

FIGURE 2. Three kinds of membrane structure

3.2. Mutation operator. In order to make each particle with preferable local searching
ability, we introduced horizontal hybrid mutation operator into PSOPS algorithm [15].
In the evolutionary process of population, mutation operators are executed in each el-
ementary membrane so as to improve population diversity and the particles performed
mutation will search in the expanded areas where new best solutions would be discov-
ered. From this, the algorithm will spring out local optimum and succeeded in finding
the globally optimal solution.

Then main idea of this mutation operator is shown as follows: in the beginning, we
decide whether a particle will mutate or not by mutant power (mc;) which is settled
according to empirical Formula (10):

exp (Pjggz;zle)A) —1
exp (5) — 1

where Popsize expresses the population size, i is the current particle. The pseudocode
algorithm of horizontal hybrid mutation operator is shown in Figure 3(a).

The main mutagenic factors are usually divided into three kinds shown as follows [15].
(1) The changeless constant mutation probability which is a value usually chose in [0, 1],
such as 0, 0.1, 0.2, ..., 1. If the value of mutation probability is too large, population
will get muddled while the population diversity is increased, which is sure to slow down
rapidity of convergence of the algorithm. On the contrary, the algorithm will not be
able to spring out local optimum rapidly and efficiently. (2) The self-adapting mutagenic
factor which can produce an even distribution value chose in [0.4,0.7]. (3) The decreasing
mutagenic factor which general contains three kinds of function shown as follows:

me; = 0.05 + 0.45 (10)

Linear function: p,, =1 —t/Iter (11)

Exponential function: p,, =1 — (exp(tlog2/Iter) — 1) (12)
o . flrt) =1/(1 + exp(—rt)),

Sigmoid function: { po(8) = 1 — f(t — Iter/2,7) (13)

where t expresses current iteration time, Iter is the total number of iterations of the
algorithm.
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3.3. MO-MPSO algorithm. We introduce the idea of membrane computing and mu-
tation operator into PSO algorithm and propose a novel evolutionary algorithm, called
membrane optimization algorithm based on mutated PSO (in short, MO-MPSO). In this
algorithm, the horizontal hybrid mutation operation, OLMS and communication rules of
membrane computing and evolution rules in PSO are employed. Particles expressed by
x; in the MO-MPSO algorithm are updated as the following:

o™ = wnl) +m (o = al)) + ears (G4 — )
IEZ-H) = :EZ(-Z) + UZ%—H) (14)

W = Wmax — (wmax_wmin)*(t+1)/[

where ¢ = 1,2,...,n express the ith particle and the population size is n; pgg) express

personal optimum value of the ith particle in tth iteration; G;’g indicate best solution
of the algorithm in ¢th iteration; ry, ro are random numbers in [0, 1]; the value of v, is
clamped in the range [—vgmax, Vamax); w is the weight coefficient decrease from wpay to
Wmin Which make the particles maintain free fall; [¢1, ¢5] are acceleration factors, usually
chose in [0, 2]; I is iteration of the algorithm.

The flowchart of MO-MPSO is shown in Figure 3(b), and the execution steps of the
algorithm are shown as follows:

- R
- Membrane 1 to

. 1 m executed I
Update position and | sinultane 011511;

velocity of each particle | % mm + v = &4

For i=1: Popsize
If ceil (me;+ rand-1)=1

Initialize membrane
structure

Initial population »# and
pop
If rand < py, sprinkle the particles into Y
: _ . : h elementary membrane Decide whether mutate ?
op(i, d) = (1+rand)x pop(i, d) eac )
pop ( Pop randomly
Else .’J Execute mutation
pop(i. d) = Gaussian(c)x pop(i, d) N
atisfy the terming Calculate fitness values
End condition ? and update personal and |-
Fnd global optimum value
v

Y

| Communication rules

End

Skin membrane
exports the results

Y
@ ®) L——---- r-TT T~

FIGURE 3. Pseudocode algorithm of a horizontal hybrid mutation opera-
tion and flow chart of MO-MPOS algorithm
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Step 1: Initialize parameters, such as parameters of PSO as above, searching range of
the optimization problem, terminal condition, and membrane structure [[o[1]1, [2]2; [3]3; - - -
[m]m]o] with elementary membranes and one skin membrane is denoted by 0;

Step 2: A particle swarm population with n particles is initialized, and each particle
is assigned randomly into elementary membranes without duplication. Ensure that each
elementary membrane includes one particle at least. Multisets are initialized as follows:

