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Abstract. The objective of this paper is to propose a constructive methodology for de-
termining the appropriate weighting matrices {Q,R}, which guarantees the solvability of
the generalized algebraic Riccati equation and for solving the generalized Riccati equa-
tion via the matrix sign function for the stabilizable singular system. A decomposition
technique is developed to decompose the singular system into a controllable reduced-order
regular subsystem and a non-dynamic subsystem. As a result, the well-developed analysis
and synthesis methodologies developed for a regular system can be applied to the reduced-
order regular subsystem. Finally, we transform the results obtained for the reduced-order
regular subsystem back to those for the original singular system. Illustrative examples
are presented to show the effectiveness and accuracy of the proposed methodology.
Keywords: Riccati equation, Singular system, Matrix sign function

1. Introduction. Singular systems are often encountered in many fields of science and
engineering systems, including circuits, economic systems, boundary control systems and
chemical processes [1]. Over the past decades, much effort has been invested in the anal-
ysis, synthesis and applications of singular systems due to the fact that singular systems
appear more nature to represent the real systems than the regular systems (state-space
systems) [1-5]. The real singular systems usually consist of the non-dynamic subsystems
and the dynamic subsystems, which are mathematically governed by the mixed represen-
tation of algebraic and differential equations. The complex nature of the singular systems
often encounters many difficulties in finding the analytical and numerical solutions to such
systems, particularly when there is a need for their control.

Over the past decades, the theory and design of linear quadratic regulator (LQR) for
optimal control of the regular systems have been well-developed and successfully applied
to many practical design problems [6-10]. Instead of tuning the controllers to satisfy the
desirable classical control specifications for regular systems, the optimal controller can be
easily designed by tuning the weighting matrices {Q,R} in the algebraic Riccati equation,
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for which many analytical and numerical solutions are available. The methodologies to
find specific weighting matrices {Q,R} for optimal control of regular systems have been
well-developed in the literature but not for singular systems, which is an open problem
to be solved.
The motivation of this paper is to propose a constructive methodology for determining

the appropriate weighting matrices {Q,R}, which guarantees the solvability of the gener-
alized algebraic Riccati equation and for solving the Riccati equation via the matrix sign
function method for the singular systems. A decomposition technique is developed to de-
compose the singular system into a reduced-order regular subsystem and a non-dynamic
subsystem. As a result, the well-known analysis and synthesis methodologies developed
for a regular system can be applied to the reduced-order regular subsystem. Finally, we
transform the results obtained for the reduced-order regular subsystem back to those for
the original singular system. The computationally fast and numerically stable matrix
sign function method is used to obtain the solution of the generalized algebraic Riccati
equation for optimal control of the linear continuous-time singular system.
Consider the stabilizable [1] n-th order generalized linear, time-invariant system char-

acterized by
Eẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ <n is the states, u ∈ <m is the control, E ∈ <n×n, A ∈ <n×n and B ∈ <n×m

are real constant matrices, and E is possibly singular. In recent studies, the algebraic
Riccati equation (ARE) for the regular system [11-19] has been generalized to the ARE
[18,19] with the nonsingular matrix E in (1). The generalized Riccati equation [19] is
given by

ATPE + ETPA− ETPBR−1BTPE +Q = On×n, (2)

where Q ∈ <n×n, R ∈ <m×m and P ∈ <n×n are real constant matrices. It should remark
that the generalized Riccati Equation (2) might have no solution, even if the selected Q
and R are positive-definite matrices, and E is a singular matrix.
For instance, let

E =

[
Iκ O

O Ef

]
n×n

, A =

[
As O

O In−κ

]
n×n

, B =

[
Bs

Bf

]
n×m

,

Q =

[
Qs 0

0 Qf

]
n×n

, Rm×m > O,

and P =

[
Ps 0

0 Pf

]
n×n

, where Iκ denotes the κ×κ identity matrix and Ef is in the Jordan

canonical form. From (2), we have[
AT

s Ps O

O PfEf

]
+

[
PsAs O

O ET
f Pf

]
−

 PsBsR
−1BT

s Ps PsBsR
−1BT

f PfEf

ET
f PfBfR

−1BT
s Ps ET

f PfBfR
−1BT

s PfEf


+

[
Qs O

O Qf

]
=

[
Ok O

O On−k

]
,

which implies
AT

s Ps + PsAs + PsBsR
−1BT

s Ps +Qs = Oκ, (3)

PsBsR
−1BT

f PfEf = Oκ×(n−κ), (4)

ET
f PfBfR

−1BT
s Ps = O(n−κ)×κ, (5)
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PfEf + ET
f Pf + ET

f PfBfR
−1BT

s PfEf +Qf = O(n−κ). (6)

For Ps > 0 and any non-null matrices Bf and Bs, (4) yields Pf × Ef = O(n−κ), which
induces, for example, 0 0 ∗

0 0 ∗
0 0 ∗

×

0 1 0
0 0 1
0 0 0

 = O3, (7)

where “∗” denotes free variables. Similarly, (5) gives ET
f × Pf = O(n−κ), which induces,

for example, 0 0 0
1 0 0
0 1 0

×

0 1 0
0 0 1
∗ ∗ ∗

 = O3. (8)

As a result, the pairs of (7) and (8) indicate that Pf is a null matrix, where the last-right-
bottom element denotes as a free variable. This also implies that P is not a positive-
definite matrix.

