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Abstract. Taguchi immune algorithm (TIA) is proposed for optimizing multi-dose drug
schedules, treatment periods, and drug toxicities in cancer chemotherapy. The objective
of the algorithm is to find the drug schedules that minimize the number of tumor cells
for a given treatment period under the constraints of drug concentration and drug toxi-
city. The algorithm developed in this study is applicable for scheduling multi-dose drug
cancer chemotherapy for a fixed treatment period. Cancer chemotherapy drug schedules
generated for different treatment durations and different drug toxicities are also analyzed.
The TIA is used to solve multi-dose drug scheduling problems classified as high dimen-
sional, multimodal, and nonlinear optimization problems. The TIA combines the use of
Taguchi method for exploiting the optimal solution in micro-space with the use of arti-
ficial immune algorithm (AIA) for exploring the optimal feasible region in macro-space.
Therefore, the advantage of the TIA is the capability of both exploration and exploitation.
Applications of the TIA to solving the problem of multi-dose drug scheduling for cancer
chemotherapy confirm its effectiveness for optimizing drug schedules. The experimental
simulation results show that the TIA can help physicians select efficient drug schedules
for cancer chemotherapy. The simulations also show that cumulative drug toxicity is an
important factor in the reduction of tumor cells.
Keywords: Drug scheduling problem, Cancer chemotherapy, Immune algorithm, Taguchi
method

1. Introduction. Systematic medical treatment is currently the standard cancer chemo-
therapy regimen. The aim of cancer treatment is to decrease cancerous cells, even if spread
of tumors in the body gradually continues. However, because of their high toxicity, drugs
used for chemotherapy can damage normal cells in tissues or organs throughout the body
as they circulate in the bloodstream. Therefore, two objectives must be considered when
selecting drug dosages prescribed for cancer patients undergoing chemotherapy. One is
to consistently limit the maximum concentration of a drug in the body. The other is to
limit the cumulative toxicity of a drug to the maximal tolerable level during the treat-
ment period. The constraint of drug toxicity is a major concern when developing a cancer
chemotherapy model. Many mathematical models have been developed for predicting
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tumor growth and for limiting the toxicity of cancer chemotherapy drugs [1-17]. A low
number of tumor cells remaining after a fixed treatment period can be used as an indica-
tor of an effective cancer chemotherapy regimen whereas a high number of drug-resistant
cells remaining after the treatment can be used as an indicator of chemotherapeutic fail-
ure. Therefore, the drug delivery method, the drug resistance of the patient, and the
metabolism and toxicity of the drug are important considerations when planning cancer
chemotherapy. The first drug schedules for cancer treatment that considered constraints
such as the drug resistance of the patient and the toxicity of the anticancer drug were
based on models first developed by Martin [5,6]. However, experiments by Liang et al.
[15-17] later showed two major problems with these models: the unreasonable timing of
the first treatment and the application of three-point constraints, which do not improve
the efficiency of drugs used for cancer treatment. The model developed by Liang et al.
[15-17] considered the ability of the body to recover from the effects of anticancer drugs
and successively overcame the two limitations of the Martin model. In addition to explor-
ing models for scheduling delivery of drugs of varying toxicity and metabolism, researchers
have proposed various approaches to solving the problem of optimizing schedules for deliv-
ering cancer chemotherapy drugs. For example, Martin [6] used an established numerical
solution technique known as control parameterization to solve drug scheduling problems
encountered in non-linear programming. Bojkov et al. [18] employed an intuitive direct
search optimization procedure to solve the problems. Luus et al. [19] obtained improved
solutions to drug scheduling problems by using direct search optimization based on ran-
dom numbers and search region contraction, which avoids the need to narrow the search
space according to intuition alone. Tan et al. [12] proposed paladin-distributed evolution-
ary algorithms solving drug scheduling optimization problem. Floares et al. [14] applied
neural network methodology to optimizing solutions for complex cancer chemotherapy
problems. Liang et al. [15-17] proposed an adaptive elitist population-based genetic algo-
rithm for constructing drug scheduling models, which is a multimodal problem involving
several discontinuous subregions. Based on the above developments, recent artificial intel-
ligence methods and evolutionary algorithms have attempted to construct drug scheduling
models for cancer chemotherapy by using differential equations under the constraints of
drug delivery, drug concentration, and cumulative drug toxicity.
This study developed and evaluated a method of optimizing drug schedules for cancer