Wy = )\,

W1 = Q19243 - - - Qnyy N1 <N,

W2 = Qny+1qn,+2 - - - qnyy N1+ N2 <N,
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Wm = Qn(m,1)+IQn(m,1)+2 coiny,, M1 N2 F Ny <N
where ¢; (i =1,2,...,n) is an individual;

Step 3: Each elementary membrane updates position and velocity of the particles ac-
cording to Formula (14) simultaneously;

Step 4: Calculate mutant power (me;) and decide whether a particle mutate or not, the
implementation process of mutation operator is shown in Figure 3(a) shown as above;

Step 5: Calculate fitness values of the subalgorithm in each elementary membrane and
update personal optimum values of each particle and best solution of the algorithm;

Step 6: Communication rules between each elementary membrane and the skin mem-
brane send the best solution generated by the best particle of each elementary membrane
into skin membrane and select the particle with best solution from the particles, and then
send it back to each elementary membrane to affect the next generation update of all
individuals in each region;

Step 7: If the algorithm reaches terminal condition, loop ends and the optimized result
is exported by skin membrane; if not, then go to Step 3.

4. Performance Measurement Based on Benchmark Functions. In order to eval-
uate the algorithm in terms of the search capability, the performance of MO-MPSO is
compared with PSO and PSOPS using test functions. The information of the chosen func-
tions including the dimensions (expressed by D), function expression, admissible ranges of
variables and optima are summarized described in Table 1. The types of these functions
include unimodal (containing only one optimum) and multimodal (containing many local
optima, but only one global optimum), continuous and discontinuous, or nimization and
maximization.

The experiments are accomplished by programming m file in Matlab7.5. To compare the
proposed MO-MPSO with other algorithms, for each benchmark function, the population

TABLE 1. Properties of the benchmark functions

Function Search space [Zmin, Tmax] | Optimum point
D
f1=418.9829D — " x;sin(y/|z;]) [—500, 500] 0 (min)
i=1
D
fr=6D+3" |z [-5.12,5.12] 0 (min)
hi=% sin(one:) [~0.5,0.5] 0 (min)
D
fa=Y a7 [-5.12,5.12] 0 (min)
i=1
1 D 2 1 D
Jo=merxexp | =[5 2 a0 | = exp <5 lzlcos(c;,xi)> [—32.786, 32.786] 0 (min)
+c14+e ¢ =20,c0=0.2,¢c3 =271
D—1
fo= 3 (100(zi4; — 22)° 4 (z; — 1)%) [-5.12,5.12] 0 (min)
=1
D
fr=> (22 — 10 cos(2mx;) + 10) [—5.12,5.12] 0 (min)
Z:ll D 2 D . .
o= o 2ot - 11 (cos (%)) +1 (600, 600] 0 (min)
D
fo=>|z;+0.5]* [—100, 100] 0 (min)
i=1
D
fio == [sin(z;) + sin(32)] [3,13] 1.21598D (max)
i=1
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size are set to the same 30 and three dimensions tested: 10, 50, and 100. For each
dimension, best, worst and mean values are seek to evaluate the performance of these
algorithms by running 30 times independently. The other parameters are shown in Table
2, where I;, I, express iterations of the skin membrane and elementary membrane in
PSOPS and MO-MPSO, respectively; p,, is mutation probability; m is number of the
elementary membrane.

The performance measurement for the ten functions is listed in Tables 3-5. From
the tables, it can be seen that searching ability of the three algorithm for functions

