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Abstract. Traditional definitions of dissipativity require an assumption that the admis-
sible control should guarantee that the system has a unique solution and the supply rate
is locally integrable. In this paper, by introducing the first exit time from a changeable
domain of state and input, a novel dissipativity in the local form and the global sense is
defined based on some easily-checked conditions. By the aid of the new definition, a crite-
rion on existence of solution (which will be used before stability analysis) is proposed. All
our efforts are to construct a new framework of dissipative-system theory which includes
some standard results in traditional dissipative theory and Lyapunov methods as special
cases. Therefore, the theoretic analysis of the dissipative systems is more rigorous and
the range of applications is significantly widened.
Keywords: Nonlinear system, Dissipative system, Passivity

1. Introduction. In engineering and physics, many researchers pay their attention to
dissipative systems that absorb more energy from the external world than they supply,
which can be seen as the extension of passivity that was first used to feedback control
by [1]. Dissipativity of dynamical systems as it is known in modern system and con-
trol community was introduced by [2, 3]. Hill and Moylan carried out an extension of
Kalman-Yakubovich-Popov (KYP) Lemma to the case of nonlinear systems with state
space representations that are affine in the input in [4, 5]. The authors of [6] further
developed a concept of dissipativity for time-variant nonlinear systems and studied the
stabilization of such systems. Recently, stochastic dissipativity was researched by [7, 8].
Dissipative techniques have now been widely used as design and analysis tools in many
control areas. To name a few, we refer readers to the papers on fully actuated robots
manipulators [9], robots with flexible joints [10, 11], fully actuated and underactuated
satellites [12], power converters [13, 14, 15], neural networks [16], haptic environments
and interfaces [17, 18], process and chemical systems [19, 20, 21], missile guidance [22],
magnetically levitated shafts [23], biological and physiological systems [24] and the com-
prehensive books [25, 26].

In [2], Willems introduced the first definition of dissipativity for a general dynamical
system which maps inputs (causes, excitations) into outputs (effects, responses) via a set
of intermediate variables (states). This definition depends on the prior information: the
admissible control should satisfy that the state transition function is well defined and that
the supply rate is locally integrable. To obtain more explicit results, by sacrificing some
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generality, many researchers turned to give definitions of dissipativity for some concrete
systems in state space form (e.g., [4, 5, 26]). For the widely used forms such as Definition
4.20 in [26], one should examine the following traditional assumptions (TA): 1) the given
input belonging to L2e, 2) the global existence and uniqueness of solution, and 3) the supply
rate function being locally integrable for the given input and the initial state.
The first condition can be easily verified when the input is an external signal. However,

for the interconnection of nonlinear dynamical systems, it becomes more difficult or even
impossible to verify this condition since the input of one subsystem usually depends on
the state of another subsystem. As for the second one, it should not be examined by
Lyapunov function method, which can be regarded as a special dissipative technique
(more explanations will be given in Section 3). Therefore, one often counts on the global
Lipschitz condition of vector field, which is restrictive since models of many physical
systems fail to satisfy it [27, P.94]. The third assumption is difficult to be verified since
it usually depends on the first two conditions. In the rest of this paper, just for the
convenience, we often say “traditional dissipativity”, which means all the definitions (e.g.,
[2, 3, 4, 5, 6, 26]) with the similar assumptions as the above, to distinguish from the novel
definition to be given in this paper.
With the extensions of these traditional methods to general nonlinear systems, more

than twenty notions of dissipativity were introduced in literature [25, 26, 28, 29, 30, 31].
Thus, some queries occur: Why the same title of [2, 3] was still used by Willems in paper
[32]? Why so many different versions were introduced in literature? Can most of them
be unified into one central notion? Why many standard books about nonlinear control
systems such as [27, 33, 34] gave few comments about dissipativity?
As an attempt, a notion of dissipativity was presented in [35] in the context of behav-

ioral dynamical systems (see, [32, 36]), where states, inputs and outputs are viewed as
behaviors uniformly. The space of admissible inputs is shift-invariant and closed under
concatenation, which needs to be verified before dissipativity being applied. How to find a
general dissipativity as a central concept to cover most of the existing notions in literature
should be further researched. As a key condition to be met in most cases, the imposed
assumptions should be reasonable and easy to be checked.
The purpose of this paper is to construct a novel framework of dissipativity theory,

which can be used to prove the forward-completion and global stability of systems under
some reasonable conditions.
1) The traditional assumptions in TA will be replaced by the following preliminary

assumptions: the vector fields and the supply rate satisfy local Lipschitz conditions, and
the input is piecewise continuous about time t, which is very reasonable for most of physical
models (for more details, please see [27, P.94]). 2) By defining the first exit time ηl, we
introduce a new dissipativity. The interval [t0, ηl) is both existence domain and bounded
domain of state and input, and the most importance is that it can change to be the
maximal existence domain along with l tending to infinity. 3) The main difference of
the new dissipativity from all the other definitions is that the useful information can be
extracted out to analyze the existence of solution in addition to the stability. 4) In the
novel framework, we pave a way to prove the existence of solution before stability being
analyzed.
Rest of this paper is organized as follows. Some preliminaries are given in Section 2.

