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Abstract. In this paper, we propose new sets of criteria for exponential robust stability
of Takagi-Sugeno (T-S) fuzzy Hopfield neural networks. The L2−L∞ approach is applied
to obtain new sets of stability criteria, under which T-S fuzzy Hopfield neural networks
reduce the effect of external input to a prescribed level. These sets of criteria are pre-
sented based on the matrix norm and linear matrix inequality (LMI). The proposed sets
of criteria also guarantee exponential stability for T-S fuzzy Hopfield neural networks
without external input.
Keywords: Exponential L2 − L∞ stability, Takagi-Sugeno (T-S) fuzzy Hopfield neural
network, Matrix norm, Linear matrix inequality (LMI)

1. Introduction. The Hopfield neural networks have received much attention due to
extensive applications in several signal processing problems such as image processing,
optimization, fixed point computations, and other areas. In the past decade, stability
analysis has been addressed extensively for Hopfield neural networks, and many research
results have been presented in the literature [1-3].

Takagi-Sugeno (T-S) fuzzy systems have been widely used in industrial applications
and academic research. In general, T-S fuzzy systems use a set of fuzzy rules to represent
various nonlinear systems in terms of a set of local linear systems that are smoothly
connected by fuzzy membership functions [4]. These T-S fuzzy systems can also be used
to describe many complex nonlinear systems by having a set of Hopfield neural networks
as their consequent parts [5,6]. Some stability criteria for Hopfield neural networks based
on T-S fuzzy systems have been presented previously [7-13]. Recently, some results on
learning and identification for T-S fuzzy Hopfield neural networks with external inputs or
disturbances were proposed in [14-16].

Real physical systems always have external disturbances and model uncertainties. This
fact has led to a recent interest in the L2 − L∞ approach [17-26], which is accepted as
an important concept for analysis of the stability of various dynamical systems. This
paper provides an answer to the question of whether a L2 − L∞ stability criterion can
be obtained for T-S fuzzy Hopfield neural networks. To the best of our knowledge, the
L2 −L∞ analysis of T-S fuzzy Hopfield neural networks has not yet been reported in the
literature.
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In this paper, we propose new sets of L2 − L∞ stability criteria for T-S fuzzy Hopfield
neural networks. The sets of conditions proposed in this paper are a new contribution to
the stability analysis of T-S fuzzy Hopfield neural networks. The proposed sets of criteria
are based on the matrix norm and linear matrix inequality (LMI) and, they ensure that
the T-S fuzzy Hopfield neural networks attenuate the effect of an external input to a
prescribed level. This paper is organized as follows. In Section 2, new sets of L2 − L∞
stability criteria are derived. Finally, conclusions are presented in Section 3.

2. New Sets of Exponential L2 − L∞ Stability Criteria. Consider the following
T-S fuzzy Hopfield neural network:

Fuzzy Rule i:

IF ω1 is µi1 and ... ωs is µis THEN

ẋ(t) = Aix(t) +Wiφ((x(t)) + J(t) (1)

z(t) = Hix(t), (2)

where x(t) = [x1(t) . . . xn(t)]
T ∈ Rn is the state vector, z(t) ∈ Rp is a linear combi-

nation of the states, Ai = diag{−a(i,1), . . . ,−a(i,n)} ∈ Rn×n, (a(i,k) > 0, k = 1, . . . , n)
is the self-feedback matrix, Wi ∈ Rn×n is the connection weight matrix, φ(x(t)) =
[φ1(x(t)) . . . φn(x(t))]

T : Rn → Rn is the nonlinear function vector satisfying the global
Lipschitz condition with Lipschitz constant Lφ > 0, J(t) ∈ Rn is an external input vector,
Hi ∈ Rp×n is a known constant matrix, ωj (j = 1, . . . , s) is the premise variable, µij

(i = 1 . . . , r, j = 1, . . . , s) is the fuzzy set that is characterized by membership function,
r is the number of IF-THEN rules, and s is the number of premise variables. A singleton
fuzzifier, product fuzzy inference, and weighted average defuzzifier are used to infer the
T-S fuzzy Hopfield neural network (1) and (2), as follows:

x(t) =
r∑

i=1

hi(ω)[Aix(t) + ωiφ(x(t)) + J(t)], (3)

z(t) =
r∑

i=1

hi(ω)Hix(t), (4)

where ω = [ω1, . . . , ωs], hi(ω) = wi(ω)/
∑r

j=1wj(ω), wi : Rs → [0, 1] (i = 1, . . . , r) is

the membership function of the system with respect to the fuzzy rule i. hi(ω) satisfies
hi(ω) ≥ 0 and

∑r
i=1 hi(ω) = 1.