TABLE 2. Parameters setting of each algorithm

Algorithm PSO | PSOPS MO-MPSO

w 0.6 0.6 -

Weight Wmax — — 0.9
Wmin - 0.4
Acceleration c 2 2 2
factor Co 2 2 2
I | 5000 — —

D=10 | L, - 1000 1000
I - 5 5
Dimension I | 5000 - -

and D=50 |1 - 1000 1000
iteration I, — 5 5
1 | 10000 — —

D =100 1, - 2000 2000
I, - 5 5

other - m =16 | p,, = 0.1, m = 16

TABLE 3. Simulation results for D = 10

Function fi f2 f3 Ja IE
Best 3825.6 10 1.0093e-04 | 3.2914e-06 0.0027
PSO Worst 3973.5 10 0.0060 0.0105 1.6467
Mean 3884.7 10 7.6467e-04 | 1.4337e-03 0.4228
Best 3641.8 10 1.8024e-04 | 1.8314e-11 | 1.2095e-05
PSOPS Worst 3831.1 10 0.0014 1.5726e-08 | 1.1551e-03
Mean 3743.9 10 5.1512e-04 | 1.4650e-09 | 1.5041e-04
Best 3641.8 10 1.2376e-04 | 2.0155e-11 | 3.2797e-06
MO-MPSO | Worst 3831.1 10 7.6107e-04 | 2.3214e-09 | 7.9547e-05
Mean 3732.2 10 4.6661e-04 | 3.3512e-10 | 2.0713e-05
Function f6 f7 fs fo f1o
Best 4.000 4.9809 0.0025 0 12.1598
PSO Worst 9.6703 24.8741 0.3890 0 9.8934
Mean 8.0550 11.5543 0.0179 0 12.1598
Best | 9.0070e-06 | 1.9950 0.0025 0 12.1598
PSOPS Worst 0.0106 17.9092 0.0459 0 12.1598
Mean | 4.9411e-04 | 6.7008 0.0067 0 12.1598
Best | 3.7471e-07 | 0.9950 0.0025 0 12.1598
MO-MPSO | Worst, | 2.1448e-04 | 10.9546 0.0049 0 12.1598
Mean | 2.6888e-05 | 5.9138 0.0030 0 12.1598
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TABLE 4. Simulation results for D = 50

Function fi f2 /3 Ja s
Best 18747 60 0.0042 | 3.7984 2.8569
PSO Worst | 19675 183 0.2300 | 11.7916 4.7638
Mean | 19121 |122.0667|0.1235| &.2883 3.6890
Best 18646 50 0.0023 | 4.5240e-04 |  0.0099
PSOPS | Worst | 19371 50 0.1670 |  0.0490 0.5586
Mean | 18915 50 0.0317 | 0.0074 0.0509
Best | 7996.5 50 0.0083 | 1.4914e-04 | 6.1728e-04
MO-MPSO | Worst | 17030 50 0.0103 | 4.8303e-04 | 0.0140
Mean 10574 50 0.0287 | 3.1147e-04 | 7.4122e-03
Function f6 fr fs fo f1o
Best | 85.2974 | 199.8787 | 0.2006 0 59.5073
PSO Worst | 306.3575 | 301.1568 | 0.4393 2 52.3043
Mean | 172.7819 | 241.7006 | 0.2687 | 0.8667 56.2628
Best | 45.6843 | 35.8854 | 0.0026 0 60.7988
PSOPS | Worst | 102.9447 | 113.5624 | 0.0101 0 51.7334
Mean | 53.8111 | 65.7832 | 0.0036 0 58.5163
Best | 47.0533 | 13.9560 | 0.0025 0 60.7990
MO-MPSO | Worst | 49.0155 | 70.8069 | 0.0026 0 51.7333
Mean | 48.0190 | 43.1200 | 0.0025 0 58.6031
TABLE 5. Simulation results for D = 100
Function fi f2 f3 Ja f5
Best 37274 236 0.0184 | 15.9770 | 4.0138
PSO Worst | 41104 424 0.6443 | 52.6535 | 5.5322
Mean 38490 354 0.2975 | 32.6921 | 4.4212
Best, 15998 100 0.0343 | 0.0025 | 0.0153
PSOPS | Worst | 36066 100 0.2971 | 0.0088 | 0.0292
Mean 22133 100 0.1063 | 0.0048 0.0224
Best 16654 100 0.0210 | 0.0012 | 0.0013
MO-MPSO | Worst | 21973 100 0.1623 | 0.0014 | 0.0018
Mean | 19887 100 0.0777 | 0.0014 | 0.0016
Function Jo f7 Js Jo J10
Best | 308.0915 | 587.9143 | 0.2884 0 115.9488
PSO Worst | 769.0072 | 734.5523 | 0.7627 6 100.1787
Mean | 482.7527 | 640.0129 | 0.4808 | 2.0667 | 107.0654
Best | 95.5706 | 90.0850 | 0.0065 0 119.263
PSOPS | Worst | 98.4515 | 180.9966 | 0.3927 0 101.1851
Mean | 96.6156 | 123.1359 | 0.0218 0 111.0966
Best | 94.6141 | 34.9797 | 0.0026 0 121.5957
MO-MPSO | Worst | 96.6574 | 129.5744 | 0.0053 0 103.4665
Mean | 95.3805 | 89.19254 | 0.0028 0 115.2947

fis f2, f3, f7, fs, fo and fig is shown about the same when D = 10, but for f4, f5 and fs the
results of PSO are worse than that of both PSOPS and MO-MPSO. However, the superior
performance of membrane computing optimization algorithm is gradually showing while
the dimension increases that the results of both PSOPS and MO-MPSO are much better
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than that of PSO, especially when D = 100. The degree of accuracy of optimum solutions
get through MO-MPSO is usually higher than that of PSOPS due to the fact that the
number n (1 < n < 30—m+1, m = 16 in this experiment) of particles in each elementary
membrane is too small which will cause prematurity. Thanks to the mutation mechanism
and membrane structure, the proposed MO-MPSO will maintain multiformity in each
elementary membrane as well as balance the global and local optimization ability in search
procedure which makes the searching ability, degree of optimal accuracy and stability of
MO-MPSO better than PSOPS.