In Section 3, the concept of a new dissipativity is first introduced, and the existence of
solution and the stability of systems are analyzed. In Section 4, some notions of passivity,
as particular cases of dissipativity, are presented, and two theorems are given, as tools to
analyze the stability of interconnected systems. The paper is concluded in Section 5.
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Notations: For a vector x, |x| denotes its usual Euclidean norm, xT denotes its trans-
pose and x̄i = (x1, · · · , xi)T ; Rn denotes the real n-dimensional space; R+ denotes the set
of all nonnegative real numbers; Ci denotes the set of all functions with continuous ith
partial derivative; K denotes the set of all functions: R+ → R+, which are continuous,
strictly increasing and vanish at zero; K∞ denotes the set of all functions which are of
class K and unbounded; KL denotes the set of all functions β(s, t) : R+ × R+ → R+

which is of class K for each fixed t, and decreases to zero as t → ∞ for each fixed s;

for a real-value function f defined on R+, it denotes the norms ‖f‖ =
(∫∞

0
f 2(t)dt

) 1
2

and ‖f‖T =
(∫ T

0
f 2(t)dt

) 1
2
; define two sets of functions as L2 = {f : ‖f‖ < ∞} and

L2e = {f : ‖f‖T <∞,∀T ∈ R+}.

2. Preliminaries. Begin with the well-posedness of solution and some existing results
about stability, which will be used throughout this paper.

Consider the following time-variant nonlinear system

ẋ = f(x, t), x(t0) = x0, (1)

where x ∈ Rn is the state and the function f : Rn × R+ → Rn.
In this section, we will present sufficient conditions for the existence and uniqueness of

solution of (1). The following statement comes from Theorem 3.2 in [27].

Lemma 2.1. If f(x, t) is piecewise-continuous in t and globally Lipschitz in x for all
t ≥ t0, then there is a unique solution for all t ≥ t0.

For further argument, let us introduce some preliminary notions about time. For any
l ≥ 0, denoting Bl := {x : |x| < l}, define the first exit time ηl as

ηl := ηl(x0) = inf{t : t ≥ t0, x(t) /∈ Bl}, (2)

where we set inf Ø = ∞ as usual, and the escape time

η∞ = lim
l→∞

ηl. (3)

Based on Lemma 2.1, there is no difficulty to obtain the following criterion.

Lemma 2.2. If f(x, t) is piecewise continuous in t and locally Lipschitz in x for all t ≥ t0,
then there is a unique solution for all t ∈ [t0, η∞).

Consider a nonlinear system

ẋ = f(x, u, t), (4)

where x ∈ Rn and u ∈ Rp are the state and the input, respectively. The function f(x, u, t)
is locally Lipschitz about x and u, and piecewise continuous about t.

Input-to-state stability (ISS) introduced by Sontag plays an important role in nonlinear
controller design, which together with its criterion is recited here with an obvious difference
from [37]: the time interval [t0,∞) is replaced with [t0, η∞).

Definition 2.1. System (4) is ISS if there exist a class KL function β and a class K
function γ, such that, for any input u(·) piecewise continuous and bounded on [t0,∞), the
solution exists and satisfies

|x(t)| ≤ β(|x(t0)|, t− t0) + γ
(
supt0≤s≤t |u(s)|

)
(5)

for all t ∈ [t0, η∞).
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Lemma 2.3. For system (4), if there exists a function V ∈ C1 (positive definite and
radially unbounded) such that, for all x ∈ Rn and u ∈ Rp,

α(|x|) ≤ V (x) ≤ ᾱ(|x|), (6)

∂V

∂x
f(x, u) ≤ −α(|x(t)|) + γ(u) (7)

with a class K function α and class K∞ functions α, ᾱ, γ, then system (4) is ISS.

It is easy to obtain the following fact.

Proposition 2.1. If system (4) is ISS with piecewise continuous (ultimate uniformly)
bounded input u, then it has a unique solution on [t0,∞).