In general, the respective Ef and Pf can be given by

Ef = block diagonal {Ef1 , Ef2 , · · · , Efl} (9a)

and

Pf = block diagonal {Pf1 , Pf2 , · · · , Pfl}. (9b)

For example, let

Efi =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Efj =

 0 0 0
0 0 0
0 0 0

, and Efk =


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

,
where 1 ≤ i < j < k ≤ l, which gives

Pfi =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ∗

 , Pfj =

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

, and Pfk =


0 0 0 0 0
0 ∗ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 ∗

,
where “∗” denotes free variables. The triple (4)-(6) also gives Qf = O. From the above
illustrative examples, we can conclude that P and Q are not positive-definite matrices.
Therefore, even if the selected Q and R are positive-definite matrices, and E is a singular
matrix, the generalized Riccati Equation (2) might have no solution.

By utilizing the neural network approaches [20-23] but without explicitly providing a
constructive way for determining the weighting matrices {Q,R}, various solution methods
for the generalized Riccati equation in (2) can be found in [20-23]. This paper proposes
a constructive method to determine the weighting matrices {Q,R} for the solution of the
generalized Riccati equation in (2) for singular systems via the computationally fast and
numerically stable matrix sign function method.

2. Problem Formulation and Main Result. Consider the controllable linear continu-
ous-time singular system

Erẋ(t) = Arx(t) + Bru(t), (10)

where x(t) ∈ <n is the states, u(t) ∈ <m is the control, Er ∈ <n×n is a singular matrix, and
Ar ∈ <n×n and Br ∈ <n×m are real constant matrices. The singular system is assumed to
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be controllable at finite and impulsive modes. The singular system can be transformed
into the slow and fast subsystem models [24], such as (Appendix A)

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), (11)

where

x̂ =

[
x̂s

x̂f

]
n×1

, Ê =

[
Iκ O

O Êf

]
n×n

, Â =

[
Âs O

O In−κ

]
n×n

, B̂ =

 B̂s

B̂f


n×m

,

the Os denote null matrices with appropriate sizes, Êf is in the Jordan canonical form

with d blocks of sizes u1, u2, · · · , ud, and
∑d

i=1 ui = column (row) number of Êf .

Lemma 2.1. Given the linear controllable continuous-time singular system (10), the gen-
eralized algebraic Riccati equation for the steady-state linear quadratic regulator is

AT
r PrEr + ET

r PrAr − ET
r PrBrR

−1
r PrEr +Qr = On. (12)

Proof: For the finite-time linear quadratic regulator (LQR) problem, let the quadratic
cost function for the singular system (10) be chosen as

min
u(t)

Jc =
1

2

∫ Tf

0

[
xT (t)Qrx(t) + uT (t)Rru(t)

]
dt, (13)

where Qr ≥ O, Rr > O, and Tf is the final time. Here, the Pontryagin’s maximum
principle [9] is used to solve this optimization problem. Define a Hamiltonian as

H(t) =
1

2

(
xT (t)Qrx(t) + uT (t)Rru(t)

)
+ λT (Arx(t) +Bru(t)) ,

where λ(t) ∈ <n×1 is an un-determined multiplier function. The state and costate equa-
tions are respectively given as

∂H(t)

∂λ(t)
= Arx(t) + Bru(t) = Erẋ(t),

∂H(t)

∂x(t)
= Qrx(t) + AT

r λ(t) = −ET
r λ̇(t),

and the stationary condition is

∂H(t)

∂u(t)
= Rru(t) + BT

r λ(t) = O.

Solving the last equation yields the optimal control law in terms of the costate equation
as

u(t) = −R−1
r BT

r λ(t). (14)

Substituting (14) into (10) yields

Erẋ = Arx(t)−BrR
−1
r BT

r λ(t),

which can be combined with the costate equation to give the homogeneous Hamiltonian
system as [

Erẋ(t)

Erλ̇(t)

]
=

[
Ar −BrR

−1
r BT

r

−Qr −AT
r

] [
x(t)
λ(t)

]
. (15)

The coefficient matrix in (15) is called the Hamiltonian matrix. Let

λ(t) = Pr(t)Erx(t),

which implies ET
r λ(t) = ET

r Pr(t)Erx(t) and

u(t) = −R−1
r BT

r PrErx(t), (16)
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with an unknown n × n auxiliary matrix function Pr(t). To find the auxiliary function
Pr(t), we differentiate the costate equation in (16) and use the state equation in (10) with
the control law in (16) to get

ET
r λ̇(t) = ET

r Ṗr(t)Erx(t) + ET
r Pr(t)Erẋ(t)

= ET
r Ṗr(t)Erx(t) + ET

r Pr(t)[Arx(t)−BrR
−1
r BT

r Pr(t)Erx(t)].
(17)

Now, from the costate equation, for all t, we have

−ET
r Ṗr(t)Erx(t) =

[
Qr + AT

r Pr(t)Er + ET
r Pr(t)Ar − ET

r Pr(t)BrR
−1
r BT

r Pr(t)Er

]
x(t),

−ET
r Ṗr(t)Er = Qr + AT

r Pr(t)Er + ET
r Pr(t)Ar − ET

r Pr(t)BrR
−1
r BT

r Pr(t)Er. (18)

The Ṗr(t) in (18) is a null matrix in steady state. Hence, we have

AT
r PrEr + ET

r PrAr − ET
r PrBrR

−1
r PrEr +Qr = On. (19)

This is the generalized algebraic Riccati equation used to determine the steady-state linear
quadratic regulator for the linear continuous-time singular system (10). This completes
the proof.