chemotherapy that combines the modified drug scheduling models of cancer chemotherapy
developed by Liang et al. [15-17] with the Taguchi immune algorithm (TIA) developed
earlier by the lead author in Tsai et al. [20-22]. The purpose was to maximize the effi-
ciency of a drug schedule for a specified period of cancer chemotherapy treatment given
the specific conditions of the patient. To enhance the exploration and exploitation capa-
bilities of the TIA, the use of clonal proliferation [23] incorporated into hypermutation
[24] of several antibody diversifications is combined with the use of Taguchi recombination
for local search. The systematic reasoning capability of the Taguchi method [25-30] is ex-
ploited for use in selecting improved genes during the recombination operation. Therefore,
clonal proliferation within hypermutation combined with Taguchi method obtains a TIA
with better robustness and faster convergence compared with the conventional artificial
immune algorithm (AIA).
The paper is organized as follows. Section 2 gives the relevant works and methods. The

TIA for solving cancer chemotherapy drug scheduling problems is described in Section
3. In Section 4, the experimental results and discussions are provided. Finally, Section 5
offers some conclusions.
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2. Relevant Works and Methods. In recent years, many mathematical cancer models
have been developed for predicting tumor growth and for minimizing drug toxicity during
cancer chemotherapy. The most important works and methods are described below.
Among the most important works is Martin [5,6], who used the following differential
equations to describe drug scheduling models for cancer chemotherapy treatment:

dx1

dt
= −λx1 + k(x2 − β)H(x2 − β), (2.1)

dx2

dt
= u− γx2, (2.2)

dx3

dt
= x2, (2.3)

where the initial state xT (0) = [ln(100) 0 0]. The variable x1 is a transformed variable
that is inversely related to the tumor mass N , where N = 1012 exp(−x1) cells and the
initial tumor cell population is set to 1010 cells. The variable x2 is the drug concentration
in the body in drug units (D). The variable x3 is the cumulative drug toxicity in the
body. In Equation (2.1), which describes the net change in the tumor cell population per
unit of time, −λx1, the first on the right side of the equal sign, represents the increase
in cells due to cell proliferation, and the second term, k(x2 − β)H(x2 − β), represents
the decrease in cells resulting from use of the drug. Parameter λ, λ = 9.9× 10−4 day−1,
is a constant related to the growth function. The k, k = 8.4 × 10−3 day−1D−1, is the
proportion of tumor cells killed per unit of chemotherapy drug delivered per unit of time.
The H is the Heaviside unit function, shown in Equation (2.4), where β is a threshold
drug concentration level equal to 10 D. The implication of the function in Equation (2.4)
is that the drug is inefficient if the number of tumor cells killed is smaller than the number
of tumor cells that reproduce.

H(x2 − β) =

{
1 if x2 ≥ β
0 if x2 < β

(2.4)

Equation (2.2) depicts the net increase in the drug concentration at the cancer site. The
u and γ are the rate of drug delivery and the biochemical character parameter of the drug,
respectively, where u ≥ 0 and γ = 0.27 day−1. Equation (2.3) describes the cumulative
drug toxicity integral to the drug concentration over the period of exposure. Performance
index I, which indicates the maximum effectiveness of the cancer treatment, is defined as

I = x1(tf ), (2.5)

where the final time tf = 84 days. The control optimization is performed subject to
constraints on drug delivery, u ≥ 0, on drug concentration, x2 ≤ 50, and on cumulative
drug toxicity, x3 ≤ 2.1× 103.

Earlier works by Skipper [1], Crowther [31], and Goldie and Coldman [32] proposed
that a major cause of failed chemotherapy is drug resistance since drug-resistant cells
can increase as the tumor burden increases. They therefore proposed the following three-
point constraint on cancer chemotherapy to achieve a tumor size reduction of least 50
percent every three weeks and to minimize the potential emergence of drug-resistant
cells: x1(21) ≥ ln(200), x1(42) ≥ ln(400), and x1(63) ≥ ln(800) [5,6,12,14,18,19]. Under
this three-point constraint, the performance index I obtained by Martin [6] was 16.836,
which corresponded to a final tumor size of N = 4.878 × 104 cells. In following studies,
Bojkov et al. [18] obtained a value of 17.223 (N = 3.31 × 104 cells), Luus et al. [19]
obtained 17.476 (N = 2.57 × 104 cells), Tan et al. [12] obtained 17.472 (N = 2.58 × 104