3. The Dissipativity. Great efforts were taken by many researchers to replace the global
Lipschitz condition by the local one. It is a standard argument that one can find a
Lyapunov function to conclude boundedness of state and use Theorem 3.3 of [27] to show
the global existence of solution. Meanwhile, as was pointed out in [26], it is a fundamental
property of dissipative systems that one can calculate Lyapunov functions by adding some
other conditions, which has even been the main motivation for studying dissipativity, at
least in the field of control systems. Therefore, it is unacceptable logically to use Lyapunov
function methods (see [27]) to examine the global existence and uniqueness of solution
to define any dissipativity. To use traditional definitions, one has to count on the global
Lipschitz condition to check the global existence and uniqueness of solution in general. In
this section, a novel definition of dissipativity will be given, which can be used to prove
the global existence of solution and to calculate Lyapunov functions.

3.1. Definition of dissipativity and its criterion. Consider a nonlinear system

ẋ = f(x, u, t), y = h(x, u, t), (8)

where x ∈ Rn is state, y ∈ Rm is output, and u ∈ Rp is the dynamic input given by

u = u(x, ξ, v), (9)

where ξ ∈ Rn0 is defined by

ξ̇ = f0(ξ, x, v0, t), (10)

where v ∈ Rl and v0 ∈ Rl0 are external disturbances.
The accumulated energy from environment into the system is described by

ṙ(t) = ϕ(u(t), y(t)), r(t0) = 0, (11)

where ϕ(u(t), y(t)) is a supply rate.
In this paper, we only consider the admissible conditions that functions f̄(x, ξ, v, t) :=

f(x, u(x, ξ, v(t)), t), h̄(x, ξ, v, t) := h(x, u(x, ξ, v(t)), t), f0(x, ξ, v0, t) and ψ̄(x, ξ, v, t) :=
ψ(u(x, ξ, v(t), h(x, u(x, ξ, v(t)), t)) are locally Lipschitz in x and ξ, and piecewise contin-
uous in t.
Since u depends on another dynamic ξ, the actors of x and u should be redefined,

compared with the traditional understanding to input and output. According to [35, 36],
all the states and inputs can be seen uniformly as behaviors of systems. For any l ≥ 0,
define the first exit time ηl as

ηl = inf{t : t ≥ t0, |x(t)| ≥ l or |ξ(t)| ≥ l or |v(t)| ≥ l or |v0(t)| ≥ l}, (12)

where inf Ø = ∞. By the aid of the first exit time, we can introduce a novel definition of
the dissipativity, which is original but different from traditional versions.
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By comparison, the maximal existence domain of behaviors [t0, η∞) is covered by the
maximal existence interval of solution. According to Lemma 2.2, the augmented system
consisting of (8)-(11) has a unique solution on [t0, η∞). The system is forward-complete
if η∞ = ∞, for the given v and v0. The existence of solution to x-system (or ξ-system)
should be analyzed in the setting of the augmented (x, ξ)-system, while the input-to-state
stability can be analyzed for every subsystems. The stability analysis is only performed
for x-system, and that for ξ-system is similar and omitted. As usual, we denote the input
(9) as u or u(t) unless otherwise specified.

Definition 3.1 (Dissipativity). For system (8) with supply rate ϕ, if there exists a func-
tion V (·) ≥ 0 such that, for every x(t0) ∈ Rn, u ∈ U and all l ≥ 0,

V (x(ηl ∧ t))− V (x(t0)) ≤
∫ ηl∧t

t0

ϕ(u(s), y(s))ds, (13)

then system (8) is said to be dissipative with supply rate ϕ.

Remark 3.1. From (12), there must exist an escape time (finite or infinite)

η∞ = lim
l→∞

ηl(x0, u). (14)

From the locally Lipschitz condition of f , h, ϕ, and according to Lemma 2.2, for any
x0 ∈ Rn and u ∈ U , the augmented system consisting of (8) and (11) has a unique
solution in the maximal interval of behaviors [t0, η∞). Then there is no difficulty to see
that the assumptions in TA listed in Introduction are satisfied in the interval [t0, ηl ∧ t)
for any l ≥ 0, t ≥ t0.

A crucial role will be played by the following definition, which denotes the energy that
may at any time has been extracted from a dynamical system.

Definition 3.2. The available storage Va of system (8) is given by

Va(x) := sup
x0=x,u(·)∈U,t0≤t<η∞

−
∫ t

t0

ϕ(u(s), y(s))ds. (15)

The available storage function is an essential function in determining whether or not a
system is dissipative. It is the minimum one among the storage functions.