Lemma 2.2. Let P̂f and Êf be two matrices, where Êf is a singular matrix of the single
Jordan canonical form. The following semi-positive definite matrix

P̂f =

[
O(n−1)×(n−1) O(n−1)×1

O1×(n−1) ∗1×1

]
n×n

(20)

satisfies the constraints P̂f × Êf = O and Ê
T

f × P̂f = O, where the “∗” denotes a free
variable.

Proof: Let

Êf =


0 1 0 · · · 0
0 0 1 · · · 0
...
...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · 0


n×n

.

From the constraint P̂f × Êf = O, we have

P̂f =
[
On×(n−1) ∗n×1

]
n×n

.

Similarly, let

Ê
T

f =


0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . . 0 0

... · · · . . . . . .
...

0 0 · · · 1 0


n×n

and by the constraint Ê
T

f × P̂f = O, we have

P̂f =

[
O(n−1)×n

∗1×n

]
n×n

.

Hence, from above results we have

P̂f =

[
O(n−1)×(n−1) O(n−1)×1

O1×(n−1) ∗1×1

]
n×n

.
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This completes the proof.

Remark 2.1. Let Êf be a null matrix. The matrix P̂f = [∗]n×n would satisfy the con-

straints P̂f × Êf = O and Ê
T

f × P̂f = O, where “∗”s denote free variables.

Theorem 2.1. Given the singular system in (10), which is assumed to be controllable at
finite and impulsive modes and can be decomposed into a reduced-order regular subsystem
and a non-dynamic subsystem by the approach shown in Appendix A. Then, consider
the generalized algebraic Riccati equation for the steady-state linear quadratic regulator,
which is optimal in the sense of the quadratic cost function (13) for the controllable linear
continuous-time singular system in (10), as

AT
r PrEr + ET

r PrAr − ET
r PrBrR

−1
r PrEr +Qr = On×n. (21)

The solution Pr of (21) is given by

Pr =
(
((αEr + βAr)MWV )−1

)T
P̂ ((αEr + βAr)MWV )−1, (22)

where

P̂ =

[
P̂s O

O On−κ

]
n×n

, (23)

P̂s in (23) is a solution of the following Riccati equation:

ÂsP̂s + P̂sÂs − P̂sB̂sR̂
−1

P̂s + Q̂s = Oκ, (24)

Q̂s and R̂ in (24) are both selected positive-definite matrices, and {M,W, V } in (22) are
constant matrices and {α, β} in (22) are real constants (see Appendix A). The resulting
weighting matrices in the original cost function in (13) become

Qr =
(
(MV )−1)T Q̂ (MV )−1 , (25)

where

Q̂ =

[
Q̂s O

O On−k

]
n×n

, (26)

and

Rr = R̂. (27)

The solution of the Riccati equation P̂s in (24) guarantees the stability of the reduced-order
regular subsystem in (A.17) as well as the stability of the singular system without having
the impulsive mode in (10).

Proof: Let Q̂ =

 Q̂s O

O Q̂f


n×n

, where Q̂s ∈ Rκ×κ and R̂ ∈ Rm×m are positive-definite

matrices.
From (12), we haveÂ

T

s P̂s O

O P̂f Êf

+

 P̂sÂs O

O Ê
T

f P̂f

+

 P̂sB̂sR̂
−1
B̂

T

s P̂s P̂sB̂sR̂
−1
B̂

T

f P̂f Êf

Ê
T

f P̂f B̂f R̂
−1
B̂

T

s P̂s Ê
T

f P̂f B̂f R̂
−1
B̂

T

s P̂f Êf


+

 Q̂s O

O Q̂f

 =

[
Ok O

O On−k

]
,
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which gives

Â
T

s P̂s + P̂sÂs + P̂sB̂sR̂
−1

B̂
T

s P̂s + Q̂s = Oκ, (28)

P̂sB̂sR̂
−1

B̂
T

f P̂f Êf = Oκ×(n−κ), (29)

Ê
T

f P̂f B̂f R̂
−1

B̂
T

s P̂s = O(n−κ)×κ, (30)

P̂f Êf + Ê
T

f P̂f + Ê
T

f P̂f B̂f R̂
−1

B̂
T

s P̂f Êf + Q̂f = O(n−κ). (31)

From (29), (30), and Lemma 2.2, we have the Êf and P̂f shown in (9a) and (9b). For
simplicity in analysis, we let the free variable be zero, which yields

P̂ =

[
P̂s O

O On−κ

]
n×n

. (32)

By (29), (30), and (21), we have

Q̂f = On−κ, (33)

which gives

Q̂ =

[
Q̂s O

O On−κ

]
n×n

.

