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ABSTRACT. Camera calibration is just an entry process but eventually an essential part
of every particle image based velocity measurement technique. In the present paper, three
representative camera calibration models are tested and their accuracy is compared for the
use in the 38D particle tracking velocimetry (PTV). The three camera calibration models,
proposed respectively by Hall, Tsai and Soloff, are first employed for determining their
respective camera parameters based on the captured images of calibration marker points.
Then they are further exploited for reconstructing the 3D coordinates of micro size par-
ticles based on their captured images by the calibrated cameras. The calibration marker
points and the micro size particles are captured by two or three stereoscopic cameras with
and without optical distortion, whereby the effect of different camera calibration models
on the accuracy of the final reconstructed coordinates is investigated. Specific features of
every camera calibration model are discussed in some detail.

Keywords: Particle image velocimetry, Particle tracking velocimetry, Flow measure-
ment, Camera calibration, Nonlinear least squares method

1. Introduction. Nowadays the particle image based velocity measurement technique
has been widely accepted as a powerful flow diagnostic tool in many engineering fields.
Not only in the fluid engineering applications but also in the civil engineering, architectural
engineering, chemical and nuclear engineering, bio-mechanical engineering, micro-nano en-
gineering and medical engineering applications, the whole-field velocity measurement re-
sulting from the particle image velocimetry (PIV) or particle tracking velocimetry (PTV)
offers a highly useful information about the mechanism of the flow to be investigated
[1]. As the significance of the particle image based measurement approach is increased in
the flow diagnosis experiments and the measurement is performed more often in 3D than
in 2D, the accuracy of the flow velocity recovered from the particle images has become
a critical issue of the measurement technique. The accuracy is all the more important,
because many other derivative quantities (drag, lift, pressure, oscillation frequency, etc.)
of the flow can be numerically calculated from the particle image based velocity results
[2]. In particular, in the case of the latest technology of 3D PIV or PTV, where the tomo-
graphic reconstruction technique is used for locating a large number of 3D particle images
[3], the accuracy is more sensitively influenced by the calibration scheme of the cameras
capturing the particle images to be analyzed. A slightest error in the camera calibration
parameters may result not only in the mis-location of the reconstructed particle images
but even in the mis-identification of the presence of particles.

From such a background, the present authors have been concerned with the camera
calibration models and the numerical schemes of calculating the calibration parameters
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for the use in the 3D PTV [4]. This PTV technique tries to recover the flow velocity by
tracking the movement of individual particles in the fluid, so that the mis-location or mis-
identification of particles is a more critical issue than in the PIV technique that tracks
the motion of the ensemble of particles. In the camera calibration, the task requires
the computation of an accurate metric from the captured images and determines the
parameters which maps the 3D coordinates of a certain point into their corresponding
2D projections onto the image plane of the camera. The calibration of a pinhole based
perspective camera amounts to find a linear mapping function in the projective space. In
this context, the direct mapping scheme with the principle of 3D affine transformation
developed by Hall et al. [5] is a widely accepted linear calibration method. Obviously, this
type of linear model is advantageous from the viewpoint of simplicity and computational
stability.

However, most of the real camera systems cannot be fully described by this linear
pinhole model because any objective lens of the camera systems has to exhibit nonlin-
ear optical distortion. Especially with the cameras obliquely viewing the arrangement of
objects, the calibration procedure requires higher order nonlinear mapping functions to
precisely transform the image pixels to the 3D physical space coordinates. In this respect,
there are many well established camera calibration models that are based on the combina-
tion of the 3D affine transformation and the nonlinear perspective transformation, among
which the most often cited models are Faugeras and Toscani [6], Tsai [7] and Weng et al.
[8]. Some other new methods to compensate the nonlinear optical distortion have been
developed by Zhang [9] and Jin et al. [10] in recent years and a comparative study of
some of these methods has been carried out by Salvi et al. [11].

On the other hand, the camera calibration in the PIV or PTV techniques has been often
treated as a geometrical reconstruction process without need for complete knowledge of
the optical system geometry. In this context, Soloff et al. [12] use a calibration target
plate with a regularly spaced grid of marks printed on it. While moving the target
plate by a specified amount in the out-of-plane direction (z-axis), the camera images
are captured typically at 3 to 7 depth positions. In this case, the mapping function is
composed of third-order polynomials in the x and y directions but only second-order ones
in z direction. According to this principle, this nonlinear calibration technique basically
makes use of coplanar target points, which stands in contrast to the above-mentioned
geometrical optics based techniques that can work with not only coplanar but also non-
coplanar target points. The advantage of the polynomial function model is that the whole
mapping procedures are integrated in a purely mathematical process so that no reflection
of the optical geometry is required. However, this last point turns out to be also a
negative aspect of the polynomial model because almost no feedback can be expected
from the optical geometry to the calculated camera parameters.

