
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 7, July 2013 pp. 2801–2819

A STABLE FUZZY LOGIC CONTROLLER USING THE LEAST
PARAMETER FOR EXPLICIT TRAFFIC CONTROL

Jungang Liu and Oliver W. W. Yang

School of Electrical Engineering and Computer Science
University of Ottawa

800 King Edward Avenue, Ottawa, Ontario, K1N 6N5, Canada
jliu115@uottawa.ca; yang@eecs.uottawa.ca

Received May 2012; revised September 2012

Abstract. The fuzzy-logic-based IntelRate controller is a newly proposed intelligent ex-
plicit traffic congestion controller that can avoid the evaluation of some critical network
parameters such as bottleneck bandwidth or the number of flows in a router. It fundamen-
tally eliminates the potential performance problems caused by parameter mis-estimations.
Besides, it saves computation resources and improves the router efficiency. This paper
theoretically and experimentally shows that the IntelRate control system is stable in what-
ever network traffic conditions while providing superior performance. It is the first time
that an explicit rate-based congestion control system designed with the fuzzy logic control
is proved globally asymptotically stable. Our simulations demonstrate that the IntelRate
controller can have better performance than other exiting controllers upon network pa-
rameter changes.
Keywords: Fuzzy logic control, Stability, Max-min fair, Congestion control

1. Introduction. Network congestion control can prevent a network from severe degra-
dation in throughput-delay performance. The IntelRate controller [1] is a fuzzy-logic-
based explicit traffic congestion controller proposed to address the shortcomings in ex-
isting explicit congestion control protocols like XCP [2], RCP [3] and API-RCP [4-6].
In order to achieve good or optimum performance, the existing protocols require accu-
rate network parameter values such as the link bandwidth and/or the number of flows
in a router, which are often very hard to determine accurately. For example, the link
bandwidth in the contention-based multi-access wired networks or IEEE 802.11 wireless
networks is not deterministic due to link sharing, half-duplex or interference [7]. A wrong
estimation can lead to poor performance.

By not relying on those network parameters, the IntelRate controller: (1) avoids large
steady state error and instability issues potentially arising from the parameter mis-
estimations; (2) saves precious router computation resources such as additional timers
and mathematical operations; (3) does not require extra huge memory to store the per-
flow address information in order to estimate the number of flows, which can number in
millions every hour in a router [8]. Therefore, the IntelRate controller is more effective
and superior when working for networks where network parameters are unpredictable or
their computations consume much router resource or energy [9]. Our preliminary results
(e.g., performance evaluation in [1]) have also shown that the IntelRate controller can
achieve better performances in link utilization, throughput convergence and robustness.
By incorporating max-min fairness and the TBO (Target Buffer Occupancy) in its design,
the IntelRate controller has a very low queueing delay and zero packet loss performance.

2801

2802 J. LIU AND O. W. W. YANG

Another performance aspect that needs to be investigated further is the stability of the
IntelRate controller. Stability analysis of FLC (Fuzzy Logic Control) systems has been
around since 1990s covering areas such as mass-spring-damper systems (e.g., [10,11]), elec-
trical power systems (e.g., [12,13]), mechanical and motor control systems (e.g., [14,15]),
robotic systems (e.g., [16,17]). These studies have used different models including the
Takagi-Sugeno model (e.g., [18-20]), the sliding-mode control model (e.g., [21]) and the
nonlinear strict-feedback model (e.g., [22]). These models can be applied to either the
continuous-time or the discrete-time systems.
Different approaches have been used in the stability analysis of FLC systems. Lyapono-

v’s stability criterion is the most frequently used approach (e.g., [10-12,15,20,21,23]) once
the state equations of the plant are known. Other approaches include the describing
function (e.g., [13]), circle criterion (e.g., [14]), Popov criterion and hyperstability criterion
[24]. Each approach has its limitation and their applicability depends on the system
structure and the type of information describing the plant. For example, the describing
function technique can be applied to the Single (or Multiple)-Input- Single-Output fuzzy
controllers, but is prohibitive for more than three inputs in the fuzzy controller [25] and
for the systems that cannot be separated into a linear and a nonlinear part [24].
There are some FLC stability studies related to data network congestion control [26-28].

The RED (Radom Early Detection)-like controller design (e.g., [27]) is actually mixing
FLC with the sliding mode control. Its proof of stability is based on linear control theory
(i.e., Nyquist Criterion) by linearizing the plant model around the equilibrium point.
LDM (Lyapunov’s Direct Method) was used to obtain the system stability conditions of
an AQM (Active Queue Management) control system (e.g., [26]), but the guarantee of
stability was not proved. It is also not clear whether those conditions are eventually met
with just three rules designed for their controller because a small number of rules can
have many potential performance problems such as big overshoot, long settling time or
instability due to the high dynamics of the Internet traffic. At least a 300% of overshoot
and more than 20 seconds of settling time have been observed in their simulation results.
Furthermore, the stability analysis in these existing works is only for window-based AQM
congestion control protocols.
Unlike the above window-based protocols that provide implicit congestion information

for TCP sources, the proposed IntelRate control system is rate-based and feeds the explicit
congestion information back to sources. Some works using similar design rationale can be
found in ATM (Asynchronous Transfer Mode) networks, e.g., [29-31], but unfortunately
no stability analysis was provided.
Despite the advantages of the IntelRate controller, its stability study is of particular

importance and interest. This is because the fuzzy-logic-based controller is inherently
nonlinear, unlike other explicit congestion control protocols (such as XCP, RCP and
API-RCP mentioned before) that are designed with the linear PI (Proportional-Integral)
controller ideas based on established knowledge of classical control theory. The difficulty
to prove the stability of an FLC system comes mainly from the rule base (which contains a
logical quantification of heuristic information) that cannot be mathematically quantified.
That is to say, it is very hard (if not impossible) to express a fuzzy-logic-based controller in
an analytical form [24]. In addition, one cannot easily verify if the stability is guaranteed
from the basic design process of a fuzzy logic controller.
In view of the above discussions, we are motivated to prove the stability for the fuzzy-

logic-based IntelRate control system. Our objectives are to theoretically and experimen-
tally investigate its global stability property. To achieve our objectives, we shall first use
the LDM to analyze the stability of the nonlinear rate-based IntelRate control system in
the time domain. Then we exhaustively show how the stability of the IntelRate control

STABLE FUZZY LOGIC CONTROLLER 2803

system is guaranteed in whatever network traffic conditions. Moreover, we shall use OP-
NET simulation to verify our theoretical analysis. The main contribution of this paper
is, for the first time to our best knowledge, a fuzzy-logic-based control system is proved
to be globally asymptotically stable for the rate-based explicit congestion control of data
network traffics.