In addition, from (16) and Appendices A and B, we have the linear quadratic regulator

u(t) = −R̂
−1
B̂

T
P̂ Êx̂(t)

= −R̂
−1
(V −1B̄)T P̂ (V −1ĒV )V −1x̄(t)

= −R̂
−1
((WV )−1B̃)T P̂ ((WV )−1ẼV )V −1M−1x(t)

= −R̂
−1
((MWV )−1Bn)

T P̂ ((MWV )−1EnMV )V −1M−1x(t)

= −R̂
−1
(((αEr + βAr)MWV )−1Br)

T P̂ (((αEr + βAr)MWV )−1ErMV )
V −1M−1x(t)

= −R̂
−1
BT

r (((αEr + βAr)MWV )−1)T P̂ ((αEr + βAr)MWV )−1Erx(t)
∆
= −R̂

−1
BT

r PrErx(t),

which yields

Pr =
(
((αEr + βAr)MWV )−1

)T
P̂ ((αEr + βAr)MWV )−1,

where {M,W, V } are constant matrices and {α, β} are real constants (see Appendix A).
Furthermore, from (13), we have

min
u(t)

Jc =
1

2

∫ Tf

0

[
xT (t)Qrx(t) + uT (t)Rru(t)

]
dt,

where

x̂
T

(t)Q̂x̂(t) = x̄
T

(t)(V −1)T Q̂V −1x̄(t)

= xT (t)(M−1)T (V −1)T Q̂V −1M−1x(t)

= xT (t)(M−1)T (V −1)T Q̂V −1M−1x(t)

= xT (t)
(
(MV )−1)T Q̂ (MV )−1 x(t)

∆
= xT (t)Qrx(t),

which gives

Qr =
(
(MV )−1

)T
Q̂(MV )−1,
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where V and M are matrices (see Appendix A). Notice that rank(Qr) = rank(Q̂) =

rank(Q̂s) and Rr = R̂.
The proof of the claim that the solution of the generalized Riccati equation guarantees

the stability of the reduced-order regular subsystem can be found in literature [9,10].
Since the singular system can be transformed into a reduced-order regular subsystem and
a non-dynamic subsystem, the stability of the reduced-order regular subsystem assures
the stability of the singular system without having impulsive mode. Besides, the Qr

developed in (25) is not an arbitrary matrix. This completes the proof.

3. Illustrative Examples. To show the effectiveness and accuracy of the proposed
methodology, a pure mathematical model is utilized in Example 3.1 and a practical sys-
tem is adapted in Example 3.2, where the sub-matrix Ē2 in (A.11) in Example 3.1 has
the Jordan-type eigenstructure and the sub-matrix Ē2 in Example 3.2 is a null matrix.

Example 3.1. Consider the controllable linear continuous-time singular system [24] de-
scribed in (10) with

Er =


1 2 1 1 −3 −2
0 2 2 1 −3 −3
1 2 1 1 −3 −2
1 2 1 3 −5 −4
0 2 1 1 −2 −2
1 0 0 0 −1 0

 , Ar = I6, BT
r =

[
1 0 0 0 0 −1
0 0 −1 1 0 0

]
.

Taking α = 0 and β = 1, then En = Er, An = Ar and Bn = Br, which induces 0En+An =
I6. By definition of the standard form, {Er, Ar} is in the standard form. Because En is
singular, i.e., En includes some zero eigenvalues, we can utilize the bilinear transform to
find the similarity transformation matrix M of En is necessary. Taking ρ = 0.5 and using
the algorithm described in Appendix A, we have

Ẽ = (En − ρI6)(En + ρI6)
−1 =


0.3333 1.6 −2.4 0.16 0.9067 2.24

0 0.6 1.6 0.16 −1.76 −1.76
1.3333 1.6 −3.4 0.16 0.9067 2.24
1.3333 1.6 −2.4 0.76 −0.6933 0.64

0 1.6 −2.4 0.16 1.24 2.24
1.3333 0 0 0 −1.3333 −1

 ,

sign
(
Ẽ
)
=


1 2 2 0 −4 −2
0 1 2 0 −2 −2
2 2 1 0 −4 −2
2 2 2 1 −6 −4
0 2 2 0 −3 −2
2 0 0 0 −2 −1

 ,

sign+
(
Ẽ
)
=


1 1 1 0 −2 −1
0 1 1 0 −1 −1
1 1 1 0 −2 −1
1 1 1 1 −3 −2
0 1 1 0 −1 −1
1 0 0 0 −1 0

 , sign−
(
Ẽ
)
=


0 −1 −1 0 2 1
0 0 −1 0 1 1
−1 −1 0 0 2 1
−1 −1 −1 0 3 2
0 −1 −1 0 2 1
−1 0 0 0 1 1

 ,
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M =
[
ind

(
sign+

(
Ẽ
))

ind
(
sign−

(
Ẽ
))]

=


1 1 0 0 −1 −1
0 1 0 0 0 −1
1 1 0 −1 −1 0
1 1 1 −1 −1 −1
0 1 0 0 −1 −1
1 0 0 −1 0 0

 . (34)

From (A.10), we obtain

M−1EnM =

[
Ē1 O

O Ē2

]
=


1 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 ,

M−1AnM =

[
I3 O

O I3

]
, M−1Bn =

[
B̄T

1 B̄T
2

]T
=

[
1 1 1 2 0 1
0 −1 1 0 0 −1

]
.

From (A.12), we have

W =

E1 O

O 1
β
(In−κ − αE2)

 =


1 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (35)

which gives

W−1 =

E
−1

1 O

O β(In−κ − αE2)
−1

 =


1 0 0 0 0 0
0 0.5 −0.25 0 0 0
0 0 0.5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (36)

W−1Ēn =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 , W−1Ān =


1 0 0 0 0 0
0 0.5 −0.25 0 0 0
0 0 0.5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

W−1B̄n =

[
1 0.25 0.5 2 0 1
0 −0.75 0.5 0 0 −1

]T
.