In this context, there have been studies done on the camera calibration for particle
image based measurement techniques but most of them focused on the application to the
cross-correlation PIV [13, 14, 15]. There have been few studies concerning the calibration
schemes for the use in PTV. Although there are some accuracy oriented studies in the case
of stereoscopic PTV [16, 17, 18], the calibration method itself has not been investigated
thoroughly.

So in the present work, three representative and most popular calibration methods
are selected from each category of camera calibration models and their performance is
investigated from the viewpoint of practicability in the application to the PTV measure-
ment. The first one is the simple pinhole based linear mapping method [5] (referred to
as Hall model hereafter), which is basically derived from the linear perspective transform
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formulation combined with the 3D affine transformation. In this basic camera calibra-
tion model, there are 11 camera parameters to be determined by a linear least squares
calculation. The second one is the famous Tsai’s nonlinear camera model [7], in which 5
internal (intrinsic) and 6 external (extrinsic) parameters must be determined by a non-
linear least squares calculation. The last one is the Soloff’s nonlinear polynomial model
[12], in which 38 camera parameters should be estimated by a nonlinear least squares
calculation. Theoretically, the last two nonlinear models are supposed to describe more
properly the optical distortion of the camera systems but in reality, they are more sensi-
tively influenced by the number and precision of the calibration target points as well as
by the numerical schemes used in the nonlinear least squares calculation. So there is no
guarantee that the accuracy of the nonlinear models should always outperform that of
the linear model in the practical PTV measurement.

With such a consideration, in the present work, the performance of the three camera
calibration models is investigated on the basis of undistorted and distorted images of
the coplanar calibration points which are widely employed in the PIV/PTV measurement
and of the micro particles seeded (suspended) in the calibrated measurement volume. The
camera images of calibration points and micro particles are first produced synthetically
by computer simulation and then experimentally by two or three stereoscopic cameras
viewing planar calibration points. The performance itself is evaluated in terms of the
accuracy of the 3D reconstructed coordinates of the calibration points themselves or of
those of the micro particles. A special care is taken while detecting and locating the
markers position by using proper image segmentation methods. Some discussions about
the applicability of each camera calibration model will be made in some detail.

2. Camera Calibration Technique. Generally, the camera calibration is divided into
two steps. The first step, or the camera modeling, deals with the mathematical ap-
proximation of the physical and optical behavior of the system by using a set of camera
parameters. The second step deals with the use of direct or iterative numerical methods
to estimate the values of these camera parameters, which is often called “calibration” in
a narrow sense. The camera modeling depends on two types of camera parameters: one
is the extrinsic (external) parameters which define the position and orientation of the
camera in the scene with respect to the world coordinate system, and the other is the
intrinsic (internal) parameters which describe the internal geometry of the camera, i.e.,
the effective focal length of the camera, the lens distortion coefficients and the coordinates
of the optically principal point [11].

2.1. Generalized camera modeling. In a standard pinhole based perspective camera,
the geometrical relationship between a 3D point in the world coordinate system and its
2D projection in the camera coordinate system can be illustrated as in Figure 1. In this
figure, WCS, CCS and ICS refer to the world coordinate system, the camera coordinate
system and the image coordinate system respectively. The transformation from the world
coordinate system P, to the camera coordinate system P, is given by Equation (1) or,
more specifically, by Equation (2) in which the two 3D coordinate systems (P,, and P,) and
the rotation and translation matrices (R and T') are expressed with their own components.

P.=RP,+T (1)
X, 1 Ti2 T3 Xy T,
Y. = To1 Toz To3 Yo + | 7, (2)
Ze r3y T3z T33 L T,
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FIGURE 1. Schematic illustration of the generalized camera calibration

More precisely, the rotation matrix R in Equation (2) can be expressed by three Euler
angles: yaw «, pitch 8 and tilt v as shown below.