Let γ > 0 be a prescribed level of noise attenuation. In this paper, we find sets of
criteria such that the T-S fuzzy Hopfield neural network (3) and (4) with J(t) = 0 is
exponentially stable and

sup
t≥0

{exp(κt)zT (t)z(t)} < γ2

∫ ∞

0

exp(κt)JT (t)J(t)dt, (5)

under zero-initial conditions for all nonzero J(t) ∈ L2[0,∞), where L2[0,∞) is the space
of square integrable vector functions over [0,∞) and κ is a positive constant.
In the following theorem, we obtain a set of L2−L∞ stability criteria for the T-S fuzzy

Hopfield neural network (3) and (4).

Theorem 2.1. For a given level γ > 0, the T-S fuzzy Hopfield neural network (3) and
(4) is exponentially L2 − L∞ stable if

‖Wi‖ <
1

Lφ

√
ki − ‖P‖2 − (1 + κ) ‖P‖

‖P‖
, (6)
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‖P‖ <
−(1 + κ) +

√
(1 + κ)2 + 4ki
2

, ki > 0, P = P T > 0, (7)

‖Hi‖ ‖Hj‖ ≤ γ2λmin(P ), (8)

for i = 1, . . . , r and j = 1, . . . , r, where λmin(·) is the minimum eigenvalue of the matrix
and P satisfies the Lyapunov inequality AT

i P + PAi < −kiI.

Proof: First, consider the Lyapunov function V (t) = exp(κt)xT (t)Px(t). Its time
derivative along the trajectory of (3) satisfies

V̇ (t) <
r∑

i−1

hi(ω) exp(κt){−kix
T (t)x(t)

+ κxT (t)Px(t) + 2xT (t)PWiφ(x(t)) + 2xT (t)PJ(t)}.
(9)

If we apply Young’s inequality [26,27], we have

2xT (t)PWiφ(x(t)) ≤ xT (t)Px(t) + (PWiφ(x(t)))
TP−1(PWiφ(x(t)))

≤ ‖P‖ ‖x(t)‖2 + L2
φ ‖P‖ ‖Wi‖2 ‖x(t)‖2

(10)

and
2xT (t)PJ(t) ≤ xT (t)PP Tx(t) + JT (t)J(t) ≤ ‖P‖2 ‖x(t)‖2 + ‖J(t)‖2 . (11)

If we substitute (10) and (11) into (9), we have

V̇ (t) =
r∑

i=i

hi(ω) exp(κt){−(ki − ‖P‖2 − ‖P‖ − κ ‖P‖ − L2
φ ‖P‖ ‖Wi‖2) ‖x(t)‖2

+ ‖J(t)‖2}

= −
r∑

i=1

hi(ω) exp(κt)(ki − ‖P‖2 − ‖P‖ − κ ‖P‖ − L2
φ ‖P‖ ‖Wi‖2) ‖x(t)‖2

+
r∑

i=1

hi(ω) exp(κt) ‖J(t)‖2.