Based on (A.14) and the fact that Ēf is in the Jordan form, we have

V = I6, (37)

Êf =

 0 0 0
0 0 1
0 0 0

 , Âs =

 1 0 0
0 0.5 −0.25
0 0 0.5

 ,
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B̂s =

 1 0
0.25 −0.75
0.5 0.5

 , B̂f =

 2 0
0 0
1 −1

 .

Solving the algebraic Riccati equation ÂsP̂s + P̂sÂs − P̂sB̂sR̂
−1
P̂s + Q̂s = O3, where

Q̂s = 105 × I3 and R̂ = I2, yields

P̂s =

 366083.3850 −365309.5782 −547705.9160
−365309.5782 365165.5649 546938.6356
−547705.9160 546938.6356 820335.5830

 ,

where some fractional bits are truncated at here. By (22)-(27) and (36)-(37), we have

P̂ =

[
P̂S O3

O3 O3

]

Pr =
(
((αEr + βAr)MWV )−1)T P̂ ((αEr + βAr)MWV )−1

=


3.6608 −1.8265 −1.8265 −1.8253 −0.0090 3.6518
−1.8265 0.9129 0.9129 0.9109 0.0027 −1.8238
−1.8265 0.9129 0.9129 0.9109 0.0027 −1.8238
−1.8253 0.9109 0.9109 0.9117 0.0026 −1.8226
−0.0090 0.0027 0.0027 0.0026 0.0036 −0.0054
3.6518 −1.8238 −1.8238 −1.8226 −0.0054 3.6464

× 105,

Q̂ =

[
Q̂s O3

O3 O3

]
=

[
I3 O3

O3 O3

]
× 105,

Qr = ((MV )−1)T Q̂(MV )−1 =


1 0 0 0 −1 0
0 1 1 0 −1 −1
0 1 1 0 −1 −1
0 0 0 1 −1 −1
−1 −1 −1 −1 3 2
0 −1 −1 −1 2 2

× 105,

Rr = R̂ = I2.

Substituting the computed Pr and Qr into (21) yields

AT
r PrEr + ET

r PrAr − ET
r PrBrR

−1
r PrEr +Qr

=


1.6440 −1.5023 −1.5069 −2.3537 2.3334 3.9701
−1.5024 1.3916 1.4039 2.2332 −2.2344 −3.7129
−1.5071 1.4039 1.4162 2.2354 −2.2441 −3.7272
−2.3535 2.2332 2.2354 3.4922 −3.4717 −5.8226
2.3334 −2.2345 −2.2441 −3.4717 3.4624 5.7769
3.9701 −3.7127 −3.7272 −5.8227 5.7770 9.7207

× 10−6

∼=O6,

which shows that the solution is quite satisfactory.

Example 3.2. Consider the controllable linear continuous-time singular circuit system
(Figure 1) [1], where R = 1, 000Ω, inductance L = 1H, capacitances C1 = 0.002F ,
C2 = 0.2F , and voltage u(t) is the control input.

The state vector is x(t) =
[
vc1(t) vc2(t) i2(t) i1(t)

]T
, where the vc1(t), vc2(t), i2(t),

and i1(t) are voltages of capacitors and amperages of the currents flowing over them,
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Figure 1. The singular circuit system

respectively. According to Kirchoff’s second law, we may establish the following state
equation

Erẋ(t) = Arx(t) + Bru(t),

where

Er =


0.002 0 0 0
0 0.2 0 0
0 0 −0.2 0
0 0 0 0

 , Ar =


0 0 0 1
0 0 1 0
−1 1 0 0
1 0 0 1000

 , Br =


0
0
0
−1

 .

Taking α = 0 and β = 1 to have

En =


−1 0 0 0
−1 0 −1 0
0 0.2 0 0

0.001 0 0 0

 , An = I4, BT
n =

[
−1 −1 0 0

]
,

which induces 0En + An = I4. By definition of the standard form, {Er, Ar} is in the
standard form. Because En is singular, i.e., En includes some zero eigenvalues, we can
utilize the bilinear transform to find the similarity transformation matrix M of En. Taking
ρ = 0.05 and using the algorithm described in Appendix A, we have

Ẽ = (En − ρI6)(En + ρI6)
−1 =


1.105 0 0 0
0.256 0.975 −0.494 0
−0.104 0.099 0.975 0
−0.002 0 0 −1

 ,

sign
(
Ẽ
)
=


1 0 0 0
1 1 0 0
0 1 0 0

−0.002 0 0 −1

 ,

sign+
(
Ẽ
)
=


1 0 0 0
0 1 0 0
0 0 1 0

−0.001 0 0 0

 ,

sign−
(
Ẽ
)
=


0 0 0 0
0 0 0 0
0 0 0 0

0.001 0 0 1

 ,
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M =
[
ind

(
sign+

(
Ẽ
))

ind
(
sign−

(
Ẽ
))]

=


1 0 0 0
0 1 0 0
0 0 1 0

−0.001 0 0 0.001

 . (38)

From (A.10) and (A.12), we have

M−1EnM =

[
Ē1 O

O Ē2

]
=


−1 0 0 0
−1 0 −1 0
0 0.2 0 0
0 0 0 0

 ,

M−1AnM =

[
I3 O

O I1

]
, M−1Bn =

[
B̄T

1 B̄T
2

]T
=

[
−1 −1 0 −1

]
,

W =

E1 O

O 1
β
(In−κ − αE2)

 =


−1 0 0 0
−1 0 −1 0
0 0.2 0 0
0 0 0 1

 , (39)

which implies

W−1 =

E
−1

1 O

O β(In−κ − αE2)
−1

 =


−1 0 0 0
0 0 5 0
1 −1 0 0
0 0 0 1

 , (40)

W−1Ēn =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , W−1Ān =


−1 0 0 0
0 0 5 0
1 −1 0 0
0 0 0 1

 ,

W−1B̄n =
[
1 0 0 −1

]T
.