COS 7Y COS (¢ sin 7y cos « —sina
R=| —sinycosf +cosysinacosf cosycosf +sinysinasinf  cosasinf (3)
sinysin f + cosysinacos S —cosvysinf + sinysinacos S cosacos 3

The camera coordinates P,(X,, Y., Z.) and the undistorted image coordinates P, (Zy, i)
are related by the following perspective transformation:

X,

. (4)
%
=17

where f is the effective focal length of the lens system. The optical distortion of the real
lens systems generates a distorted image point P;(z4, y4) with respect to the undistorted
point P,(x,,y,) according to the following relation:

xd:xu+6m}
yd:yu+6y

(5)

Specifically, the optical distortion involves both radial and tangential distortion, which
grows with the distance from the center of the optical axis as follows:

Opr = Ty (k1r2 + kort + .. )
51/7“ = Yu (leQ + k27“4 + .. )

(6)

Opt = €1 (7"2 + 2x3) + 28524,y
Oyt = &2 (1 4 2y2) + 26134y,
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where k; and ko are the radial distortion and £, and £5 are the tangential distortion
coefficients. The radius r is given by

r=/x2+y2 (8)

Finally, the point in the real image coordinate system P;(z;,y;) can be obtained from
that in the distorted image coordinate system Py(x4,y4) by using the coordinates of the
projection center Py(xo,yo) and the image scale factor s(s,, s,) in  and y directions.

T; = SpTq + xo}
Yi = SyYd + Yo

(9)

2.2. Calibration schemes. Among the calibration schemes tested in the present work,
the simplest linear calibration model of Hall [5] is approximated by means of a transfor-
mation matrix as shown in Equation (10), which is the direct combination of Equations
(2), (4) and (5) by neglecting the distortion parameters 0, and d,. Ass of this model is
a global scaling factor and regarded as unity. The rest of 11 parameters are determined
using a least squares technique.

X
Ty, Ay A A Au %
Yo | = | Ao Asp Axy Ay Zw (10)
1 Agy Az Azg Asg 1w

By contrast, the nonlinear calibration techniques include different kinds of lens distor-
tion factors in the camera model. These methods are supposed to offer a more accurate
solution but computationally intensive and require good initial estimates [19]. The camera
parameters are usually obtained by an iterative numerical calculation and the accuracy
of calibration usually increases by repeating the iterations up to a convergence. A typical
nonlinear model of Soloff [12] based on a polynomial mapping function is described as
follows.

xr, = ag + Clle + CLQYw + ang + Cl4X,3} —+ Cl,5Xwa + GGYZ —+ CL7Xwa
—|—a8Ywa + Cngi + ang’J + anXiYw + Cl,12XwYu? + a13Y£
+a14 X2 Z 0y + 015X Y Zow + a16Y,2 2 + 017X 72 + a8V 72 (11)

Yi = by + b1 Xy + oY + b3 Zy + by X2 + b5 XY + bgY,2 + by Xy Zoy
b3 Y Zw 4+ bo Z2 + b1o X3 + b1 X2y + b1a XYoo + b3V
+b14 X2 Zy + 015X Yo Zo + b16Y, Zuy + 017 X0 Z2 + bigYu 22 (12)

As a results of this formulation, this Soloff model requires a total of 38 camera parameters
to be determined for each camera. This type of polynomial function based calibration
model is rather robust and accurate if a sufficient number of calibration target points
are provided. A by-product of this a bit elaborate manipulation is a large number of
parameters not all of which are statistically relevant as pointed out by Wieneke [13].

On the other hand, for computer vision applications, different types of nonlinear cal-
ibration models based on the geometrical optics are preferred because of the possibility
of the use of both coplanar and non-coplanar calibration targets. But in such appli-
cations, there are usually no approximate solutions of extrinsic or intrinsic parameters
known a-priori. To circumvent this problem, one common strategy is to divide the cam-
era calibration process into two steps [7, 8]. The first step tries to generate approximate
estimates of as many parameters as possible using a linear least squares technique. In
the second step, the rest of the parameters are obtained using a nonlinear optimization
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method that finds the best fit between the approximately determined image points and
those predicted by the mapping function. But the approximate solutions provided by
the linear techniques must be good enough for the subsequent nonlinear optimization to
properly converge. As expected from the above scenario, this type of two step method
incorporates lens distortion in the second step of parameter estimation. In that step, the
higher order radial and tangential distortions can be neglected depending on the quality
of the lens systems which in turn reduces the parameters to be estimated.