Theorem 3.1. The available storage function Va defined in (15) is finite for all x ∈ Rn if
and only if system (8) is dissipative. Moreover, for dissipative systems, 0 ≤ Va(x) ≤ V (x)
holds for all x ∈ Rn, and Va itself is a possible storage function.

Proof: We can verify that

Va(x) = sup
x=x0,u(·)∈U,t0≤t,0≤l

−
∫ ηl∧t

t0

ϕ(u(s), y(s))ds. (16)

To show the necessity, assume that Va(x) < ∞ for all x ∈ Rn. For any t ≥ t′ ≥ t0 and
l ≥ l′ ≥ 0, since∫ ηl∧t

t0

ϕ(u(s), y(s))ds =

∫ ηl′∧t′

t0

ϕ(u(s), y(s))ds+

∫ ηl∧t

ηl′∧t′
ϕ(u(s), y(s))ds, (17)

then
supx=x0,u(·)∈U,t0≤t,0≤l

(
−
∫ ηl∧t
t0

ϕ(u(s), y(s))ds
)

≥ supx=x0,u(·)∈U,t0≤t′≤t,0≤l′

(
−
∫ ηl′∧t′
t0

ϕ(u(s), y(s))ds
)

+supx=x(ηl′∧t′),u(·)∈U,(ηl′∧t′)≤t,0≤l

(
−
∫ ηl∧t
ηl′∧t′

ϕ(u(s), y(s))ds
)
,

(18)
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which implies that

Va(x(ηl′ ∧ t′)) ≤ Va(x(t0)) +
∫ ηl′∧t′
t0

ϕ(u(s), y(s))ds, ∀l′ ≥ 0, t′ ≥ t0. (19)

Thus, one can conclude that (8) is dissipative with storage function Va.
We next show the sufficiency. From the definition of dissipativity, there exists a function

V (x) ≥ 0 such that

0 ≤ V (x(ηl ∧ t)) ≤ V (x(t0)) +

∫ ηl∧t

t0

ϕ(u(s), y(s))ds, (20)

from which it follows that

Va(x(t0)) = sup
x=x0,u(·)∈U,t0≤t,0≤l

(
−
∫ ηl∧t

t0

ϕ(u(s), y(s))ds

)
≤ V (x(t0)) <∞. (21)

This completes the proof.

Remark 3.2. At first sight, one may say that the given definition is difficult to use
because it depends on the first exit time which is difficult to calculate. We can say that the
importance of the first exit time is only on its applications in the theoretic proof. There
is no need to calculate it. In fact, we will use the dissipativity to check the escape time
belonging to either of the two cases: η∞ = ∞ or η∞ < ∞. For the former, we can use
Definition 3.1 as the same as traditional ones, and for the latter, we can say that the input
makes the state escape in finite time. This comment will be verified by all the forthcoming
contents.

The following example does not satisfy the globally Lipschitz condition. By introducing
the first exit time, we can perform the analysis based on Definition 3.1. At the same time,
it is easy to understand why there is no need to calculate the first exit time.

Example 3.1. Consider a 1-dimension system as follows:

Σ :
ẋ = x3 + xu, x(0) = x0,

y = − x2

1 + x4
.

(22)

For any x0, u and l, define ηl as in (12). It comes from (22) that∫ t∧ηl

0

u(s)y(s)ds = −
∫ t∧ηl

0

(ẋ(s)− x3(s))
x(s)

1 + x4(s)
ds

≥ − 1

2
(arctan(x2(t ∧ ηl))− arctan(x2(0))) = V (x(t ∧ ηl))− V (x(0)),

(23)

where V (x) = 1
2
(π
2
− arctan(x2)) > 0. Thus, system Σ is dissipative with respect to

storage function V (x). When u ≥ 0, it is clear that system Σ blows up in finite time.
Therefore, our dissipativity does not naturally imply the global existence of solution.
The weakly-finite-gain stability will be used in the subsequent sections.

Definition 3.3 ([5]). If there exist a function β and a constant k such that, for all u and
all x0,

‖y‖2t ≤ k‖u‖2t + β(x(t0)), (24)

then system (8) is weakly-finite-gain stable (WFGS).
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3.2. The equivalent definitions of dissipativity. To examine the consistence to the
existing results in dissipative system theory, we shall present the corresponding contents
in the new framework and prove them by Definition 3.1. As in [2], the criterion on
dissipativity can be simplified for a smooth storage function.