Based on (A.14) and the fact that Ēf is null, we have

V = I4, (41)

Êf = [0] , Âs =

 −1 0 0
0 0 5
1 −1 0

 , B̂s =

 1
0
0

 , B̂f = [−1] .

Solving the algebraic Riccati equation ÂsP̂s + P̂sÂs − P̂sB̂sR̂
−1
P̂s + Q̂s = O3, where

Q̂s = 105 × I3 and R̂ = I1, yields

P̂s =

 317.4953 128.7194 719.1360
128.7194 64192.9211 41715.6595
719.1360 41715.6595 228397.8584


where some fractional bits are truncated at here. By (22)-(27) and (40)-(41), we have

P̂ =

[
P̂s O3×1

O1×3 O1

]

Pr =
(
((αEr + βAr)MWV )−1)T P̂ ((αEr + βAr)MWV )−1
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=


227.2271 −227.6787 207.9347 0
−227.6787 228.3979 −208.5783 0
207.9347 −208.5783 1604.8230 0

0 0 0 0

× 103,

Q̂ =

[
Q̂s O3×1

O1×3 O1

]
=

[
I3 O3×1

O1×3 O1

]
× 105,

Qr =
(
(MV )−1)T Q̂ (MV )−1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

× 105,

Rr = R̂ = I1.

Substituting the computed Pr and Qr into (21) yields

AT
r PrEr + ET

r PrAr − ET
r PrBrR

−1
r PrEr +Qr

=


0.03449 0.01055 0.10652 −0.00421
0.01069 0.00262 0.03492 −0.02948
0.10594 0.03492 0.30355 −1.44101
−0.00421 −0.02935 −1.44101 0

× 10−7

∼=O4,

which shows that the solution is very satisfactory.
Here, we would like to point out that no toolbox in MATLAB can be used to solve this

problem.

4. Conclusion. This paper shows that even if the selected Q and R are positive-definite
matrices, and E is a singular matrix, the generalized Riccati Equation (2) might have
no solution. Therefore, this paper aims to propose a constructive methodology for de-
termining the appropriate weighting matrices {Q,R}, which guarantees the solvability
of the generalized algebraic Riccati equation for the controllable linear continuous-time
singular system based on the matrix sign function method. A decomposition technique is
developed to decompose the singular system into a reduced-order regular subsystem and
a non-dynamic subsystem, so that the singular problem can be converted into a standard
regular problem. As a result, the computationally fast and numerically stable matrix sign
function method [25] can be utilized to solve the generalized algebraic Riccati equation for
the singular system. Finally, we transform the obtained results obtained for the regular
system back to those for the original singular system. The developed design methodology
for finding the LQR can be extended to find the optimal tracker for singular systems. Il-
lustrative examples are presented to show the effectiveness and accuracy of the proposed
methodology.

Acknowledgement. This work was supported by the National Science Council of Tai-
wan under contracts NSC99-2221-E-006-292-MY3, NSC98-2221-E-006-159-MY3, and NS
C-100-2221-E-214-015.

REFERENCES

[1] L. Dai, Singular Control Systems, Springer-Verlag, Berlin, Germany, 1989.
[2] S. Xu and C. Yang, An algebraic approach to the robust stability analysis and robust stabilization

of uncertain singular systems, International Journal of Systems Science, vol.31, pp.55-61, 2000.



2784 C.-C. HUANG, J. S.-H. TSAI, S.-M. GUO, Y.-J. SUN AND L.-S. SHIEH

[3] D. G. Luenberger and A. Arbel, Singular dynamical Leontif systems, Econometrica, vol.5, pp.991-
995, 1977.

[4] L. Pandolfi, Generalized control systems, boundary control systems and delayed control systems,
Math. of Control, Signals and System, vol.3, pp.165-181, 1990.

[5] A. Kumar and P. Daoutidis, Feedback control of nonlinear differential-algebraic equation systems,
AIChE Journal, vol.41, pp.619-636, 1995.

[6] N. Boussiala, H. Chaabi and W. Liu, Numerical method for solving constrained non-linear optimal
control using the block pulse functions (BPFS), International Journal of Innovative Computing,
Information and Control, vol.4, no.7, pp.1733-1740, 2008.

[7] X. T. Wang, Numerical solution of optimal control for scaled systems by hybrid functions, Interna-
tional Journal of Innovative Computing, Information and Control, vol.4, no.4, pp.849-855, 2008.

[8] G. D. Prato and A. Ichikawa, Quadratic control for linear periodic systems, Applied Mathematics &
Optimization, vol.18, pp.39-66, 1988.

[9] F. L. Lewis, Applied Optimal Control & Estimation: Digital Design & Implementation, Prentice-Hall,
Inc., Englewood Chiffs, New Jersey, 1992.

[10] K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall, Inc., Upper Saddle
River, New Jersey, 1996.