5. Case Study. In order to control the nonlinear MIMO system efficiently and to ex-
tend the application scope of PIDNN, we develop the MIMO PIDNN controller based
on PIDNN, and employ the proposed MO-MPSO to take the place of traditional BP al-
gorithm, which is marked as MPIDNN-MO-MPSO controller. Simulation results of the
MPIDNN controller based on BP, PSO, CPSO and MO-MPSO algorithms are taken to
analysis and comparison.

5.1. MPIDNN control system. In this experiment, a typical three input three out-
put complex nonlinear and close coupling control system is employed and its transfer
function is shown in Formula (15) [16]. To realize the decoupling control of this MIMO
system, MPIDNN control system based on PIDNN is constructed shown in Figure 4.
Compared with SPIDNN control system, the output layer of MPIDNN control system is
codetermined by outputs of the elementary SPIDNN.

(k)= 04sy1(k—1)+u(k—1)/[1+uy(k— 1]+ 0.2 xu (k —1)°)
+ 0.5 % ug(k —1) +0.3%ys(k — 1)
Yo(k) = 0.2 % yy(k — 1) + ug(k — 1) /[1 + up(k — 1)%] + 0.4 % ug(k — 1)°

+0.2%ui(k—1)+03xys(k—1) (19
ys(k) = 0.3 % ys(k — 1) + us(k — 1) /[1 + us(k — 1)*] + 0.4 x us(k — 1)°
+04%xuy(k—1)+03xy(k—1) )

5.2. Simulation result and analysis. In Figure 4, r{,79,73 express control targets
of the control quantity, vy, ve, v3 express control laws of the controller, yi, yo, y3 express
current value of the control quantity. In this experiment, the weights initialize randomly,
the initial values of control quantity take [0 0 0], the control targets are set as [0.7 0.4 0.6],
space of control time is set as 0.001s, the number of SPIDNN is 2, the number of output
neurons is 3, the learning rate of weights is set as 0.05, the upper limit of input value is
p = 1, the real output value which is the value ¢’ when ¢ surpasses its maximum limit is
set as —1.

The parameters of the employed algorithms are set as follows (except BP algorithm):
population size is set as 30, the number of elementary membranes is set as 8 (i.e., m = 8),
the dimension is set as 45, the number of sub-swarm of CPSO is set as 3 and each sub-
swarm contains 10 particles, the maximum number of generations of PSO is set as 100,
the maximum number of skin membrane and each elementary membrane are all set as 20
and 5, respectively; the other parameters are set the same as shown in Table 2. Simulation
curves of the control strategy based on BP, PSO, CPSO and MO-MPSO algorithms in
terms of the given object model are shown in Figure 5 to Figure 8, and the error curves
are shown in Figure 9.
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FicUrE 4. Structure drawing of MPIDNN control system based on the
controlled object
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FIGURE 5. Simulation curves of the control strategy based on BP algorithm
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FIGURE 7. Simulation curves of the control strategy based on CPSO algorithm
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FIGURE 9. Error curves of the four methods

From Figures 5-9, it can be seen that the MPIDNN control system can success execute
decoupling control based on the four adoptive methods, but the control effects are differ-
ent, and the results based on BP and CPSO algorithms are worse than that got from the
PSO and MO-MPSO systems. The causes lie in the fact that the global searching ability
of BP algorithm is weak which leads it easily to fall into local optimum; in spite of the fact
that the CPSO algorithm performs well in [17] (where the population size was set as 90),
it is unsuccessful in this experiment due to the fact that the population size is set as 30
which shows that CPSO algorithm cannot maintain its favorable global searching ability
in small population size, even worse than PSO; the searching ability, degree of accuracy of
optima and stability of MO-MPSO are strengthened powerfully due to the introduction of
membrane structure and the mutation operator. Therefore, in the case of the same small
population size 30, the proposed MO-MPSO algorithm converges to the minimum error
amount with the fastest velocity of convergence which improves the control accuracy and
tracking velocity of the MPIDNN control system to reach the optimal control effect.

6. Conclusions. This paper proposes a new kind of algorithm called MO-MPSO to take
the place of traditional BP algorithm in MPIDNN. Simulation results of the MPIDNN
controller based on BP, PSO, CPSO and MO-MPSO algorithms indicate that MO-MPSO-
based MPIDNN controller is more effective than the other three in controlling the MIMO
nonlinear systems. The MO-MPSO algorithm makes MPIDNN controller better in per-
formances than BP algorithm in optimization accuracy, stability and robustness. Fur-
thermore, our future work may focus on more experiments and a systematic analysis of
the introduced algorithm and its applications in electric power system.