Lemma 3.1. Consider system (8) with supply rate (11). If there exists a function V ≥ 0
satisfying

V̇ (x(t)) ≤ ϕ(u(t), y(t)), (25)

then system (8) is dissipative.

Proof: (8) has a unique solution in t ∈ [t0, ηl) for all l ≥ 0. Taking integrations on
both sides of (25) in interval [t0, t ∧ ηl), one has (13) where the integral is well-defined.

Adding some other conditions to Lemma 3.1, C1-dissipativity can be extended to the
corresponding case in the new dissipativity form, which is presented as follows.

Theorem 3.2. For system (8) with supply rate (11), there exists a function V ≥ 0
satisfying

V̇ (x(t)) ≤ ϕ(u(t), y(t)), ∀t ∈ [t0, η∞) (26)

if and only if system (8) is dissipative with a C1 storage function.

Proof: The only if part can be proved according to the above lemma. Let us prove
(26) under the assumption that (13) holds with a C1 storage function V . System (8)
has a unique solution in [t0, η∞). For any t ∈ [t0, η∞), there are t1 and l such that
ηl > t1 > t > t0. From the continuities of V̇ and ϕ, one has

V̇ (x(t)) = limt1→t+
V (x(t1))−V (x(t))

t1−t
≤ limt1→t+ ϕ(u(t1), y(t1)) = ϕ(u(t), y(t)), (27)

which results in the conclusion.
The definition of weak dissipativity first appeared in [5] is adapted to our case. We still

call it dissipativity since it is equivalent to Definition 3.1.

Definition 3.4. System (8) is dissipative if there exist a function β : Rn → R and a
supply rate ϕ such that ∫ ηl∧t

t0

ϕ(u(s), y(s))ds ≥ β(x0) (28)

for any t ≥ t0, u ∈ Rp and x0 ∈ Rn.

Theorem 3.3. Definition 3.4 is equivalent to Definition 3.1.

Proof: 1. Definition 3.1 =⇒ Definition 3.4. From (13) and V (·) ≥ 0, one sees that∫ ηl∧t

t0

ϕ(u(s), y(s))ds ≥ −V (x(t0)), (29)

which means (28) with β = −V .
2. Definition 3.4 =⇒ Definition 3.1. Let us denote

Va(x) = sup
x=x0,u(·)∈U,t0≤t,0≤l

−
∫ ηl∧t

t0

ϕ(u(s), y(s))ds,

which means that Va(·) ≥ 0. For any t1 ≥ t0 it follows from (17)-(19) that

Va(x(ηl ∧ t1)) ≤ Va(x(t0)) +

∫ ηl∧t1

t0

ϕ(u(s), y(s))ds, ∀l ≥ 0,
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which results in (13). Inequality (28) implies that

Va(x) ≤ −β(x) <∞, x = x(t0),

so system (8) is dissipative according to Theorem 3.1.

Remark 3.3. Another frequently used dissipativity was given in [4], which corresponds to
Willems’ dissipativity with storage function satisfying V (0) = 0, and the extension to our
case is omitted.

3.3. The existence and uniqueness of solution. There are no meaning and means to
discuss the existence and uniqueness of solution for an abstract input, even if the system
is dissipative. Let u = v(t) be an external reference input or injected disturbance, which
is bounded. Given x0, for any l ≥ 0, since u is bounded, the first exit time ηl is defined
as in (2) and the escape time η∞ as in (3).

Theorem 3.4. Suppose system (8) is dissipative and storage function V is positive definite
and radially unbounded, that is, there exists a class K∞ function α(|x|) satisfying α(|x|) ≤
V (x). If there exist constants c and d such that

ϕ(u(t), y(t)) ≤ cV (x(t)) + d, (30)

where d may depend on x0 and supt≥t0{|u(t)|}, then system (8) with u = v(t) has a unique
solution x(t) = x(t0, x0; t) in [t0,∞).

Proof: System (8) has a unique solution in [t0, η∞) according to Lemma 2.2. To get the
result, let us prove η∞ = ∞ by contradiction. In the case of c ≤ 0, from the dissipativity
of (8), one has

V (x(η∞ ∧ t)) ≤ V (x(t0)) + (η∞ ∧ t)d− t0d <∞. (31)

If η∞ <∞, then ∞ = V (x(η∞)) <∞, a contradiction. In the case of c > 0, according to
Bellmam-Gronwall Lemma [38, P.101], it comes from the dissipativity that(

V (x(ηl ∧ t)) +
d

c

)
≤

(
V (x(t0)) +

d

c

)
ec(ηl∧t−t0), (32)

and by letting l → ∞, we have(
V (x(η∞ ∧ t)) + d

c

)
≤

(
V (x(t0)) +

d

c

)
ec(η∞∧t−t0). (33)

If η∞ <∞, choosing t ≥ η∞ leads to ∞ = V (x(η∞)) <∞, a contradiction too. Therefore,
η∞ = ∞.