2. The IntelRate Controller. We shall summarize the IntelRate controller operation
below in order to review and introduce notations for our later analysis. The interested
readers can refer to [1] for the design details, and to [25] for more fundamental FLC
theory.

Figure 1. The closed-loop IntelRate control system for a single router network

Figure 1 depicts the closed-loop Single-Input-Single-Output IntelRate congestion con-
trol system. The variable e(t) = q0 − q(t) is the deviation of the router IQSize (Instanta-
neous Queue Size) q(t) from the TBO q0. In order to remove the steady state error, we
choose g(e(t)) =

∫
e(t)dt as the other input of the controller. Under heavy traffic situa-

tions, the IntelRate controller would compute an allowed sending rate ui(t) for each flow
i according to q(t) so that q(t) is stabilized around q0 and congestion is prevented. The
aggregate output is y(t) =

∑
ui(t− τi), where τi is the round trip time. In this system,

q(t) is the only parameter we measure and feedback to the IntelRate control system as
the congestion signal.

To model the queue plant, we consider the dynamics in both the aggregate controlled
traffic y(t) and the bottleneck bandwidth c(t). Then the rate of change in q(t) can be
expressed as

q̇(t) =

{
y(t) + v(t)− c(t) q(t) > 0
[y(t) + v(t)− c(t)]+ q(t) = 0

(1)

where [x]+ = max(0, x), and v(t) is assumed to be the uncontrolled traffic.

Table 1. Rule table for the IntelRate controller

2804 J. LIU AND O. W. W. YANG

Table 1 is one design of our controller rule base using N = 9 LVs (Linguistic Variables)
for the crisp inputs e(t), g(e(t)) and output u(t) as defined in [1]. In the following sections,
we shall use the notation (e(t), g(e(t)), u(t)) to represent a rule in this table. The dashed
box in Table 1 reflects the rules that the IntelRate controller operates on, in which e(t)
can take on LVs “NS”, “ZR” and “PS” only, while g(e(t)) can evolve from NV to PV
(or vice versa) covering all the linguistic values. Therefore, the LVs of u(t) is able to
vary from ZR to MX (or vice versa) according to different input combinations of e(t) and
g(e(t)). The shaded part in Table 1 will be discussed in Section 3.3.

(a)

(b)

(c)

Figure 2. Membership functions

The IntelRate controller employs the isosceles triangular and trapezoid-like functions
as MFs (Membership Functions), which are depicted in Figure 2. As an improvement
over the work of [1], the width of MFs in Figure 2 for the inputs e(t) and g(e(t)) has
been redesigned by introducing a new parameter m (m ≥ 1). The purpose is to have a
smaller TBO (i.e., q0) design such that the queueing delay will not degrade the network
performance under heavy traffic. The dashed lines in Figure 2 denote the boundaries of
the inputs or output, e.g., the boundary of e(t) satisfies q0−B ≤ e(t) ≤ q0 imposed by the
physical limitations of a queue. The boundaries ±mq0 for g(e(t)) indicate its upper and
lower limits in order to prevent g(e(t)) from increasing or decreasing infinitely towards
positive and negative. The boundary D of the output is the maximum Req rate (recorded
in the congestion header [1]) among the incoming flows to the router.
Below is a summary of the traffic-handling procedure of the IntelRate controller in a

router [1] which has incorporated a max-min fairness design as demonstrated later.
(1) Upon the arrival of a packet, extract Req rate from the congestion header of the

packet.

STABLE FUZZY LOGIC CONTROLLER 2805

(2) Sample q(t) of the router and update e(t) and g(e(t)).
(3) Compare the crisp output u(t) with Req rate.
(3a) If u(t) < Req rate, the link cannot accommodate the Req rate amount of sending

rate. So update Req rate in the congestion header by u(t).
(3b) Otherwise, leave the Req rate filed unchanged.

(4) Whenever an operation cycle is over, update D and compute u(t).
When the packet arrives at the destination, the receiver extracts Req rate from the

header and sends it back to the source via the acknowledgement packet.

3. Stability Analysis. The IntelRate control system can be shown to be globally asymp-
totically stable. By reversely applying the LDM [32], we first derive what the controller is
supposed to behave in order to meet the asymptotical stability conditions, and then show
that the controller is behaving as expected. Before we proceed, we state the following
assumption and proposition. Readers are referred to references like [24,32] for the concept
and conditions of LDM.

3.1. The transformed system model. We let (y(t), q(t)) be the state vector of the
IntelRate control system described in Figure 1. The following assumption and proposition
would allow us to establish the transformed system model and stability theorems later
on.

Assumption 1: For a router using the IntelRate controller, the uncontrolled traffic
v(t) is far less than the dominant controlled traffic y(t) and can be neglected by letting
v(t) = 0.

Comment: This assumption is practical because in the networks nowadays, the con-
trolled TCP generates 90-95% of the Internet traffics [33], while all other uncontrolled
traffics such as UDP make up the rest which is only a small portion of the Internet traffic.

Proposition 1: Consider the closed-loop unity feedback system in Figure 1 with a non-
zero reference value q0 (i.e., q0 6= 0). Let ys be the steady state of the aggregate controller
output (also the aggregate incoming traffic to a router), and qs be the steady state of the
IQSize. If the system is stable under heavy traffic conditions, then (ys, qs) would be a
non-zero vector at steady state. Further, qs = q0, and ys = c(t) if the system steady-state
error is negligible.

Proof: This proposition is straightforward from the perspective of control theory. For
the closed-loop system with unity feedback in Figure 1 to be stable as t → ∞, its steady
state output approaches the reference input if the steady state error can become negligible
[34], i.e., q(t) = qs = q0 6=0. Since the inbound and the outbound traffic in the queue must
strike a balance to achieve stability at steady state, we have ys equals the link capacity
c(t), i.e., ys = c(t) 6= 0. The proof is complete.

Figure 3. Transformed system model with steady state at zero

2806 J. LIU AND O. W. W. YANG

Since a non-zero steady state vector (ys, qs) does not meet the prerequisite of LDM for
the stability analysis [32], we use the approach described in [24] to convert (ys, qs) into a
zero vector. This is done by defining a new state vector (∆y,∆q) which is the deviation
of (y(t), q(t)) from (ys, qs). Figure 3 shows the transformed equivalent system of Figure
1.