In the case of the typical two step calibration method of Tsai [7], the intrinsic and
extrinsic parameters to be determined in the first step are s,, all the components of
matrix R and the first two components of matrix 7' (7, and T;). Another scaling factor
s, is assumed to be unity. Then the focal length f and the last component of matrix
T (T,) are also estimated in this first step. Both of these computations can be done by
solving a linear system equation. Next, in the second step, the optimal value of the radial
distortion factor k; (neglecting the second order or higher radial distortion and all the
tangential distortion terms) is searched for by simultaneously solving Equations (2), (4)
and (5), while the tentative estimates of f and T, are iteratively adjusted. To do this
search, a nonlinear system equation must be solved and, depending on the scheme of the
nonlinear optimization, the solutions may exhibit computational instability. Finally, all
the parameters are further refined by using generalized equations for nonlinear calibration
in Equations (13) and (14) which can be obtained by combining Equations (2), (4), (5),
(6) and (7).

riu Xy +ri2Yy + 1132, + 1y
ri Xy + 1Yy +ri32y, + 1,

u:

13
~ ra Xy + 1Yy + 132y + T, (13)
Yo 11Xy +112Yy + 1132y + T,
Tg =Ty + Ty (k1r2 + k2r4) + & (7"2 + QxZ) + 2892, Yy (14)
Yd = Yu + Yu (k1r2 + k2r4) + &2 (T2 + 2y5) + 26124 Yy

It should be noted that the positions of the distorted and undistorted 2D coordinates in
Equation (14) are inverted from the original expression by Tsai. This is for the sake of
simplicity in the numerical calculation process.

3. Results and Discussions.

3.1. Test data. In the first part of experiment, the performance of the three calibration
schemes (Hall, Soloff and Tsai) are investigated by using the synthetic particle images
of the PIV Standard Image project of Visualization Society of Japan [20]. This is a
comprehensive set of time-series particle images showing a motion of an impinging jet in
a cavity and often used by the PIV/PTV researchers as a benchmark of particle images
[16, 21]. In the library of the 3D standard image [20], time-series particle images with
three different viewing angles are provided with their respective calibration target images,
which are composed of very small size white points almost similar to the particles in
the PIV/PTV images. Out of these sets of standard images, the user first calculates
the camera parameters, depending on the camera calibration model used, and then try
to reconstruct the 3D coordinates of the individual particles in the time series images.
Finally the motion of each reconstructed particle is tracked during the duration of the
time series data. All these reconstructed data of coordinates and velocities can be directly
compared to the theoretical values and thereby, the accuracy of the PTV measurement is
estimated.
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Four different series of standard images namely #351, #352, #371 and #377 were
taken for the present test. The camera viewing angles are different from series to series as
specified. In the first two series (#351 and #352) of 3D images, the observation volume
is viewed from three different angles, which are —30°, 0° and 30° with respect to the
vertical axis which is normal to the illumination. Since the two series capture the same
motion of flow at the same position of observation volume, same calibration target image
is used common to both cases. The only difference is the number (density) of particles
seeded in the volume. In the third series (#371), the observation volume is half reduced
and the camera viewing angles are also slightly changed from #351 and #352. While the
optical axes of the three cameras in #351 and #352 lie in the same plane normal to the
illumination, those of #371 are tilted with respect to that plane. The tilt angles are —10°,
20° and —10° respectively. In the last series (#377), the observation volume is another
half reduced and the camera viewing angles become much more complicated. The three
viewing angle of the three cameras are 0°, —90°, 30°; —30°, —45°, —15°; and —30°, —45°,
15°. Typical camera images of calibration target points and of seeded particles in series
#352 are given in Figures 2 and 3. All of these images have a 256 x 256 pixel resolution.

One important modification made in the original calibration images is the addition of a
new calibration point at each intermediate position between every two adjacent calibration
points. This addition of intermediate calibration points is carried out only in z and y
directions because the polynomial mapping function of the Soloff calibration model does
not resolve the third order distortion in z direction. As a result, each calibration target
image is composed of 5 X 5 X 3 marker points in the cubic arrangement. The interval of

(a) Undistorted 1st camera image  (b) Undistorted 3rd camera image

(c) Distorted 1st camera image (d) Distorted 3rd camera image

FicUurg 2. Calibration points of the standard image #352
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(a) Undistorted 1st camera image  (b) Undistorted 3rd camera image

(c) Distorted 1st camera image (d) Distorted 3rd camera image

FIGURE 3. Seeded particles of the standard image #352

the marker points in the world coordinate system is 4 mm in = and y directions but 8 mm
in z direction.

Although the standard image data take into account the refraction effect at the wa-
ter/air interface present between the camera and the calibration target (or the particles),
they do not include the distortion effect of the camera lens system which is one of the
major influential factors on the accuracy of the reconstructed 3D coordinates. To simulate
such a distortion effect in the real PTV experiments, all the particle images and the cali-
bration target images of the PIV Standard Image are radially distorted as well as weakly
tilted with respect to the reference observation plane of the calibration points. The radial
distortion simulates that of the real lens system and the weak tilting angle corresponds
to a small degree of misalignment in the setup of camera optics. Several sets of calibra-
tion point images and actual particle images are simulated based on the standard image
#352 by introducing different factors of distortion and tilt and thereby the performance
check is carried out regarding the reconstructed 3D particle coordinates. The first-order
and second-order radial and tangential distortions are taken into consideration in this
simulation which is summarized in Table 1.