[11] Y. Lin, A class of iterative methods for solving nonsymmetric algebraic Riccati equations arising in
transport theory, Computers & Mathematics with Applications, vol.56, pp.3046-3051, 2008.

[12] C. H. Guo and W. W. Lin, Convergence rates of some iterative methods for nonsymmetric algebraic
Riccati equations arising in transport theory, Linear Algebra and Its Applications, vol.432, pp.283-
291, 2010.

[13] L. Ntogramatzidis and A. Ferrante, On the solution of the Riccati differential equation arising from
the LQ optimal control problem, Systems & Control Letters, vol.59, pp.114-121, 2010.

[14] L. Zhou, Y. Lin, Y. Wei and S. Qiao, Perturbation analysis and condition numbers of symmetric
algebraic Riccati equations, Automatica, vol.45, pp.1005-1011, 2009.

[15] R. Davies, P. Shi and R. Wiltshire, Upper solution bounds of the continuous and discrete coupled
algebraic Riccati equations, Automatica, vol.44, pp.1088-1096, 2008.

[16] R. Davies, P. Shi and R. Wiltshire, New lower solution bounds of the continuous algebraic Riccati
matrix equation, Linear Algebra and Its Applications, vol.427, pp.284-255, 2007.
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Appendix A: Singular System Descriptions [24].

A.1 Preliminaries for decomposition of singular systems. Consider the linear
continuous-time singular system as follows

Erẋ(t) = Arx(t) + Bru(t), (A.1)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the input. These constant matrices
Er, Ar and Br all have appropriate dimensions, and Er is a singular matrix. The matrix
sign function of a square matrix A ∈ Cn×n with Re(σ(A)) 6= 0 is defined [26] as follows

sign(A) = 2sign+(A)− In, (A.2)

where In is an n× n identity matrix and

sign+(A) =
1

2πi

∫
c+

(λIn − A)−1dλ, (A.3)

where c+ is a simple closed contour in right-half plane of λ and encloses all right-half
plane eigenvalues of A. For another thing, the matrix sign function [27,28] is also defined
as

sign(A) = A(
√
A2)−1 = A−1(

√
A2), (A.4)

where the matrix
√
A2 denotes the principal square root of A2.

Preserving the eigenvectors of the original matrix is a main feature of the matrix sign
function. This property is useful for engineering problem to study the eigenstructures
of matrices and develop applications. The singular matrix Er can be modified by using
bilinear transformation.

Ẽr = (Er − ρIn)(Er + ρIn)
−1, (A.5)

where ρ is the radius of a circle with center at the origin so that the circle only contains
zero eigenvalues and no eigenvalues of Er located on the circle. Therefore, the eigenvalues
within the circle are mapped into the left-half plane of the complex s-plane, and the others
are mapped into the right-half plane of the complex s-plane.

A.2 The regular pencil and the standard pencil.
Definition A.2.1 [29]. Let Er and Ar be two square constant matrices if det(sEr−Ar) 6=
0, for all s, then (sEr − Ar) is called a regular pencil.
Definition A.2.2 [30]. Let (sEn − An) be a regular pencil. If there exists scalars α
and β such that αEn + βAn = In, then (sEn − An) is called a standard pencil. Note
that for any regular pencil, (sEr − Ar) can be easily transformed into a standard one by
multiplying (αEr + βAr)

−1 to Er and Ar respectively, where α and β are scalars such



2786 C.-C. HUANG, J. S.-H. TSAI, S.-M. GUO, Y.-J. SUN AND L.-S. SHIEH

that det(αEr + βAr) 6= 0. Hence, the matrix coefficients of a standard pencil (sEn −An)
becomes

En = (αEr + βAr)
−1Er, (A.6)

An = (αEr + βAr)
−1Ar. (A.7)

The modified system retains its state vector x(t) and the matrices (En, An) have the
following properties.
Lemma A.2.1 [31].

1) EnAn = AnEn, which means that En and An commute each other.
2) En and An have the same eigenspaces.

The above properties enable us to decompose a singular system into a reduced-order
regular subsystem (slow subsystem) and a nondynamic subsystem (fast subsystem).

A.3 Decomposition of singular systems. Consider the continuous-time singular sys-
tem (A.1). It is well known that the singular system can be decomposed into slow and
fast subsystem. From (A.6) and (A.7), the regular pencil (sEr −Ar) can be transformed
into a standard one (sEn−An). Note that since Er is a singular matrix, which has at least
one zero eigenvalue, β cannot be equal zero. Hence, multiply (A.1) by (αEr+βAr)

−1 can
get the following equation

Enẋ(t) = Anx(t) + Bnu(t), (A.8)

where En = (αEr + βAr)
−1Er, An = (αEr + βAr)

−1Ar and Bn = (αEr + βAr)
−1Br.

Because αEn+βAn = In, the pencil (sEn−An) is a standard one which has the properties
mentioned in Lemma A.2.1. In order to decompose system (A.8), we convert state space
x(t) into x̄(t) by

x(t) = Mx̄(t) (A.9)

where the constant matrix M is a block modal matrix of En and determined by means of
the extended matrix sign function. The M matrix of state space transformation is given
as follows:
Step 1: Find sign(Ẽn) using the extended matrix sign function with an adequate ρ,

where
Ẽn = (En − ρIn)(En + ρIn)

−1.

Step 2: Find sign+(Ẽn) =
1
2
[In + sign(Ẽn)] and sign−(Ẽn) =

1
2
[In − sign(Ẽn)].