3.2. The stability conditions. With the transformed system model in Figure 3, we can
now find the conditions that guarantee the stability of the IntelRate control system.
Since (∆y,∆q) is the deviation of the state vector (y(t), q(t)) from (ys, qs), we have{

∆y = y(t)− ys
∆q = q(t)− qs

(2)

and their derivatives are {
∆̇y = ẏ(t)

∆̇q = q̇(t)
(3)

From Figure 3, the aggregate output equation of the IntelRate controller can be repre-
sented by y(t) = f(e(t), g(e(t))). The change rate of y(t) is thus ẏ(t) = ∂f

∂e
· de
dt
+ ∂f

∂g
· dg

dt
.

Since g(e(t)) =
∫
e(t)dt, ẏ(t) can be rewritten as ẏ(t) = ∂f

∂e
· ė(t) + ∂f

∂g
· e(t).

Since the queue deviation e(t) = q0 − q(t) = q0 − (∆q + qs), e(t) is a function of ∆q.
Consequently,

ė(t) = −∆q̇ (4)

(4) means ė(t) is a function of ∆q̇. The right-hand side of ẏ(t) is thus a function of
∆q and ∆q̇. To represent the IntelRate controller state equation ẏ(t) with ∆q and ∆q̇,
we define the right-hand side of ẏ(t) to be a new function h(∆q,∆q̇). Hence, ẏ(t) =
h(∆q,∆q̇).

From (1), the lower equation of (3) becomes ∆̇q=

{
∆y + ys + v(t)− c(t) q(t) > 0
[∆y + ys + v(t)− c(t)]+ q(t) = 0

.

One can see that ∆q̇ is a function of ∆y. Therefore, we have

ẏ(t) = h(∆q,∆y) (5)

By carefully checking (5), the function h(∆q,∆y) represents the action of the controller
in response to the change of the aggregate arrival rate, i.e., ẏ(t).
Till now, the system Equation (3) can be rewritten as ∆̇y = h(∆q,∆y)

∆̇q =

{
∆y + ys + v(t)− c(t) q(t) > 0
[∆y + ys + v(t)− c(t)]+ q(t) = 0

(6)

Using x = (x1(t), x2(t)) = (∆y,∆q), we obtain a more general form,
ẋ1 = h(x1, x2))

ẋ2 =

{
x1 + ys + v(t)− c(t) q(t) > 0
[x1 + ys + v(t)− c(t)]+ q(t) = 0

(7)

Without loss of generality, we choose the positive scalar V (x) = (x2
1(t) + x2

2(t))/2
as the Lyapunov function. To guarantee the system’s stability, we must have V̇ (x) =
x1(t)ẋ1(t) + x2(t)ẋ2(t) < 0. Specifically, x1(t)h(x1, x2) + x2(t)(x1 + ys + v(t)− c(t)) < 0.
Note that we have reasonably neglected the boundary conditions of ẋ2(t) in (7). Later
on we shall show how the IntelRate control system designed with this inequality can
maintain stability despite these boundary conditions. According to the LDM [32], the
system would be asymptotically stable if

x1(t)h(x1, x2) + x2(t)(x1(t) + ys + v(t)− c(t)) < −ε (8)

STABLE FUZZY LOGIC CONTROLLER 2807

for any small ε > 0. Therefore, for x1(t) 6= 0, h(x1, x2) should satisfy{
h(x1, x2) >

1
x1(t)

[x2(t)(c(t)− x1(t)− ys − v(t))− ε] if x1(t) < 0

h(x1, x2) <
1

x1(t)
[x2(t)(c(t)− x1(t)− ys − v(t))− ε] if x1(t) > 0

(9)

i.e., {
ẏ(t) > 1

x1(t)
[x2(t)(c(t)− x1(t)− ys − v(t))− ε] if x1(t) < 0

ẏ(t) < 1
x1(t)

[x2(t)(c(t)− x1(t)− ys − v(t))− ε] if x1(t) > 0
(10)

The two inequalities in (10) depict how the IntelRate controller y(t) = f(e(t), g(e(t)))
should behave in order to guarantee the asymptotic stability of the system upon different
traffic conditions. These behaviors are established by the following two theorems.

3.3. Stability analysis under light traffic (x1(t) < 0). Theorem 3.1 below estab-
lishes the behaviors of the IntelRate controller under light traffic.

Theorem 3.1. The inequality ẏ(t) > 1
x1(t)

[x2(t)(c(t)− x1(t)− ys − v(t))− ε] if x1(t) < 0

in (10) corresponds to the light traffic scenario in a router where the IntelRate controller
allows each source to increase its sending rate until the desirable rate is reached while
maintaining the system stable.

Proof: According to the upper inequality in (10) and to the definition of x1(t), the
case of x1(t) < 0 implies the incoming traffic y(t) is arriving at a rate less than ys. From
Proposition 1, it means that y(t) < c(t), or c(t) − x1(t) − ys − v(t) > 0 (where v(t) = 0,
as assumed in Assumption 1). Therefore, the aggregate incoming rate y(t) is less than
the router service rate c(t), and the system is working in a light traffic scenario. In this
context, if x1(t) remains less than zero, q(t) is working in an empty state, i.e., x2(t) < 0.

Note that ε in (10) can be any small positive number to ascertain the stability condition
in (8). As ε approaches zero from the positive side, the right side of the upper inequality
in (10) would be positive, which in turn means the output change ẏ(t) has to be positive.
This requires the controller to increase its output y(t) to make q(t) reach qs, provided every
source has enough data to send. The scenarios of this for the controller to achieve stability
are enumerated and exemplified below. The rule region that is shaded gray in Table 1
regulates the controller behaviors under the light traffic scenario where e(t) = q0−q(t) > 0
(since x2(t) < 0).

Figure 4. The IntelRate controller behavior when e(t) = “ZR” (light traf-
fic case)

Figure 4 shows the controller behavior under one of the light traffic scenarios, i.e., when
e(t) = “ZR” (which corresponds to the left column of the shaded area in Table 1). Since
g(e(t)) =

∫
e(t)dt and e(t) > 0, g(e(t)) would keep on increasing from ZR to PS, PM, PL

until PV, and eventually the controller output reaches the linguistic value “MX”, as seen
in Figure 4, where all the sources can send data with their maximum desired rates.

Figure 5 shows the controller behavior under the other light traffic scenario, i.e., when
e(t) = “PS” (which corresponds to the right column of the shaded area in Table 1). Like
the e(t) = “ZR” case above, the controller also increases its output continuously until the
“MX” is reached.