(12)

If the following condition is satisfied:

ki − ‖P‖2 − (1 + κ) ‖P‖ − L2
φ ‖P‖ ‖Wi‖2 > 0, (13)

for i = 1, . . . , r we have [26]

V̇ (t) <
r∑

i=1

hi(ω) exp(κt) ‖J(t)‖2

= exp(κt) ‖J(t)‖2 .
(14)

For i = 1, . . . , r, the following two inequalities

‖Wi‖2 <
ki − ‖P‖2 − (1 + κ) ‖P‖

L2
φ ‖P‖

,

‖P‖ <
−(1 + κ) +

√
(1 + κ)2 + 4ki
2

,

(15)

imply the condition (13). Thus, we obtain (6) and (7). Under the zero-initial condition,
we have V (t)|t=0 = 0 and V (t) ≥ 0. If we define [26]

Φ(t) = V (t)−
∫ t

0

exp(κσ)JT (σ)J(σ)dσ, (16)
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then, for any nonzero J(t), we obtain

Φ(t) =V (t)− V (t)|t=0 −
∫ t

0

exp(κσ)JT (σ)J(σ)dσ

=

∫ t

0

[V̇ (σ)− exp(κσ)JT (σ)J(σ)]dσ.

From (14), we have Φ(t) < 0. This means that [26]

V (t) <

∫ t

0

exp(κσ)JT (σ)J(σ)dσ.

Condition (8) implies that

exp(κt)zT (t)z(t) = exp(κt)
r∑

i=1

hi(ω)
r∑

j=1

hj(ω)x
T (t)HT

i Hjx(t)

≤ exp(κt)
r∑

i=1

hi(ω)
r∑

j=1

hj(ω) ‖Hi‖ ‖Hj‖ ‖x(t)‖2

≤ γ2 exp(κt)
r∑

i=1

hi(ω)
r∑

j=1

hj(ω)λmin(P ) ‖x(t)‖2

≤ γ2 exp(κt)
r∑

i=1

hi(ω)
r∑

j=1

hj(ω)x
T (t)Px(t)

= γ2V (t)

<γ2

∫ t

0

exp(κσ)JT (σ)J(σ)dσ

≤ γ2

∫ ∞

0

exp(κσ)JT (σ)J(σ)dσ.

(17)

Taking the supremum over t > 0 leads to (5). This completes the proof.

Corollary 2.1. When J(t) = 0, the condition (6)-(8) ensures that the T-S fuzzy Hopfield
neural network (3) and (4) is exponentially stable.

Proof: When J(t) = 0, from (14), we have V̇ (t) < 0. This implies that V (t) < V (0) =
xT (0)Px(0) for any t ≥ 0. We also have

V (t) ≥ λmin(P ) exp(κt) ‖x(t)‖2 . (18)

It immediately follows from (18) that

‖x(t)‖ <

√
xT (0)Px(0)

λmin(P )
exp(−κt/2). (19)

This relation ensures that the T-S fuzzy Hopfield neural network (3) and (4) is expo-
nentially stable. This completes the proof.
Now, we are ready to state a new set of LMI based criteria for the exponential L2−L∞

stability of the T-S fuzzy Hopfield neural network (3) and (4). These LMI criteria can be
readily facilitated via standard numerical algorithms [28,29].
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Theorem 2.2. For a given level γ > 0, the T-S fuzzy Hopfield neural network (3) and
(4) is exponentially L2−L∞ stable if a positive symmetric matrix P and a positive scalar
ò exist, such that  AT

i P + PAi + κP + òL2
φI PWi P

W T
i P −òI 0
P 0 −I

 < 0, (20)

P − 1

γ2
HT

i Hj > 0, (21)

for i = 1, . . . , r and j = 1, . . . , r.

Proof: Consider the Lyapunov function V (t) = exp(κt)xT (t)Px(t). If we apply
Young’s inequality [26,27], we have

ò[L2
φx

T (t)x(t)− φT (x(t))φ(x(t))] ≥ 0. (22)

Using (22), the time derivative of V (t) along the trajectory of (3) [26] is

V̇ (t) =
r∑

i=1

hi(ω) exp(κt){xT (t)[AT
i P + PAi + κP ]x(t)

+ 2xT (t)PWiφ(x(t)) + 2xT (t)PJ(t)}

≤
r∑

i=1

hi(ω) exp(κt){xT (t)[AT
i P + PAi + κP ]x(t)

+ 2xT (t)PWiφ(x(t)) + 2xT (t)PJ(t) + ò[L2
φx

T (t)x(t)− φT (x(t))φ(x(t))]}

=
r∑

i=1

hi(ω) exp(κt)

 x(t)
φ(x(t))
J(t)

T  AT
i P + PAi + κP + òL2

φI PWi P
W T

i P −òI 0
P 0 −I


 x(t)

φ(x(t))
J(t)

+
r∑

i=1

hi(ω) exp(κt)J
T (t)J(t).