cells), and Floares et al. [14] obtained 18.22 (N = 1.22× 104 cells).
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However, some researchers have proposed that the three-point constraint cannot im-
prove the overall efficiency of cancer treatment [12,15-17,33,34]. Such studies simplify the
optimal drug scheduling problem by excluding the three-point constraint (i.e., x1(21) ≥
ln(200), x1(42) ≥ ln(400), and x1(63) ≥ ln(800)) and considering only the drug toxicity
constraint. This line of research includes Carrasco and Banga [33], who obtained a perfor-
mance index I of 17.742, which corresponds to a final tumor size of N = 1.97× 104 cells,
and Luus [34] and Tan et al. [12], who obtained an index of 17.993, which corresponds to
N = 1.534× 104 cells.
An important underlying problem in the cancer drug scheduling model developed by

Martin [5,6], which is represented by Equations (2.1)-(2.3), was considered in works by
Liang et al. [15-17]. Equation (2.1) describes the efficiency of a drug schedule for a given
treatment period. Equation (2.2) obtains the change in the concentration of a drug in
the body. In Equation (2.3), however, variable x3 never decreases throughout the entire
cancer treatment because drug concentration x2 on the right side of the equation is never
smaller than 0. Equation (2.3) does not consider metabolism of the drug in the body. The
cumulative drug toxicity x3 decreases because drug concentration x2 decreases through
metabolism and through clearance by the liver and kidney in the body and tends to
decrease to 0. To correct these deficiencies and to obtain an accurate description of the
metabolic process of cumulative drug toxicity x3 in the body, Equation (2.3) was modified
as follows.

dx3

dt
= x2 − ηx3, (2.6)

where η is a positive constant representing the rate at which drug toxicity is eliminated.
On the right side of Equation (2.6), the first term x2 describes the cumulative increase in
drug toxicity x3 due to drug concentration x2, and the second term −ηx3 describes the
cumulative decrease in the toxicity of a drug as it is metabolized in the body. Therefore,
the drug scheduling model is modified by replacing Equation (2.3) with Equation (2.6).
Additionally, based on the value of 0.4 for parameter η and on the analyses of maximal
cumulative drug toxicity, the new constraint on x3 is x3 ≤ 100 rather than x3 ≤ 2.1×103.

3. TIA for Solving Drug Scheduling Problems. This section introduces the TIA
and applies it to solve the problem of optimizing multi-dose drug schedules. Experiments
performed in earlier applications of TIA in optimization problems [20-22] confirm its
outstanding performance in terms of efficiency and solution quality. The details of such
an application are as follows.
1) Antibody (variable) representation
Modeling a drug schedule is a high dimensional and multimodal optimization problem.

Several schemes for representing drug dose variables have been studied. One example is
Tan et al. [12], who used a pair-wise variable representation to reduce the complexity of
variables. For example, a drug schedule starting from day 8 at a drug dosage level of 10.5
D was represented by (10.5, 8). This variable representation is used for the treatment
period as the given doses do not change frequently. In clinical practice, however, the
drug schedule is generally a repeated policy, which requires a more complex pair-wise
variable representation. A cycle-wise variable representation was proposed by Liang et
al. [15-17] to describe drug doses in the drug scheduling problem. The cycle-wise variable
representation includes two parts: a front part for expressing drug doses in the initial days
of the treatment, and a cyclic part that describes the number of cycles after the initial

treatment. For example, the cycle-wise variable representation
{
57.05, 27× 21.5, 2× 0

}
indicates a drug dose of 57.05 D delivered on the first day followed by 27 drug doses of 21.5
D delivered once every three days thereafter. Since cycle-wise variable representation has
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proven suitable and sufficiently flexible for drug scheduling problems, the concept of the
cycle-wise variable representation was applied here for use in arranging drug schedules.
2) Initial population

For each drug dose schedule in the cycle-wise variable representation, the real coding
representation used to represent the continuous numeric variable in the drug scheduling
problem encodes each antibody as a vector of floating-point numbers that have the same
length as the vector for the design variables. For example, the drug schedule for the 84-
day treatment period is defined as {u1, (3×u2), u3, u4, (78×u5)}. The vector of the design
variables is (u1, u2, u3, u4, u5). Therefore, a general vector u = (u1, u2, . . . , ui, . . . , un) is
used as an antibody (the design variables) to represent a solution to the drug scheduling
problem. The initialization procedure uses the following algorithm to produce ps anti-
bodies, where ps denotes the antibody population size.
Algorithm 1:

Step 1: Generate a uniformly distributed random value β, where β ∈ [0, 1].
Step 2: Let ui = uL

i + β(uU
i − uL

i ), where uL
i and uU

i are the lower and upper bounds of
ui, respectively. Repeat n times, and produce a vector (u1, u2, . . . , un).