2808 J. LIU AND O. W. W. YANG

Figure 5. The IntelRate controller behavior when e(t) = “PS” (light traf-
fic case)

Note that in the light traffic condition, the bandwidth of a link is enough to deal with all
the incoming traffic, and there is no congestion. The queue is often close to empty (Note
this situation corresponds to the system model with the boundary condition q(t) = 0 in
(7)), or occasionally there can be a low buffer occupancy due to some arrival bursts. In
the situation where there is an occasional large data burst (which causes the queue size
q(t) to exceed q0 resulting in e(t) < 0), the variable g(e(t)) would decrease its value for
a while until the burst has subsided and q(t) drops below q0. During the decrease, the
controller output would return to the previous states for a while. For example, the LVs
may go from “MX” back to “EB” or even “VB”. After the burst dissipates, g(e(t)) will
increase again. Therefore, the general practice that e(t) > 0 under light traffic scenario
is justifiable.
In summary, the controller behaviors described in the above two cases required by the

upper inequality in (10) is met for the light traffic condition, and the proof is complete.
Theorem 3.1 has established that the IntelRate controller can follow the prescribed

behaviors to guarantee the system stability in the presence of light traffic. It is noteworthy
that the queue size q(t) mostly operates below q0 under light traffic scenarios. However,
this does not affect the system stability because the router is not congested at all in such
scenarios. This will also be verified by our simulations in Section 4.1. Note that the
evolutions among NV, NL, NM and NS for g(e(t)) are also possible, but they correspond
to the cases of g(e(t)) < 0 and e(t) < 0 which will be discussed in the next section.

3.4. Stability analysis under heavy traffic (x1(t) > 0). Theorem 3.2 below estab-
lishes the behaviors of the controller under heavy traffic.

Theorem 3.2. The inequality ẏ(t) < 1
x1(t)

[x2(t)(c(t)−x1(t)−ys−v(t))−ε] if x1(t) > 0 in

(10) corresponds to the heavy traffic scenario in a router where the IntelRate controller de-
creases the source sending rate according to max-min fairness until the queue size reaches
the TBO q0 so that the asymptotical stability of the IntelRate control system is guaranteed.

Proof: The condition x1(t) > 0 in the lower inequality of (10) implies the incoming
traffic y(t) is arriving at a rate higher than ys. From Proposition 1, it means y(t) > c(t),
or c(t)−x1(t)−ys−v(t) < 0. Since the aggregate incoming rate y(t) to the queue is higher
than the router service rate c(t), and when x1(t) is to remain bigger than zero, q(t) would
build up quickly and pass over q0. The system is then working under heavy traffic with
x2(t) > 0. Thus, the right side of the lower inequality in (10) becomes negative. Note
that ε was approximated as zero. Now ẏ(t) < 0 means the controller should decrease its
output y(t) so that the IQSize q(t) can be reduced back to q0 (which is the steady state
qs) and then be stabilized there. To analyze whether the controller can behave this way,
below we do the analysis based on the shaded rule region of Table 2 which regulates the
controller behaviors in the presence of heavy traffic.
For simplicity, assume the router is originally working in a non-congested condition

where the controller allows the flows to send data with the LV “MX” (e.g., the scenario
described in the proof of Theorem 3.1). We then assume an infinite number of ftp flows
swarm into the router, each greedily demanding a desired sending rate. Obviously, this

STABLE FUZZY LOGIC CONTROLLER 2809

Table 2. Rules for heavy traffic (shadowed gray)

is the worst case assumption for a link to become severely congested. In such a scenario,
when the link bandwidth is fully utilized and the congestion becomes imminent, the
queue begins to build up (Note this situation corresponds to the system model under the
boundary condition q(t) > 0 in (7)), and that e(t) = q0 − q(t) would become smaller and
smaller. Eventually, e(t) would become negative after q(t) > q0. With reference to the
shaded area of Table 2, the negative e(t), i.e., e(t) < 0, corresponds to the state e(t) =
“ZR” and e(t) = “NS”. As a result, g(e(t)) starts to decrease along the direction from
“PV” to “NV” until q(t) is working around the TBO q0. When the controller input g(e(t))
decreases to “NV”, the output would reach the linguistic value of “ZR” independent of
the input e(t), which means the controller is trying to assign an infinitesimal portion of
bandwidth to each of the flows. As such, there are the following possible cases of the
IntelRate controller behavior.

Figure 6. The IntelRate controller behavior when e(t) = “ZR” (worst
traffic case)

a) The case of e(t) = “ZR” as shown in Figure 6 (which corresponds to the right column
of the shaded area in Table 2).

b) The case of e(t) = “NS” as shown in Figure 7 (which corresponds to the left column
of the shaded area in Table 2).

In both cases, one can see the controller output eventually decreases to “ZR” when
g(e(t)) remains negative in order to maintain q(t) to q0.

Beside the above worst cases, the IntelRate controller output need not decrease all the
way to “ZR”. This leads to the other two cases:

c) The case of e(t) = “ZR” with bi-directional transition as shown in Figure 8.

2810 J. LIU AND O. W. W. YANG

Figure 7. The IntelRate controller behavior when e(t) = “NS” (worst
traffic case)

Figure 8. The IntelRate controller behavior when e(t) = “ZR” (heavy
traffic case)

Figure 9. The IntelRate controller behavior when e(t) = “NS” (heavy
traffic case)

d) The case of e(t) = “NS” with bi-directional transition as shown in Figure 9.
System stability can still be accomplished in cases c) and d) above. This is because, as

shown in Figure 8 or Figure 9, the IntelRate controller can transit bi-directionally among
the neighboring rules. Take the controller rule (ZR, NS, SM) in Figure 8 as an example.
If this controller rule cannot decrease the queue size q(t) to q0, g(e(t)) will become more
negative (because e(t) is still less than 0), and consequently the controller will make a
transition to the next rule (ZR, NM,VS) to further decrease its output. If q(t) is still
greater than q0, the controller will continue to decrease the output by going to the next
rule (ZR, NL, ES) for the same reason. This process is repeated until one output can
decease the queue size q(t) to q0 and stabilize it there. Simulations in Section 4.2 will

STABLE FUZZY LOGIC CONTROLLER 2811

further show how the IQSize is stabilized around q0. In fact, under such a process, the
system is working in max-min fairness. Similarly, for any given rule that the controller
initially resides in, it can be shown that the IntelRate controller can always adjust the
sending rates to shift q(t) back to q0 and make the system stable. In summary, the
controller behavior in the heavy traffic conditions required by the lower inequality in (10)
is met.