(23)

If the LMI (20) is satisfied for i = 1, . . . , r and j = 1, . . . , r, we have

V̇ (t) <
r∑

i=1

hi(ω) exp(κt)J
T (t)J(t)

= exp(κt)JT (t)J(t).

(24)

Under the zero-initial condition, we have V (t)|t=0 = 0 and V (t) ≥ 0. If we define [26]

Φ(t) = V (t)−
∫ t

0

exp(κσ)JT (σ)J(σ)dσ, (25)

then, for any nonzero J(t), we obtain

Φ(t) =V (t)− V (t)|t=0 −
∫ t

0

exp(κσ)JT (σ)J(σ)dσ

=

∫ t

0

[V̇ (σ)− exp(κσ)JT (σ)J(σ)]dσ.
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Form (24), we have Φ(t) < 0. This means that [26]

V (t) <

∫ t

0

exp(κσ)JT (σ)J(σ)dσ.

The LMI (21) implies that

exp(κt)zT (t)z(t) = exp(κt)
r∑

i=1

r∑
j=1

hi(ω)hj(ω)x
T (t)HT

i Hjx(t)

<γ2 exp(κt)
r∑

i=1

r∑
j=1

hi(ω)hj(ω)x
T (t)Px(t)

= γ2V (t)

<γ2

∫ t

0

exp(κσ)JT (σ)J(σ)dσ

≤ γ2

∫ ∞

0

exp(κσ)JT (σ)J(σ)dσ.

(26)

Taking the supremum over t > 0 leads to (5). This completes the proof.

Corollary 2.2. When J(t) = 0, the LMI conditions (20) and (21) ensure that the T-S
fuzzy Hopfield neural network (3) and (4) is exponentially stable.

Proof: When J(t) = 0, from (24), we have V̇ (t) < 0. This implies that V (t) < V (0) =
xT (0)Px(0) for any t ≥ 0. We also have

V (t) ≥ λmin(P ) exp(κt) ‖x(t)‖2 . (27)

It immediately follows from (27) that

‖x(t)‖ <

√
xT (0)Px(0)

λmin(P )
exp(−κt/2). (28)

This relation ensures that the T-S fuzzy Hopfield neural network (3) and (4) is expo-
nentially stable. This completes the proof.

Remark 2.1. Most existing results on stability analysis for Takagi-Sugeno fuzzy systems
combined with Hopfield neural networks in the literature were restricted to systems without
external disturbances. Unfortunately, with the existing results, it is not possible to analyze
robust stability for Takagi-Sugeno fuzzy systems combined with Hopfield neural networks
with external disturbances. For the first time, this paper presents the L2 − L∞ approach
to robust stability analysis for Takagi-Sugeno fuzzy systems combined with Hopfield neu-
ral networks with disturbances. The proposed results in this paper open a new path for
application of the exponential L2−L∞ approach to the derivation of new stability criteria
for Takagi-Sugeno fuzzy systems combined with Hopfield neural networks.

Remark 2.2. The proposed exponential L2 − L∞ stability criteria can be used in several
control applications. For example, T-S fuzzy Hopfield neural networks are applied to
model unknown nonlinear systems with disturbances and then these neural networks can be
utilized to design new nonlinear L2−L∞ control laws to achieve certain design objectives.
Here, we can check L2−L∞ stability of introduced T-S fuzzy Hopfield neural networks with
disturbances. Therefore, from the point of view of control, the exponential L2−L∞ stability
criteria for T-S fuzzy Hopfield neural networks is of significance for many applications.
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3. Conclusions. In this paper, we have established new sets of exponential L2 − L∞
stability criteria for T-S fuzzy Hopfield neural networks. These sets of criteria were
based on the matrix norm and LMI and they ensured that the T-S fuzzy Hopfield neural
networks reduced the effect of external input on the state vector. These sets of criteria also
guaranteed exponential stability for T-S fuzzy Hopfield neural networks without external
input.
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