3.4. Stability analysis. As was pointed out by Willems, the interest in dissipative sys-
tems stems mainly from their applications on the stability analysis of control systems. It
can be performed by adding some reasonable conditions to dissipativity.
1. When u = v(t) is an external reference input or injected disturbance, one usually

concerns the ISS property.

Theorem 3.5. Suppose system (8) is dissipative. If V ∈ C1 is positive definite, radially
unbounded and there exist a class K function α and a class K∞ function γ such that

ϕ(u(t), y(t)) ≤ −α(|x(t)|) + γ(|u(t)|), (34)

then system (8) is ISS.
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Proof: From Theorem 3.2 and (34), we have

V̇ (x(t)) ≤ −α(|x(s)|) + γ(|u(t)|), ∀t ∈ [t0, η∞), (35)

then, further following the line of [39], we can obtain the result.
2. When u = 0, f(0, 0) = 0 which means that the trivial solution x = 0 is the

equilibrium of system (8). The following results are presented.

Theorem 3.6. Suppose system (8) is dissipative. For storage function V , there exist
class K∞ functions α(|x|) and ᾱ(|x|) such that α(|x|) ≤ V (x) ≤ ᾱ(|x|).

1. If (34) holds with u = 0 and α is nonnegative, then x = 0 is globally stable. If α is
positive then x = 0 is globally asymptotically stable.

2. If (30) holds with c < 0 and d = 0, then x = 0 is globally exponentially stable.

Proof: In the above two cases, the existence and the uniqueness are guaranteed by
Theorem 3.4, then η∞ = ∞. The rest part of proof can be found in any standard nonlinear
systems such as [27], which is omitted.

Remark 3.4. Suppose when u = v (constant), x = xe is one equilibrium but not the
unique one of system (8). Only local stability can be considered. If the conditions of
Theorem 3.6 hold in a compacted region Ω ∈ Rn, then the corresponding results are in the
local sense.

3.5. Nonexistence of solution and instability of equilibrium. In the above sub-
sections, the dissipativity serves as an important tool to prove the existence of solution
and stability of equilibrium. Naturally, this prompts us to construct tools to prove the
nonexistence of solution and instability of equilibrium by contrasting to the dissipativity.

Theorem 3.7. For system (8), if for some x(t0) ∈ Rn/{0} and u = v(t),

V (x(ηl ∧ t))− V (x(t0)) ≥
∫ ηl∧t

t0

ϕ(u(s), y(s))ds (36)

holds with radially unbounded function V (·) > 0 and

ϕ(u(t), y(t)) ≥ cV α(x(t)), (37)

where c > 0, α > 1, then system (8) escapes in finite time, i.e., η∞ <∞.

Proof: For any 0 ≤ l < ∞, when t < ηl, one has |x| < l. Since f(x, u) is locally
Lipschitz in (x, u) and u = v(t) is piecewise continuous in t, then (8) has a unique solution
in t ∈ [t0, η∞), according to Lemma 2.2. Next, we will prove η∞ < ∞ by contradiction.
From (36), one has, for any 0 ≤ l <∞,

V (x(ηl ∧ t))− V (x(t0)) ≥
∫ ηl∧t

t0

cV α(x(s))ds. (38)

Construct an integral equation as follows:

q(x(ηl ∧ t))− q(x(t0)) =

∫ ηl∧t

t0

cqα(x(s))ds, q(x(t0)) = V (x(t0)), (39)

which implies that

V (x(ηl ∧ t)) ≥ q(x(ηl ∧ t)), ∀t ≥ t0. (40)

From (39), we can see that

q̇(x(ηl ∧ t)) = cqα(x(ηl ∧ t)), ∀l ≥ 0. (41)
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If η∞ = ∞, by letting l → ∞, (41) becomes

q̇(x(t)) = cqα(x(t)), q(x(t0)) = V (x(t0)) (42)

whose solution is

q(x(t)) =

(
1

(1− α)c(t− t0) + V −α+1(x(t0))

) 1
α−1

(43)

which escapes to finite at time tb = t0 +
V −α+1(x(t0))

(1−α)c
. Since η∞ = ∞, there exists a larger

number lb such that ηlb ≥ tb. Then, by taking l > lb, t = ηlb in (40), we have

∞ > V (x(tb)) ≥ q(x(tb)) = ∞, (44)

which leads to a contradiction, then η∞ < ∞ holds. Therefore, system (8) blows up in
finite time.
As far as the instability of equilibrium is concerned, we only need to show it in the case

of η∞ = ∞ (otherwise, x(t) escapes in finite time, obvious instability). Thus, there is no
new contents deserving to be added to the existing results on instability [40, P.206].