Finally, the only special case to analyze is when x1(t) = 0, i.e., the incoming rate y(t)
to the router remains constant at ys. We consider this as a heavy traffic scenario because
the bandwidth has been fully utilized, i.e., y(t) = c(t). From V̇ (x) = x1(t)h(x2, ẋ2) +
x2(t)(x1(t) + ys + v(t) − c(t))), we note that V̇ (x) = 0 only when x = 0. Furthermore,
as |x| → ∞, V (x) = (x2

1(t) + x2
2(t))/2 → ∞. Therefore, from the stability principle of

LDM, along with the established Theorem 3.1 and Theorem 3.2, we can now conclude
that the IntelRate control system is globally asymptotically stable given any initial state
of (y(t), q(t)). Please note that the initial state (y(t), q(t)) should be compliant with the
system physical limitations, e.g., q(t) should neither be a negative value nor be greater
than the buffer capacity B.

Figure 10. A wired network

4. Congestion Control of a High-Speed Wired Network. The capability of our
IntelRate controller can be demonstrated in wired networks using OPNET Modeler [35].
Figure 10 depicts one common congestion scenario encountered in Internet [3,4,26-28],
in which Router 1 is the bottleneck. The numbers marked on the nodes designate the
subnets/groups attached to each router. There are M = N = 11 subnet pairs to form the
source-destination data flows in the network, and they run various Internet applications
such as long-lived ftp, short-lived http, or unresponsive UDP-like flows (the uncontrolled
ftp flows [4]).

Table 3 summarizes the RTPD (Round Trip Propagation Delay) used in each flow. The
RTPD includes the forward path propagation delay and the feedback propagation delay,
but does not include the queueing delay, which may vary according to our settings of
TBO size in the experiments. The reverse traffic is generated by the destinations when
they send the ACK packets to the sources.

The bandwidth of Router 1 is 5Gbps. Since we are going to investigate the controller
performance in the bottleneck Router 1, Router 2 is configured to have sufficient link
bandwidth c(t) and buffer B so that congestion never happens there. The TBO of the
bottleneck in this application example is 6000 packets, which can cause a queueing delay
of 9.83ms (from 6000 packets*1024bytes*8bits/5Gbps). The buffer capacity B=10*TBO.
We also adopt some typical values from the experiments of existing works so that we can

2812 J. LIU AND O. W. W. YANG

Table 3. Source characteristics

Subnet ID Source ID Flow NO. RTPD (ms)
ftp group 1 1-20 ftp 1-20 80
ftp group 2 21-40 ftp 21-40 120
ftp group 3 41-60 ftp 41-60 160
ftp group 4 61-80 ftp 61-80 200
ftp group 5 81-100 ftp 81-100 240
http group 1 101-120 http 1-20 80
http group 2 120-140 http 21-40 120
http group 3 141-160 http 41-60 160
http group 4 161-180 http 61-80 200
http group 5 181-200 http 81-100 240
uncontrolled ftp 201 UDP 1 160

make meaningful comparisons later on. In particular, all the ftp packets have the same
size of 1024 bytes [4] while the http packet size is uniformly distributed in [800, 1300]
bytes [36].
In order to demonstrate and discuss the stability and robustness of our IntelRate con-

troller, our study would focus on the testing of the 100 long-lived ftp sources (because
they tend to cause severe congestion in the network), unless otherwise stated. For brevity
reason we shall show the results of one flow from each group. The 100 sporadic short-lived
http flows just act as the disturbance of the ftp traffic. Their transfer size follows the
real web traffic scenario, i.e., it has a Pareto distribution [36] with a mean transfer size
of 30 packets [2]. The arrivals of http flows follow a think-time [36] uniformly distributed
in [0.1s, 30s]. One of the http session examples is shown in Figure 11. The uncontrolled
ftp flow keeps its window size at 100 packets and operates at an almost constant rate as
shown in Figure 12. These http and UDP-like flows generate an aggregate traffic v(t)
mentioned in Assumption 1 of Section 3.1. The IntelRate control system is evaluated by
the following performance measures.
1) Source throughput (or source sending rate) is defined to be the average number of

bits successfully sent out by a source per second, i.e., bits/second [35]. Here, a bit is
considered successfully sent out if it is part of a packet that is successfully sent out [35].
2) IQSize is the length of the bottleneck buffer (measured in packets) seen by a packet

departure [37].
3) Utilization is the ratio between the current actual throughput in the bottleneck and

the maximum service rate of the bottleneck. It is expressed as a percentage.

Figure 11. Http sessions example Figure 12. Uncontrolled ftp flow

STABLE FUZZY LOGIC CONTROLLER 2813

4) Max-min fairness: A feasible allocation of rates is ‘max-min fair’ if and only if an
increase of any rate within the domain of feasible allocations must be at the cost of a
decrease of some already smaller or equal rates [38].

4.1. Stability in light traffic scenario. The light traffic scenario is used to demonstrate
that the IntelRate controller can maintain system stability by allowing all flows to send
data with their desired rates, as analyzed in Section 3.3. The desired sending rates from ftp
Group 1 to Group 5 are set 6.14Mbps, 10.08Mbps, 20.15Mbps, 41.78Mbps and 76.19Mbps,
respectively. Note that the total desired rate is less than the bottleneck bandwidth, i.e.,
5Gbps, in order not to cause congestion in the bottleneck.

Figure 13. Sources through-
put dynamics

Figure 14. Router IQSize

Figure 13 shows the throughput of 5 ftp sources, one from each ftp group. In comparison
to their desired rate we set above, all the flows can stably send data in a rate they desired.
This verifies our system stability principle stated in Theorem 3.1 of Section 3.3. Further
discussion will be provided shortly.

Figure 14 shows the router IQSize dynamics. Compared with the TBO, i.e., 6000
packets, the IQSize operates in a very low buffer level most of the time. After the router
is started, the controller is trying to increase the queue size to the TBO. However, because
of the total incoming traffic less than the bottleneck bandwidth, the queue size has to
settle at a lower level eventually. This indicates that, in a light traffic condition, the
IQSize may not reach the TBO. Since the router is not congested, this does not cause the
system instability. As a matter of fact, it is queue overflow that would cause congestion
so the system instability, which will be investigated in the heavy traffic scenario later on.

Discussion: It is interesting to review once more the fuzzy logic mechanism that
allows the IntelRate sources to send data with their desired rate in light traffic scenario.
As shown in Figure 14, when the IQSize q(t) is less than TBO, e(t) is always positive
(corresponding to the LV “ZR” or “PS” of e(t) in Figure 2). Consequently, g(e(t)) is
increasing until it reaches the maximum edge value mq0 (corresponding to the “PV” of
g(e(t))). According to Table 1, the system is now working under the rule (ZR, PV, MX)
or (PS, PV, MX). Either one means the IntelRate controller allows the “MX” sending
rate, where the value D resides. Therefore, every source can send data with its desired
rate.