In the second part of experiment, the performance of the three calibration schemes are
examined by using two sets of experimental images of calibration points. All the images
were captured in a small rectangular cavity (170x30x180 mm?®) with water as in the case
of the real PTV experiment. The light source was a laser light flux with a rectangular cross
section which illuminated only the inside of cavity. Two CCD cameras in stereoscopic
arrangement captured the images of a calibration plate placed in the cavity. Each CCD
cameras (JAT CM-140GE) was equipped with either a telecentric lens (Edmund TS Silver
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TABLE 1. Distortion parameters applied to the standard image #352

Case | ky (x107°) | ko(x1071) [ £1(x1078) [ (x107T) | 5,(x1077)
I 0 0 0 0 0
II 2.90 -2.20 0 0 0
11 2.90 -2.20 2.90 -2.20 0
v 2.90 -2.20 2.90 -2.20 5.50
\Y% 3.50 —2.60 2.90 -2.20 5.50

(a) Left camera image (b) Right camera image

FiGURrE 4. Calibration point images captured by a telecentric lens.

(a) Left camera image (b) Right camera image

Ficure 5. Calibration point images captured by an ordinary objective lens.

0.2x) or an ordinary objective lens (Nikon AiAF 50 mm f/1.4D). The use of the telecentric
lens can minimize the optical distortion effect, while the ordinary objective lens is not
free from optical distortion. With the telecentric lens, the cameras captured images of a
calibration plate with fine dot pattern (2.5 mm interval in z and y directions) at three
depth positions, while with the ordinary lens, they were aimed at a calibration plate with
rather rough dot pattern (10 mm interval in = and y directions). This difference in the dot
pattern is due to the different magnifying factor of the two lens systems and the effective
number of calibration points captured by the two systems is similar (90 versus 96). The
captured images of the calibration points by two systems are shown in Figures 4 and 5.

3.2. Numerical schemes. On the basis of these synthetic and experimental particle
image data, the first step analysis is to estimate the camera calibration parameters from
the locations of the calibration points in the camera image coordinate system (z;, v;)
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and those in the world coordinate system (X, Y., Z,). Since in any camera calibration
model, there are only two mapping equations available from one single calibration point,
there must be at least half as many calibration points as the number of the unknown
camera parameters. In the case of the present calibration target images, the total number
of the captured calibration points is between 75 and 96, indicating that the Hall cam-
era parameters can be calculated from 13.6 to 17.5 times as many equations, the Soloff
parameters from 3.9 to 5.1 times as many equations and the Tsai parameters from 13.6
to 17.5 times as many equations. This type of simultaneous equations are usually solved
approximately by using a linear least squares calculation (pseudo-inverse matrix calcula-
tion). So in the present study, the Hall and Soloff camera parameters as well as the Tsai
camera parameters in the first step calibration are calculated by this scheme. Only the
second step Tsai parameters must be determined by using another nonlinear optimization
scheme as described below.

Once the camera calibration parameters are determined, the next step is to reconstruct
the 3D coordinates of the calibration points themselves as well as of the seeded particles.
Then the comparison is made between the reconstructed coordinates and the known
(theoretical) coordinates. In order to reconstruct the 3D coordinates of a point in the
world coordinate system, the 2D image coordinates of the same point from at least two
camera views are needed. In reality, if there are two camera views of a single point, that
makes four simultaneous equations with three unknown variables X,,, Y,,, Z,. If there are
three camera views, six simultaneous equations for three unknowns. This problem can be
solved again by using a linear least squares calculation (pseudo-inverse matrix calculation)
in the case of the Hall linear model. The same scheme can be applied to the Tsai nonlinear
model because in his model, once the camera parameters are determined, the mapping
relation between the world coordinate system and the image coordinate system becomes
linear. But in the present study, to reconstruct the 3D coordinates of particles by the Tsai
model, other types of nonlinear least squares optimization methods are used in stead of the
linear method because of the numerical instability of the inverse matrix to be calculated
in the linear least squares system. More precisely, the Gauss-Newton algorithm or the
Levenberg-Marquardt algorithm [22] is selectively used depending on the reconstruction
error with respect to the predicted values by the Hall model.