Step 3: Construct the matrix

M = [ind(sign+(Ẽn))ind(sign
−(Ẽn))], (A.10)

where ind(·) represents the collection of the linearly independent column vectors of (·).
Substituting (A.9) into (A.10) and multiplying M−1 on the left, the equation can be

rewritten as

M−1EnM ˙̄x(t) = M−1AnMx̄(t) +M−1Bnu(t)

=
1

β
(In − αEn)x̄(t) +M−1Bnu(t)

i.e., [
Ē1 O

O Ē2

]
˙̄x(t) =

 1
β

(
Ik − αĒ1

)
O

O 1
β

(
In−κ − αĒ2

)
 x̄(t) +

[
B̄1

B̄2

]
u(t), (A.11)

where x̄(t) = [x̄T
s (t), x̄

T
f (t)]

T , and M−1EnM = block diagonal
{
Ē1, Ē2

}
. Ē1 is invertible

with rank(Ē1) = deg{det(sEr −Ar)},
[
B̄

T

1 , B̄
T

2

]T
= M−1Bn and Ē2 is a nilpotent matrix
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with dimension (n− κ)× (n− κ). Notice that since det(In−κ − αE2) = 1, it is invertible.
Let

W =

E1 O

O 1
β
(In−κ − αE2)

 , (A.12)

which implies

W−1 =

E
−1

1 O

O β
(
In−κ − αE2

)−1

 . (A.13)

Simplifying (A.11) by multiplying W−1 on both sides, one has[
Iκ O

O β
(
In−κ − αĒ2

)−1
Ē2

]
˙̄x(t) =

 1
β
(Ē

−1

1 − αIκ) O

O In−κ

 x̄(t)

+

 Ē
−1

1 B̄1

β
(
In−κ − αĒ2

)−1
B̄2

u(t),

[
Iκ O

O Ēf

]
˙̄x(t) =

[
As O

O In−κ

]
x̄(t) +

[
B̄s

B̄f

]
u(t), (A.14)

where Ēf = β
(
In−κ − αĒ2

)−1
Ē2, As = 1

β

(
Ē

−1

1 − αIκ

)
, B̄s = Ē

−1

1 B̄1, B̄f = β(In−κ

−αĒ2)
−1B̄2.

Let
x̄(t) = V x̂(t), (A.15)

where x̂(t) =
[
x̂

T

s (t), x̂
T

f (t)
]T

=
[
x̄

T

s (t), (U
−1x̄

T

f (t))
]T

and

V =

[
Iκ O

O U

]
n×n

. (A.16)

U is a modal matrix of Ēf with dimension (n − κ) × (n − κ) such that U−1ĒfU is
in the Jordan canonical form. The function JORDAN in MATLAB can be utilized to
compute the generalized eigenvectors and the Jordan canonical form of a Jordan matrix.
Substituting (A.15) into (A.14) and multiplying it by V −1, we obtain[

Ik O

O Êf

]
˙̂x(t) =

[
Âs O

O I(n−κ)

]
x̂(t) +

 B̂s

B̂f

u(t), (A.17)

where Êf = U−1ĒfU , Âs = Ās, B̂s = B̄s and B̂f = U−1B̄f . Notice that Êf is in the

Jordan block form with d blocks of sizes u1, u2, · · · , ud, where
∑d

i=1 ui = column (row)

number of Êf .

Appendix B: Solving Riccati Equation via Matrix Sign Function [32]. The Ric-

cati equation for the controllable continuous-time system (Âs, B̂s) with weighting matrices

Q̂s(> O) and R̂(> O) is given by

ÂsP̂s + P̂sÂs − P̂sB̂sR̂
−1

P̂s + Q̂s = O. (B.1a)

The steady state solution of this Riccati equation, P̂s(> O) with (Q̂s, Âs) detectable,
can be easily computed using the properties of the matrix sign function [25,33] and the
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eigenvalue-eigenvector approach [34]. Consider the Hamiltonian associated with the given
system

H =

[
Âs −B̂sR̂BT

s

−Q̂s −Â
T

s

]
. (B.1b)

The following algorithm can be utilized to obtain the solution P̂s,

Hk+1 =
1
2

[
Hk +H−1

k

]
, H0 = H

and
lim
k→∞

Hk = sign(H)

 . (B.2a)

Let

sign+(H) =
1

2
[I2n + sign(H)] . (B.2b)

Construct a block modal matrix X as

X =
[
ind

(
sign+ (H)

)
, ind

(
I2n − sign+ (H)

)] ∆
=

[
X11 X12

X21 X22

]
, (B.3a)

where ind(·) represents the collection of the linearly independent column vectors of (·).
Then, we have

P̂s = X22(X12)
−1. (B.3b)

To alleviate the problems of computing H−1
k , the Hamiltonnain can transformed into a

symmetric form as follows [25]

Ĥ = ĴH =

[
On −In
In On

]
H =

[
Q̂s Â

T

s

Âs −B̂sR̂BT
s

]
. (B.4a)

Then, the algorithm in (B.2) becomes

Ĥk+1 =
1
2

[
Ĥk + ĴĤ

−1

k

]
, Ĥ0 = ĴH

and

lim
k→∞

(
−ĴĤk

)
= sign(H)

 . (B.4b)

The computation of the inverse of the symmetric matrix Ĥk is much simpler than com-
puting the inverse of Hk. The Riccati solution P̂s is again given by (B.3).