Unlike the heavy traffic scenario to be discussed below, we have no max-min fairness
issue here. This is because the max-min fairness is a kind of resource allocation mecha-
nism for many greedy consumers sharing limited resources. This fairness works by first
satisfying the small users, and then evenly allocating the remaining resources among the
large users (as will be illustrated in the next section).

2814 J. LIU AND O. W. W. YANG

4.2. Stability in heavy traffic scenario. In this section, we want to demonstrate that
upon heavy traffic the IntelRate controller can maintain system stability by allocating
the bottleneck bandwidth according to max-min fairness, as analyzed in Theorem 3.2 of
Section 3.4. The ftp flows in Group 1 to Group 5 would desire higher sending rates, i.e.,
24.48Mbps, 33.18Mbps, 49.15Mbps, 90.11Mbps and 114.69Mbps respectively, which are
the rates we use to produce congestion.
Figure 15 shows the stable sending rates of 5 sources, one from each ftp group. The

sources in groups 1, 2 and 3 (e.g., sources 2, 22 and 42) obtain a throughput they de-
sire, i.e., 24.48Mbps, 33.18Mbps and 49.15Mbps, respectively. However, the sources in
groups 4 and 5 (e.g., sources 62 and 82) cannot obtain their desired rates 90.11Mbps and
114.69Mbps, respectively. Instead they have to share the same portion of bandwidth, i.e.,
82.45Mbps. This illustrates and verifies the max-min fairness capability we implemented
for the IntelRate controller.

Figure 15. Source through-
put dynamics

Figure 16. Router IQSize

Figure 16 shows the router IQSize is well controlled around the TBO, i.e., 6000 packets.
Even though the queue size may rise sharply at the starting stage, but its level is much
smaller than the buffer size of 60000 packets. This demonstrates that the IntelRate
controller is capable of restricting the IQSize around the TBO so that the buffer is not
overflowed and the system is stable. This also leads to another advantage observed in our
controller, i.e., there is no packet loss upon heavy traffic.
Discussion: Now we analyze how the IntelRate controller imposes max-min fairness

under heavy traffic to maintain the system stable. As mentioned before, the system is
stable because the controller is capable of controlling the IQSize around the TBO. This
means that e(t) is hovering around zero depending on the relative values of q(t) and q0.
Consequently, the input g(e(t)) decreases or increases its crisp value. According to Table
1, the router outputs an allowed sending rate u(t) for each flow according to the crisp
values of e(t) and g(e(t)). The flows whose desired rates larger than u(t) (e.g., the above
flow 62 and 82) will be limited to u(t), while those with smaller desired rates are allowed
to send data with the rates they desire (e.g., flows 2, 22 and 42 above). This is exactly
the max-min fairness the IntelRate controller was designed for.

5. Congestion Control of a Wireless Network. In IEEE 802.11 wireless LAN (Lo-
cal Area Network), the wired and the wireless interfaces of the AP (Access Point) are
characterized by the disparity in channel capacity. This presents a significant bottleneck
for traffic flowing from the wired network to the wireless network [39]. With this practical
example, we aim to demonstrate that the IntelRate controller can stably operate in the
presence of traffic changes under heavy traffic situations.

STABLE FUZZY LOGIC CONTROLLER 2815

Figure 17. A wireless network

The wireless LAN topology is shown in Figure 17, which consists of 5 source-destination
pairs (i.e., si− ri, i = 1, 2, . . ., 5). Since wireless LAN usually is a small scale network, not
like the above wired network, we do not duplicate flows for each subnet. The backhaul
has a propagation delay of 100ms. The bandwidth between si and the router is 100Mbps,
and the backhaul bandwidth between the router and the AP is 1Gbps. The data rate of
the IEEE 802.11 wireless LAN is 11Mbps. The IntelRate controller resides in the AP to
prevent the congestion.

We use the Application and Profile module of the OPNET to generate traffic in the
sources si. In the Application module, we choose video (this module also has other types
of traffic available such as ftp, http, audio or email) as our network traffic because like
ftp it is another giant network traffic maker nowadays. The starting time, duration and
the number of repetitions of the video can be set in the Profile module. Network traffic
change can happen due to video flow joining or transmission ending (including connection
broken) in wireless networks. To produce traffic changes, we only allow video flows from
the sources s1, s2 and s5 to operate in the first 50 seconds. The flows from s3 and s4
will join in at t = 50s and t = 100s, respectively. Then the flow from s2 will finish
its transmission at t = 200s while other flows remaining operation. We will show that
the IntelRate controller is able to adjust the video generation rate following the explicit
congestion signal so that the congestion is prevented in AP. To make the experiment more
rigid, we let all the sources have a greedy video sending rate.

Figure 18 shows the sending rate dynamics of each flow during the traffic change pro-
cesses. The figure demonstrates that, whenever a new flow starts, the IntelRate controller
can reallocate the bandwidth in max-min fairness so that the system stability is guar-
anteed. Since every flow wants to send data into the network as much as it can, the
max-min fairness in this case is imposed to evenly re-allocate the bandwidth among the
flows upon each traffic change. For example, in the first 50s, flows 1, 2 and 5 evenly share
the 11Mbps bandwidth, each with about 3.65Mbps. At t = 50s, after the flow 3 joins in,
the sending rate of the flow 1, 2 and 5 decreases and the 4 flows now each share 2.75Mbps.
Likewise, at t = 100s, after the flow 4 joins in, each flow shares 2.2Mbps. After the flow
2 withdraws at t = 200s, the remaining 4 flows each increases to share 2.75Mbps again.
In summary, the sources are stable in readjusting their sending rates upon each traffic
change and provide smooth performance.

Figure 19 shows that the IQSize is well controlled and stably operating around the TBO
of 60 packets. The fluctuations in IQSize are small when the traffic changes, and are even

2816 J. LIU AND O. W. W. YANG

Figure 18. Source through-
put dynamics

Figure 19. IQSize in AP

negligible at t = 100s and 200s. Furthermore, all these fluctuations quickly settled down
to the TBO just after one oscillation.
In conclusion, Figure 18 and Figure 19 demonstrate good stability as well as fast re-

sponse of the IntelRate controller upon traffic changes in the wireless network.