Acknowledgment. This work was partially supported by the National Natural Science
Foundation of China (Grant No. 61170030), the Open Research Fund of Key Laboratory
of High Performance Scientific Computing, Xihua University (No. SZJJ2012-002), and
Research Fund of Sichuan Provincial Key Discipline of Power Electronics and Electric
Drive, Xihua University (No. SZD0503-09-0).



MO-MPSO ALGORITHM AND ITS APPLICATION 2977

REFERENCES

[1] G. Pdun, Computing with membranes, Journal of Computer System Sciences, vol.61, no.1, pp.108-
143, 2000.

[2] G. Paun, G. Rozenberg and A. Salomaa, Handbook of Membrane Computing, Oxford University
Press, Oxford, 2009.

[3] T. Y. Nishida, An approximate algorithm for NP-complete optimization problems exploiting P sys-
tems, Proc. of Brainstorming Workshop on Uncertainty in Membrane Computing, Palma de Majorca,
pp.185-192, 2004.

[4] J. Wang, P. Shi, H. Peng, M. J. Pérez-Jiménez and T. Wang, Weighted fuzzy spiking neural P
systems, IEEE Transactions on Fuzzy Systems, http://dx.doi.org/10.1109/TFUZZ.2012.2208974,
2012.

[5] H. Peng, J. Wang, M. J. Pérez-Jiménez and P. Shi, A novel image thresholding method
based on membrane computing and fuzzy entropy, Journal of Intelligent & Fuzzy Systems,
http://dx.doi.org/10.3233 /IFS-2012-0549, 2012.

[6] H. Peng, J. Wang, H. Wang, J. Shao and T. Wang, Fuzzy reasoning spiking neural P system for
fault diagnosis, Information Sciences, http://dx.doi.org/10.1016/j.ins.2012.07.015, 2012.

[7] L. Huang and I. H. Suh, Controller design for a marine diesel engine using membrane computing,
International Journal of Innovative Computing, Information and Control, vol.5, no.4, pp.899-912,
2009.

[8] T. Wang, J. Wang, H. Peng and M. Tu, Optimization of PID controller parameters based on PSOPS
algorithm, ICIC Express Letters, vol.6, no.1, pp.273-280, 2012.

[9] G. X. Zhang, M. Gheorghe and C. Z. Wu, A quantum-inspired evolutionary algorithm based in P
systems for knapsack problem, Fundamenta Informaticae, vol.87, no.1, pp.93-116, 2008.

[10] H. L. Shu and H. Shu, Simulation study of PID neural network temperature control system in
plastic injecting-moulding machine, Proc. of the 6th International Conference on Machine Learning
and Cybernetics, Hong Kong, China, pp.492-497, 2007.

[11] J.-S. Kim, J.-H. Kim, J.-M. Park, S.-M. Park et al., Auto tuning PID controller based on improved
genetic algorithm for reverse osmosis plant, World Academy of Science, Engineering and Technology,
vol.47, pp.384-389, 2008.

[12] H. G. Piao, Z. X. Wang and H. Q. Zhang, Nonlinear control system of PID neural network based
on cooperated particle swarm optimization (PSO), Control Theory € Applications, vol.26, no.12,
pp-1317-1324, 2009.

[13] G. X. Zhang, J. X. Cheng and M. Cheorghe, An membrane-inspired approximate algorithm for
traveling salesman problem, Romanian Journal of Information Science and Technology, vol.14, no.1,
pp.3-19, 2011.

[14] L. Huang, N. Wang and J. H. Zhao, Multiobjective optimization for controller design, Acta Auto-
matica Sinica, vol.34, no.4, pp.472-477, 2008.

[15] Y. M. Liu, Q. Z. Zhao, C. L. Sui and Z. Z. Shao, Particle swarm optimizer based on dynamic
neighbourhood topology and mutation operator, Control and Decision, vol.25, no.7, pp.968-974,
2010.

[16] F. Shi, X. C. Wang, L. Yu and Y. Li, Analysis of 30th Neural Network Cases Based on MATLAB,
Beijing University of Aeronautics and Astronautics Press, Beijing, 2010.

[17] S.-Y. Ho, H.-S. Lin, W.-H. Liauh and S.-J. Ho, OPSO: Orthogonal particle swarm optimization and
its application to task assignment problems, IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol.38, no.2, pp.288-298, 2008.