4. Passivity and Stability Analysis of Interconnected System. In this section,
the new dissipativity will be used to define various types of strict passivity that are
used to present weakly-finite-gain stability result and passive theorem for interconnection
of dynamical systems. These are very desirable materials to display the superiority of
Definition 3.1 to traditional definitions.

4.1. Passivity. Consider a nonlinear system affine in input as follows:

ẋ = f(x) + g(x)u,

y = h(x) + j(x)u,
(45)

where x ∈ Rn, y ∈ Rm and u ∈ U ⊂ Rm are the state, the output and the input,
respectively. Functions f , g, h and j are locally Lipschitz in their variables.
The following general supply rate was introduced in [4],

ϕ = yTQy + uTRu+ 2yTSu, (46)

where Q = QT , R = RT and S = ST , which is useful to distinguish types of strictly
passive systems and will be used in the passive theorem to be presented in the subsequent
subsection, see also [26, P.209].

Definition 4.1. Assume that system (45) is dissipative with supply rate (46). If Q = 0,
R = 0, S = 1

2
Im, system (45) is said to be passive. If Q = 0, R = −εIm, ε > 0, S = 1

2
Im,

the system is said to be input strictly passive (ISP). If R = 0, Q = −δIm, δ > 0, S = 1
2
Im,

the system is said to be output strictly passive (OSP). If Q = −δIm, δ > 0, R = −εIm,
ε > 0, S = 1

2
Im, the system is said to be very-strictly passive (VSP).

As application of the general supply rate, the relation between WFGS and OSP is
explained as follows.

Theorem 4.1. If system (45) is OSP with radially unbounded storage function V and
input u ∈ L2e, then it has a unique solution in [t0,∞) and is WFGS.

Proof: Using Young inequality, we have∫ ηl∧t

t0

uT (s)y(s)ds ≤ 1

2δ
‖u‖2ηl∧t +

δ

2
‖y‖2ηl∧t, (47)
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where ‖f‖t =
[∫ t

t0
|f(s)|2ds

] 1
2
. Substituting it to the definition of OSP leads to

V (x(ηl ∧ t)) +
δ

2
‖y‖2ηl∧t ≤

1

2δ
‖u‖2ηl∧t + V (x(t0)). (48)

By letting l → ∞ in the above inequality, it follows that

V (x(η∞ ∧ t)) ≤ 1

2δ
‖u‖2η∞∧t + V (x(t0)). (49)

Suppose η∞ < ∞, then, by taking t ≥ η∞, it comes from the radial unboundedness of V
and u ∈ L2e that

∞ = V (x(η∞)) ≤ 1

2δ
‖u‖2η∞ + V (x(t0)) <∞, (50)

which is a contradiction. Therefore, η∞ = ∞, which implies that system (45) has a unique
solution in [t0,∞). Letting l → ∞ in (48), we have

δ

2
‖y‖2t ≤

1

2δ
‖u‖2t + V (x(t0)), (51)

which means that system (45) is WFGS.
To obtain more accurate stability results for the interconnected system, we propose the

following strict passivity with dissipation rate depending on the states. Its original form
can be found in [41].

Definition 4.2. System (45) is said to be state strictly passive (SSP) if it is dissipative
with the storage function V (·) satisfying V (0) = 0, the supply rate ϕ = yTu − ψ where
dissipation rate function ψ > 0 is locally Lipschitz, that is, for every x(t0) ∈ Rn, u ∈ U
and all t0 ≤ t <∞ and 0 ≤ l <∞, there holds

V (x(ηl ∧ t))− V (x(t0)) ≤
∫ ηl∧t

t0

(u(s)Ty(s)− ψ(x(s)))ds. (52)

4.2. Stability analysis of interconnected systems. In this subsection, we consider
the feedback interconnection of dissipative systems

Σ1 : ẋ1 = f1(x) + g1(x)u1, y1 = m1(x) (53)

Σ2 : ẋ2 = f2(x) + g2(x)u2, y2 = m2(x) (54)

connected by the relations
u1 = −y2 + v1, u2 = y1, (55)

where the functions fi, gi, mi (i = 1, 2) satisfy locally Lipschitz conditions and v1 is a
new input. For the interconnected system, define the overall variables as

x = (x1, x2)
T , y = y1, u = v1.