6. Comparison with Other Controllers. The existing explicit congestion control pro-
tocols such as XCP and RCP all need to estimate the link price or the bottleneck band-
width in order to compute the source sending rates. As pointed out in the investigation
of XCP in [7], the potential mis-estimation of bottleneck bandwidth can result in non-
converging throughput and thus instability. Our IntelRate controller does not have this
problem which will be demonstrated in Section 6.1. Section 6.2 shows that the IntelRate
controller, without estimating the number of flows, can even achieve better stable per-
formance than the API-RCP upon the traffic changes while saving the precious router
computation resources.

6.1. Comparison with XCP. We set up a 45Mbps bottleneck (i.e., Router 1) in Figure
10, and allow all flows have a common round trip time of 40ms, as set in [2]. The XCP
design parameters are the same as the values adopted in [2], i.e., α = 0.4 and β = 0.226.
The 100 long-lived ftp flows share the bottleneck and greedily consume all the bandwidth.
To allow comparison, we change the bottleneck bandwidth from 45Mbps to 40Mbps at
t = 20s in order to mimic the error in bandwidth estimation. Such a bandwidth change
can happen in wired networks due to the sudden joining of some uncontrolled traffic such
as UDP so that a portion of bandwidth becomes unavailable to the controlled traffic.
Then we test the IntelRate controller with the same bandwidth change.
As shown in Figure 20(a), the throughput of XCP flow becomes unstable after the

bandwidth changes from 45Mbps to 40Mbps at t = 20s, and cannot converge to a relatively
smooth state. The reason can be seen from its efficiency equation φ = α · (c − y(t)) −
β · Q/d, where y(t) is the aggregate incoming rate as in our IntelRate controller and c
is the estimated bandwidth. Without an accurate estimation of c (as emulated in this
experiment), the stability performance of XCP controller is greatly degraded. In contrast,
the IntelRate controller is based on the heuristic expert knowledge so that the source is
able to find a new rule according to the queue size variation, and thus adapting itself to
the new bandwidth condition. This is why the IntelRate controller can maintain the flow
throughput relatively smooth and the system stable upon bandwidth change.
Figure 20(b) shows how the link utilization of XCP degrades accordingly when its flow

rate becomes unstable, while the IntelRate controller maintains full utilization all the
time due to its relatively stable sending rate.

STABLE FUZZY LOGIC CONTROLLER 2817

(a) (b)

Figure 20. Source throughput dynamics and link utilization

6.2. Comparison with API-RCP. API-RCP depends on an additional mechanism,
called self-adaptation, to adapt its PI gains to the new traffic conditions. With such a
mechanism, API-RCP can detect and deal with the changes in the number of flows so that
the system can maintain stable [4]. However, the IntelRate controller does not need to
estimate the number of flows at all and thus saving much router computation and memory
resource. In the following, with the wired network Figure 10, we will demonstrate that
the IntelRate controller can achieve better response performance upon the traffic change
than API-RCP while maintaining the system stable.

Figure 21. Source performance Figure 22. Link utilization

We set up a 45Mbps bottleneck bandwidth with B = 1000 packets and TBO = 300
packets, as described in [4]. We use a phase margin of 45 degrees for the API-RCP which
is considered to be within an optimum range of the settings [4]. We set M = N = 100 ftp
sources. In this experiment, in the first 80 seconds, we only have 60 ftp flows operating
in Group 2, Group 4 and Group 5. Then at t = 80s, 40 ftp flows in Group 1 and Group
3 join in the bottleneck traffic and stay for 40 seconds before ending their transmission
at t = 120s. Figure 21 compares the throughput performance of the two controllers when
additional 40 ftp flows from Group 1 and Group 3 join in or leave the bottleneck. The two
controllers have similar response behavior in the first 120 seconds but differs noticeably
when they try to recover their sending rates after t = 120s (referred to as “recovery
stage”). One sees that the IntelRate controller can recover its throughput faster than the
API-RCP while maintaining good stability. This suggests that the IntelRate controller
can utilize the spare bandwidth more quickly and efficiently upon traffic change. Figure
22 has verified such an allegation. As shown, during the recovery stage, the API-RCP
shows a dramatic and longer utilization drop, whereas the IntelRate controller just shows
three small and short drops.

2818 J. LIU AND O. W. W. YANG

As a summary, the IntelRate controller, without estimating the number of flows, not
only saves router computation and memory resources, but also is able to reutilize the
spare bandwidth faster during the recovery stage while remaining the system stable.

7. Conclusion. The IntelRate controller need not estimate the network parameters and
fundamentally overcomes the instability issues caused by parameter mis-estimations in
other explicit congestion control protocols. In the meanwhile, it saves the computational
resources in a router. To theoretically prove the stability of the IntelRate control system,
we have reversely employed the Lyapunov’s stability criteria and showed that the IntleRate
control system is able to achieve global asymptotical stability. The simulations have
verified the effectiveness and the superiority of the fuzzy-logic-based IntelRate controller,
and demonstrated that the IntelRate control system can remain stable by relying on
the IQSize alone (the least number of parameter we can have) to effectively prevent the
network from congestion.

Acknowledgment. This work is partially supported by Research Discovery Grant (#R-
GPIN42878) and an Accelerated Grant from NSERC. The authors also gratefully ac-
knowledge the helpful comments and suggestions of the reviewers, which have improved
the quality and presentation of our paper.

REFERENCES

[1] J. Liu and O. Yang, Design and evaluation of an intelligent controller for heterogeneous networks,
Proc. of IEEE GLOBCOM, Miami, USA, pp.1-5, 2010.

[2] D. Katabi, M. Handley and C. Rohrs, Congestion control for high bandwidth-delay product networks,
Proc. of SIGCOMM, Pittsburgh, Pennsylvania, USA, pp.89-102, 2002.

[3] N. Dukkipati, N. McKeown and A. G. Fraser, RCP-AC congestion control to make flows complete
quickly in any environment, Proc. of IEEE INFOCOM, Barcelona, Spain, pp.1-5, 2006.

[4] Y. Hong and O. Yang, Design of adaptive PI rate controller for best-effort traffic in the Internet
based on phase margin, IEEE Trans. Parallel & Distr. Syst., vol.18, no.4, pp.550-561, 2007.

[5] Y. Hong and O. Yang, An API-RCP design using pole placement technique, Proc. of IEEE ICC,
pp.1-5, 2010.

[6] Y. Hong and O. Yang, Can API-RCP achieve max-min fair bandwidth allocation in a multiple-
bottleneck network, Proc. of the 43rd CISS, pp.723-728, 2009.

[7] Y. Zhang and T. R. Henderson, An implementation and experimental study of the explicit control
protocol (XCP), Proc. of IEEE INFOCOM, Miami, USA, vol.2, pp.1037-1048, 2005.