In the last case of the Soloff model, the linear least squares calculation cannot be
applicable to reconstruct the 3D coordinates because the mapping functions are nonlinear
polynomials. So the Levenberg-Marquardt algorithm [22] is again used to determine the
3D coordinates of particles. To solve the nonlinear least squares equations either by
the Gauss-Newton algorithm or the Levenberg-Marquardt algorithm, the Jacobian and
Hessian matrices must be calculated. The partial derivatives to be used for these matrices
are estimated by the 5th order finite difference approximation. Then, iteration is carried
out to get to the optimal solutions starting from proper initial values. To guarantee the
convergence of the solutions, an initial guess of the 3D coordinates is given by the Hall
calibration model.

The accuracy of the tested calibration models is ascertained by estimating the discrep-
ancy of particle 3D coordinates P, between the reconstructed results and the pre-known
theoretical values. This discrepancy, or the error F, is calculated by the Euclidean dis-
tance of the reconstructed (X, Y, Z,) and theoretical (X, Y/ Z!) 3D coordinates as
shown below:

E=(Xy—X,)+ Yy - Y2+ (Zuw— Z,,) (15)
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3.3. Calibration performance. The first calibration test was carried out by using the
standard image data-set of #352 with and without optical distortion. The camera param-
eters of each of the three calibration models were determined from the image of calibration
marker points as described in the previous section. The number of camera parameters
to be determined for each camera is 11 in the Hall model, 38 in the Soloff model and 11
in the Tsai model. Based on the determined camera parameters, the 3D coordinates of
the same calibration marker points as used for camera calibration were reconstructed and
compared with the theoretical coordinates. The results are briefly summarized in Table
2 where the mean and the standard deviation of the reconstruction errors at 75 marker
points are compared in terms of five different image distortion degrees (Case I through
V) and of three different camera calibration models (Hall, Soloff and Tsai).

The first observation from this table is that in the Hall model, the mean reconstruction
error as well as the standard deviation are increased as higher degree of optical distor-
tion is included in the tested calibration image. In particular, the standard deviation
is drastically increased as the higher distortion is introduces. But in the Soloff model,
the reconstruction error remains within an almost similar level regardless of the optical
distortion. Furthermore, the error level itself is low and highly stable. Only in the Case
I image, the error level is comparable to the Hall model. Finally, in the Tsai model,
the general trend is again the increment of reconstruction error as the optical distortion
becomes higher. The level of reconstruction error is in some cases smaller but otherwise
larger than the Hall model. In general, the reconstruction error of the Tsai model is con-
siderably fluctuant according to the experimental conditions and the accuracy is rather
unstable. This is mainly due to the numerical instability of the nonlinear optimization
used in the process of reconstruction.

The second calibration test was conducted by using the same standard image dataset
of #352 and trying to reconstruct the 3D coordinates of the seeded particles as in the
real PTV experiment. The number of seeded particles per volume in this dataset is 273,
so that the output of the statistic values of reconstruction error are considered more

TABLE 2. Reconstruction error of the calibration points in the standard
image #352

Mean [mm)] Standard deviation [mm)]
Hall Soloff Tsai Hall Soloff Tsai
I 10.046 0.034 0.046 0.012 0.021 0.012
IT |0.116 0.033 0.105 0.069 0.020 0.062
IIT |0.116 0.034 0.105 0.069 0.020 0.062
IV |0.117 0.034 0.183 0.070 0.020 0.120
vV 10.137 0.034 0.140 0.084 0.019 0.094

Case

TABLE 3. Reconstruction error of the seeded particles in the standard im-
age #352

Mean [mm] Standard deviation [mm)]
Hall Soloff Tsai Hall Soloff Tsai
I |0.043 0.039 0.047 0.010 0.019 0.017
II |0.166 0.047 0.112 0.127 0.037 0.102
IIT | 0.166 0.047 0.112 0.127 0.037 0.102
IV 10.166 0.047 0.241 0.130 0.037 0.299
VvV 10.199 0.049 0.079 0.157 0.041 0.075

Case
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meaningful. The results are summarized in a similar manner in Table 3. Here again, in
the Hall model, the mean reconstruction error and the standard deviation are increased as
higher degree of optical distortion is included. But if compared to the first test with the
calibration markers, both the mean and standard deviation are considerably increased in
the higher distortion images. The standard deviation is almost doubled in Case V with
respect to Case I. Next in the Soloff model, the error level is still low and highly stable
regardless of the the optical distortion. But the overall error level is increased by 40% if
compared to the calibration marker images. Finally in the Tsai model, the general trend
is again the fluctuation of reconstruction errors. The effect of the optical distortion in
the particle images is rather obscured by this fluctuation of errors due to the numerical
instability of the nonlinear optimization. The error level itself is not so bad compared to
the Hall model. At least as far as the mean reconstruction error is concerned, the error
level is not so varied between the first test with calibration markers and the second test
with seeded particles.