WFGS of interconnected system: New input v1 ∈ L2e is piecewise continuous
function in t. The first exit time ηl is given by

ηl = inf{t ≥ t0 : |x1(t)| ≥ l ≥ 0 or |x2(t)| ≥ l ≥ 0 or |v1(t)| ≥ l ≥ 0}. (56)

Theorem 4.2. Suppose that both system Σ1 and Σ2 are VSP, i.e.,

Vi(xi(ηl ∧ t))− Vi(xi(t0))

≤
∫ ηl∧t

t0

(ui(s)
Tyi(s)− εiu

T
i (s)ui(s)− δiy

T
i (s)yi(s))ds (i = 1, 2)

(57)

with
εi + δi > 0.
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If V1 and V2 are radially unbounded and

δ2 ≥ 0, ε1 ≥ 0, ε2 + δ1 > 0,

then the closed-loop system has a unique solution in [t0,∞) and is WFGS.

Proof: Adding up inequalities in (57) gives

V (x(ηl ∧ t))− V (x(t0)) ≤
∫ ηl∧t

t0

(uT (s)y(s)− (δ1 + ε2)y
T (s)y(s))ds, (58)

where V (x) = V1(x1) + V2(x2). According to Theorem 4.1, we can obtain the results.
Asymptotic stability of equilibrium of the interconnected systems: New input

v1 ≡ 0. Originated from [41], the following result is presented for the case without global
Lipschitz condition.

Theorem 4.3. Suppose that system Σ1 is SSP with storage function V1 (and dissipation
rate ψ1) independent of x2. Likewise, suppose system Σ2 is passive with storage function
V2 independent of x1. Storage function Vi is positive definite and radially unbounded.
Then the interconnected system with input v1 and output y1 is passive. Moreover, when
v1 ≡ 0, the equilibrium x = 0 is globally stable and limt→∞ x1(t) = 0.

Proof: In view of (55), from the passivity, we have

V1(x1(ηl ∧ t))− V1(x1(t0)) ≤
∫ ηl∧t

t0

yT1 (s)(v1(s)− y2(s))ds−
∫ ηl∧t

t0

ψ1(x1(s))ds,

V2(x2(ηl ∧ t))− V2(x2(t0)) ≤
∫ ηl∧t

t0

yT2 (s)y1(s)ds.

(59)

Adding up these two inequalities gives

V (x(ηl ∧ t))− V (x(t0)) ≤
∫ ηl∧t

t0

yT (s)u(s)ds−
∫ ηl∧t

t0

ψ(x(s))ds, (60)

where ψ(x) = ψ1(x1), V (x) = V1(x1) + V2(x2). Since ψ(x) = ψ1(x1) is only positive
semi-definite about x, then the overall system is passive. When v1 ≡ 0, from (60), we
have

ϕ(x(s)) = −ψ1(x1(s)) ≤ 0. (61)

Since storage function V is positive definite and radially unbounded, then the overall
system has a unique solution (thus η∞ = ∞) and the equilibrium is globally stable
according to Theorem 3.6. Again from (60), we have∫ ηl∧t

t0

ψ1(x1(s))ds ≤ V (x(t0)), (62)

in which making l → ∞ and t→ ∞ gives∫ ∞

t0

ψ1(x1(s))ds ≤ V (x(t0)). (63)

Next, following the same line as Appendix A in [41], we have limt→∞ x1(t) = 0.



THEORY ON DISSIPATIVE SYSTEMS 2767

5. Conclusions. In the traditional dissipative system theory, conditions in TA were
imposed on the original system to obtain the dissipativity – a tool to analyze the stability,
then most nonlinear physical models that do not satisfy these conditions are excluded out
before the dissipativity is used. Great efforts have been taken by many researchers to
overcome these difficulties [29, 35]. In this paper, a novel dissipativity is defined in a
bounded existence domain of input and state under locally Lipschitz conditions that can
be satisfied by most physical models. It is of most importance that our definition can
be extended to the stochastic case. In deed, it is the difficulty of extension of traditional
definitions to the stochastic case that stimulates the authors to try a deterministic version
to relax the strict assumptions in TA [8, 42, 43, 44]. It has not been a systematic
theory until the other important issues such as KYP lemma, passivity-based feedback
control, inverse optimal control, H2/H∞ control, adaptive control using passivity and its
applications to Hamiltonian control systems are considered (see [25, 26, 41, 45, 46, 47, 48]).
All these directions are under current research.
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