[8] B. Ribeiro, T. Ye and D. Towsley, Resource-minimalist flow size histogram estimator, Proc. of the
8th ACM SIGCOMM Conference on Internet Measurement, Greece, pp.285-290, 2008.

[9] S. Guo and O. Yang, Energy-aware multicasting in wireless ad hoc networks: A survey and discussion,
Computer Communication, vol.30, no.9, pp.2129-2148, 2007.

[10] H. K. Lam, F. H. Leung and P. K. S. Tam, An improved stability analysis and design of fuzzy control
systems, Proc. of IEEE Int’l Fuzzy Systems Conference, vol.1, pp.430-433, 1999.

[11] H. Li, H. Liu, H. Gao and P. Shi, Reliable fuzzy control for active suspension systems with actuator
delay and fault, IEEE Trans. on Fuzzy Systems, vol.20, no.2, pp.342-357, 2012.

[12] T. Gusmi, H. H. Adballa and A. Toumi, Transient stability fuzzy control approach for power systems,
Proc. of IEEE Int’l conf. on Industrial Technology, vol.3, pp.1676-1681, 2004.

[13] T. Sijak, S. Tesnjak and O. Kuljaca, Stability analysis of fuzzy control systems using describing
function method, Proc. of the 9th Mediterranean Conference on Control and Automation, 2001.

[14] R. E. Haber, G. Schmitt-Braess, R. H. Haber, A. Alique and J. R. Alique, Using circle criteria for
verifying asymptotic stability in Pl-like fuzzy control systems: Application to the milling process,
IEE Proceedings of Control Theory and Applications, vol.150, no.6, pp.619-627, 2003.

[15] G. R. Yu, Robust fuzzy control of piezoelectric systems with input delays and disturbances based
on piecewise Lyapunov functions, International Journal of Innovative Computing, Information and
Control, vol.4, no.10, pp.2721-2730, 2008.

[16] J. L. Meza, V. Santibanez, R. Soto and M. A. Llama, Stable fuzzy self-tuning pid controller of robot
manipulators, Proc. of IEEE Int’l Conf. on Sys., Man,and Cybernetics, pp.2624-2629, 2009.

STABLE FUZZY LOGIC CONTROLLER 2819

[17] V. Santibanez, R. Kelly and M. A. Llama, Global asymptotic stability of a tracking sectorial fuzzy
controller for robot manipulators, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cyber-
netics, vol.34, no.1, pp.710-718, 2004.

[18] H. Han, Fuzzy controller design with input saturation, International Journal of Innovative Comput-
ing, Information and Control, vol.4, no.10, pp.2507-2521, 2008.

[19] L. Wang and X. Liu, New relaxed stabilization conditions for fuzzy control systems, International
Journal of Innovative Computing, Information and Control, vol.5, no.5, pp.1451-1460, 2009.

[20] Z. G. Wu, P. Shi, H. Su and J. Chu, Reliable H∞ control for discrete-time fuzzy systems with
infinite-distributed delay, IEEE Trans. on Fuzzy Systems, vol.20, no.1, pp.22-31, 2012.

[21] J. Zhang, P. Shi and Y. Xia, Robust adaptive sliding-mode control for fuzzy systems with mismatched
uncertainties, IEEE Trans. on Fuzzy Systems, vol.18, no.4, pp.700-711, 2010.

[22] Q. Zhou, P. Shi, J. Lu and S. Xu, Adaptive output-feedback fuzzy tracking control for a class of
nonlinear systems, IEEE Trans. on Fuzzy Systems, vol.19, no.5, pp.972-982, 2011.

[23] L. Wu, X. Su, P. Shi and J. Qiu, A new approach to stability analysis and stabilization of discrete-
time t-s fuzzy time-varying delay systems, IEEE Trans. on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol.41, no.1, pp.273-286, 2011.

[24] K. Michels, F. Klawonn, R. Kruse et al., Fuzzy Control: Fundamentals, Stability and Design of Fuzzy
Controllers, 1st Edition, Springer, 2006.

[25] K. M. Passino and S. Yurkovich, Fuzzy Control, Addison Wesley Longman Inc., 1998.
[26] H. Aoul, A. Nafaa, D. Negru and A. Mehaoua, FAFC: Fast adaptive fuzzy AQM controller for

TCP/IP networks, Proc. of IEEE GLOBECOM, vol.3, pp.1319-1323, 2004.
[27] X. Guan, B. Yang, B. Zhao et al., Adaptive fuzzy sliding mode active queue management algorithms,

Telecommunication Systems, vol.35, no.1-2, 2007.
[28] Y. Jing, Z. Chen and G. M. Dimirovski, Robust fuzzy observer-based control for tcp/aqm network

systems with state delay, Proc. of American Control Conference, pp.1350-1355, 2010.
[29] C. Chang and R. Cheng, Traffic control in an ATM network using fuzzy set theory, Proc. of IEEE

INFOCOM, vol.3, pp.1200-1207, 1994.
[30] J. Harju and K. Pulakka, Optimisation of the performance of a rate-based congestion control system

by using fuzzy controllers, Proc. of IEEE International Performance, Computing and Communica-
tions Conference, pp.192-198, 1999.

[31] W. T. Lau, K. K. Phang, Y. Mashkuri et al., Fuzzy logic control in ATM network, Malaysian Journal
of Computer Science, vol.12, no.2, pp.47-56, 1999.

[32] N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov’s Direct Method, Springer-Verlag
New York Inc., 1977.

[33] S. Floyd, Measurement Studies of End-to-End Congestion Control in the Internet, http://www.icir.
org/floyd/ccmeasure.html, 2008.

[34] R. C. Dorf and R. H. Bishop, Modern Control System, 11th Edition, Pearson Prentice Hall, 2008.
[35] Opnet Modeler Manuals, Opnet Version 11.5, Opnet Technologies Inc., 2005.
[36] M. E. Crovella and A. Bestavros, Self-similarity in world wide web traffic: Evidence and possible

causes, IEEE/ACM Transactions on Networking, vol.5, no.6, pp.835-846, 1997.
[37] D. Gross, J. Shortle et al., Fundmentals of Queueing Theory, John Wiley&Sons, 2008.
[38] M. Welzl, Network Congestion Control: Managing Internet Traffic, John Wiley&Sons, 2005.
[39] C. N. Nyirenda and D. S. Dawoud, Fuzzy logic congestion control in IEEE 802.11 wireless local area

networks: A performance evaluation, Proc. of AFRICON, 2007.