The variation of the mean reconstruction error according to the degree of optical dis-
tortion in the first and second calibration test is graphically represented in Figure 6. As
observed again from this figure, the mean reconstruction error level of the Tsai model is
highly fluctuant depending not simply on the degree of optical distortion but randomly
on the specific experimental conditions. By contrast, the mean error level of the Soloff
model is low and highly stable, only slightly increased with the optical distortion. The
mean error in the Hall model is simply increased with the optical distortion as expected
from the general principle of the linear calibration model.

The mean value is not always indicative of the general trend of the detailed variation
of the estimated physical quantity. In addition, the calibration points and particles are
not always treated in the same way by all the calibration methods. So, the reconstruction
errors of the 3D coordinates must be further checked at each position of the calibration
points or the particles. For this purpose, two extreme cases out of the five sets of standard
image #352 were chosen, i.e., Case I without any optical distortion and Case V with the
highest degree of distortion. Figure 7 shows the variation of the reconstruction error of
the seeded particles with respect to the distance from the origin of the camera image
coordinate system. The variation curves of error in this figure exhibit overall ripples
or fluctuations and this fluctuation increases as the location of particle is moved away
from the origin. Also as seen from this figure, the reconstruction error for all the three

0.3
E —m - Calib point image - Hall
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o
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© . .
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§ 005 | N
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FIGURE 6. Variation of mean reconstruction error according to the optical
distortion (Series #352)
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FIGURE 7. Reconstruction error for undistorted versus distorted particle
images (Series #352)

TABLE 4. Reconstruction error of the seeded particles for different series
of the standard image

Undistorted image [mm] | Highly distorted image [mm]
Hall Soloff Tsai Hall Soloff Tsai
351 0.042 0.038 0.046 0.167 0.046 0.225
352 0.043 0.039 0.047 0.166 0.047 0.241
371 0.012 0.056 0.015 0.080 0.035 0.644
377 0.008 0.005 0.009 0.051 0.016 0.503

Series No.

calibration models is generally stable with a relatively narrow range of fluctuations in the
case of the undistorted particle images (Case I), which may correspond to the mean value
results shown in Table 3. By contrast, the reconstruction error in the case of the distorted
particle images (Case V) is much more fluctuant, particularly so near the border area of
the camera image plane. As regards the comparison of the three calibration models, the
superiority of the Soloff and Tsai models over the Hall model can be clearly seen at most
of the particle locations in the case of the distorted particle image. The error range in
the Hall model is significantly increased if the particle is located far away from the origin
and the error fluctuation goes up to a level of 0.8 mm.

In the final calibration test with the standard images, the particle images of four differ-
ent data sets (Series #351, #352, #371 and #377) were selected with the highest degree
of image distortion (i.e., the Case V distortion). And similarly to the first and second
tests, the mean reconstruction error and the standard deviation were estimated for the
three different calibration models. The main objective of this last test is to check the ef-
fect of the orientation of cameras as well as the effect of the varied arrangement of marker
points on the calibration target. The results of the reconstruction error are summarized
in Table 4. From this table, it is observed that the reconstruction error decreases even
though the complexity of the camera arrangement was increased for the last two image
data sets. It is probably due to the fact that there are a comparatively small number of
particles concentrated in a thin observation volume in the case of Series #371 and #377
compared to Series #351. In the case of Series #377, another influential factor is the
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TABLE 5. Reconstruction error of the calibration points in the experimen-
tally captured image

Telecentric lens [mm)] Ordinary lens [mm]
Calibration scheme Mean Stapdz-ird Max | Mean Stapdz-ird Max
deviation deviation
Hall 0.014 0.007 0.047 | 0.077 0.031 0.172
Soloff 0.009 0.006 0.044 | 0.066 0.030 0.178
Tsai 0.014 0.007 0.048 | 0.540 0.222 1.122
12
—Hall
1
—— Soloff
E 0.8 —Tsai
8
S 06
é 0.4
& 0.2

160

Distance from origin (mm)

FIGURE 8. Variation of the reconstruction error in the experimentally cap-
tured image with optical distortion

arrangement, of the calibration points at five depth positions as compared to the other
cases with calibration points at only three depth positions.

After the performance test using the synthetic images of calibration points and par-
ticles, the accuracy of the three camera calibration models was further investigated by
using the experimentally captured images of calibration points with and without optical
distortion. At first, the captured images were processed by dynamic threshold binariza-
tion [23] and labeling schemes to extract the 2D coordinates of the individual calibration
points. Although some other efficient algorithms to detect calibration marker points have
been proposed by Zhou et al. [24], the above mentioned scheme worked more efficiently
for extracting the individual calibration points. Based on these measured 2D coordinates
and the known 3D coordinates of the calibration points, the camera parameters of each
calibration model were calculated. Then the 3D coordinates of the same calibration points
were reconstructed by using their 2D coordinates projected on the two camera screens.
It should be noticed that this is the most realistic form of accuracy test in the case of
the experimentally captured images because the 3D coordinates of seeded particles can-
not be pre-determined in the measurement volume. The accuracy of reconstruction was
estimated in terms of the rms error, the standard deviation and the maximal value of the
reconstructed 3D coordinates. The results of this test are summarized in Table 5.

From this table it is observed, as expected, that the overall reconstruction error in
the images without optical distortion (with telecentric lens) is far lower as compared to
the images with optical distortion (with an ordinary lens). As regards the three camera
calibration models, it is confirmed again that the Soloff method outperforms the others in
nearly all the tested conditions. With this method, the rms value, the standard deviation
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and the max value of the reconstruction error are lowest which may justify its applicability
for the high precision PTV experiments. Here again, the reconstruction errors of the Tsai
method are rather increased because of the convergence issue of the nonlinear optimization
scheme.

Finally, similarly to the case of the synthetic images, the fluctuations of the reconstruc-
tion error of the 3D coordinates in the distorted images are plotted with respect to the
distance from the origin of the camera image coordinate system as shown in Figure 8. This
figure highlights the general trend of the accuracy of 3D coordinates in the three camera
calibration models as the location of the target point is moved away from the origin and
the differences in the maximum and minimum errors are clearly visible. For the images
without optical distortion, the error fluctuation range is very small as indicated by the
standard deviations in Table 5 and the reconstruction accuracy is almost comparable for
all the three calibration models. However, for the images with optical distortion, there
are many marked ripples in the fluctuation curve of the Tsai model with a fluctuation
range almost 10 times larger than the other models.

4. Conclusions. Camera calibration is only a preliminary stage of the image analysis
processes performed in the 3D PTV flow measurement. But at the same time, this
is one of the most influential parts of the PTV measurement from the view point of
the accuracy of recovered flow velocity. In the present study, one basic linear camera
calibration model (Hall) and two nonlinear calibration models (Soloff and Tsai) were
comparatively investigated in terms of the reconstruction error in the 3D coordinates of
the calibration marker points as well as of the seeded particles in the measurement volume.
The efficiency of the calibration models was ascertained first by analyzing the error results
in the synthetic camera images and then, by analyzing the errors in the experimentally
captured images. The conclusions obtained so far are summarized as follows:

(1) The error level of the linear Hall calibration model is very small and comparable to
that of the nolinear models if there is no optical distortion in the captured images of the
calibration marker points and the seeded particles. But if the distortion is present, the
error level is considerably increased and error range is highly extended. This tendency is
especially enhanced near the border area of the camera image plane.

(2) The nonlinear Soloff calibration model based on polynomial mapping functions is
much more preferred in the PTV applications because the error level is almost constantly
low regardless of the optical distortion in the captured images. A large number of camera
parameters (38 per camera view) may be determined by using a simple linear least squares
calculation but the reconstruction of the 3D coordinates of target points requires a more
refined nonlinear least squares algorithm. In this process, the 3D coordinates obtained
by the linear Hall model can be very suitably used as an initial guess of the solution.

(3) The nonlinear Tsai calibration model based on a two step determination of the
camera geometry parameters is generally better than the linear Hall model but the re-
construction error level and the error range are randomly fluctuant depending on specific
experimental conditions. This is mainly due to the numerical instability of the nonlinear
optimization algorithm which must be used in both the parameter estimation and the 3D
coordinates reconstruction processes. The good point about the Tsai calibration method
is that it is applicable to both coplanar and non-coplanar calibration target points but
that is not a critical issue in general 3D PTV applications.

(4) On the whole, there is not so much difference in the observations of the reconstruc-
tion errors between the synthetic images and the experimental images. One noteworthy
point is that the linear Hall model yields appreciable reconstruction results in the actual
experiment as compared to the more elaborate nonlinear models.
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