Step 3: Repeat the above two steps ps times, and produce ps initial feasible solutions.

3) Clonal proliferation within hypermutation
Based on the biological immune principles, the selection and mutation events in B-cell

clonal proliferation processes allow these lymphocytes to increase their receptor diversity
and to improve their capability to recognize selective antigens (i.e., the events increase
their affinities with selective antigens). In this study, the drug scheduling optimization
problem uses convex combination [35,36] as the hypermutation mechanism. Antibodies
that join in clonal proliferation are selected from the antibody population pool according
to the clonal selection rate pc, where pc is the probability of joining the clonal prolifera-
tion of an antibody. Each gene in each antibody performs a hypermutation of a convex
combination at hypermutation rate ph. When solving the drug scheduling problem, for a
given antibody u = (u1, u2, . . ., ui, uj, uk, . . ., un), if the element ui is determined to per-
form the hypermutation and the other uk is randomly selected to join in, the resulting
offspring antibody becomes u′ = (u1, u2, . . ., u

′
i, uj, uk, . . ., un), where the new gene u′

i is
u′
i = (1− β)ui + βuk, β is a random value, and β ∈ [0, 1]. For example, the drug schedule

is defined to be {u1, (3 × u2), u3, u4, (78 × u5)} =
{
56.5, (3× 12.8), 3.2, 9.5, (78× 10.5)

}
such that the given antibody is u = (56.5, 12.8, 3.2, 9.5, 10.5). If the element 12.8 (u2) is
selected to perform the hypermutation, the other element 9.5 (u4) is randomly selected
to join in, and β = 0.3. The resulting antibody becomes u′ = (56.5, 11.81, 3.2, 9.5, 10.5),
where the new gene 11.81 (u′

2) is derived from (1− 0.3)× 12.8 + 0.3× 9.5.
4) Recombination by Taguchi method

The orthogonal arrays of the Taguchi method can be used to study a large number
of design variables with a small number of experiments and can screen factors that have
important effects on the performance of the design. The design variables (parameters) are
called factors, and parameter settings are called levels. The details of the Taguchi method
can be found in works by Phadke [25], Montgomery [26], and Park [27]. The two-level
orthogonal array here has Q factors, where Q is the number of design factors (variables)
and each factor has two levels. To establish an orthogonal array of Q factors with two
levels, let Ln(2

n−1) represent n− 1 columns and n individual experiments corresponding
to the n rows, where n = 2k, k is a positive integer (k > 1), and Q ≤ n− 1. If Q < n−1,
only the front Q columns are used while the other n − 1 − Q columns are ignored. For
example, if the array has six factors with two levels for each factor, six columns are needed
to allocate the factors, so L8(2

7) is sufficient for this purpose since it has seven columns.



2826 J.-T. TSAI, W.-H. HO AND Y.-M. CHEN

Additionally, the better combinations of design variables are determined by integrating
the orthogonal array and the signal-to-noise ratio of the Taguchi method. An important
underlying concept of this method is to maximize the signal-to-noise ratio (η) perfor-
mance measure by using the orthogonal array to run a partial set of experiments. The
η refers to the mean-square-deviation of the objective function. The Taguchi definitions
for the larger-the-better characteristic and for the smaller-the-better characteristic are

η = −10 log

(
1
n

n∑
t=1

1
y2t

)
and η = −10 log

(
1
n

n∑
t=1

y2t

)
, respectively which are measured in

decibels, where {y1, y2, . . ., yn} denotes a set of characteristics. Further details can be
found in earlier works presented by Phadke [25], Montgomery [26], and Park [27].
Since only the degree of η is described in the orthogonal array experiments performed

in this study, the above equations were modified as ηi = (yi)
2 or (1/yi)

2 to maximize
the objective function (larger-the-better) or to minimize the objective function (smaller-
the-better), respectively. Let yi denote the evaluation value of the objective function of
experiment i, where i = 1, 2, . . ., n, and n is the number of experiments. The effects of
the various factors (variables or genes) can be defined as follows:

Efl = sum of ηi for factor f at level l, (3.1)

where i is the experiment number, f is the factor name, and l is the level number.
The somatic recombination concept of a partial crossover between two randomly se-

lected light chains [37,38] is applied in the recombination procedure. Since the objective
is to propose an effective problem-solving algorithm rather than to model a biological phe-
nomenon, the somatic recombination concept is modified by using two antibodies instead
of two light chains. That is, one antibody donates its genes to the other one. Additionally,
since the random donation mechanism used in the conventional evolutionary algorithm
performs poorly in optimization problems, improving the design of the donation mecha-
nism is crucial improving for the overall performance of the evolutionary algorithm.
The main objective of these matrix experiments is to determine whether, at each locus, a

gene donated by one antibody replaces a gene of another antibody. One antibody donates
its genes to the other since the Efl has the highest value in the experimental region. If
Ef1 > Ef2, level 1 is the best level for factor f ∈ [1, Q] in a two-level problem (i.e., the
gene of locus f of one antibody is donated to locus f of the other antibody); otherwise, the
donation mechanism at locus f is not activated. Activation of the donation mechanism for
each gene at each locus f also obtains the new antibody. Thus, the systematic reasoning
ability of the Taguchi method ensures that this new antibody has the best or close-to-best
evaluation value of the objective function among those of 2Q combinations of factor level,
where 2Q is the total number of experiments needed for all combinations of factor levels.
The Taguchi method solves drug scheduling optimization problems by performing a

matrix experiment for systematic donation of genes from one antibody to another. When
the donation mechanism is activated, matrix experiments are performed by the orthogo-
nal array. Antibodies generated by replication and by clonal proliferation are randomly
selected two at a time from the antibody pool. The detailed steps for each experiment in
the matrix experiments are as follows.
Algorithm 2:

Step 1: Set j = 1. Generate two sets U1 and U2, each of which has Q design factors
(variables), and then use the first Q columns of the orthogonal array Ln(2

n−1) to
allocate the Q design factors, where n ≥ Q+ 1.

Step 2: Form subsets U1 and U2 for use as level 1 and level 2, respectively, by assigning two
antibodies randomly chosen from the population pool generated by the replication
and the clonal proliferation procedures.
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Step 3: Assign the level 1 value obtained from U1 and the level 2 value obtained from U2

to level cells of the j experiment in the orthogonal array.
Step 4: Calculate the fitness value and signal-to-noise ratio for the new antibody.
Step 5: If j > n, then go to Step 6. Otherwise, j = j+1. Return to Step 3, and continue

through Step 5.
Step 6: Calculate the effects of the various factors (Ef1 and Ef2), where f = 1, 2, . . ., Q.
Step 7: If Ef1 > Ef2, the gene of locus f of the new antibody is from U1. Otherwise, the

gene is from U2, where f = 1, 2, . . ., Q. Repeat the procedure for each gene at
each locus to obtain the new antibody.

5) Mutation
Like the hypermutation mechanism, the mutation operation also uses convex combina-

tion to solve the drug scheduling optimization problem [35,36]. Each gene in a single anti-
body undergoes a convex combination mutation at mutation rate pm. For a given antibody
vector u = (u1, u2, . . ., ui, uj, uk, . . ., un), if element ui is selected to perform the mutation
and if the other uk is randomly selected to join in, the resulting offspring antibody vector
becomes u′ = (u1, u2, . . ., u

′
i, uj, uk, . . ., un), and the new gene u′

i is u
′
i = (1 − β)ui + βuk,

where β is a random value and where β ∈ [0, 1].
6) Penalty function

The penalty function applies to the constraints of drug concentration and cumulative
drug toxicity in the drug scheduling problem. The function converts a constrained opti-
mization problem into an unconstrained one by penalizing unfeasible individuals in the
population. Compared with the evolutionary algorithm with constraints, the evolutionary
method with penalty function is superior for approaching feasible regions of the search
space because it navigates through unfeasible regions by reducing the penalty on feasible
regions. That is, it limits the search paths to feasible regions. Therefore, for finding feasi-
ble individuals in a wide design parameter space in the constrained optimization problem,
the evolutionary algorithm with penalty function is better than the evolutionary algorithm
with constraints. To clarify this point, it is important to note the distinction between fea-
sible and unfeasible individuals. Each unfeasible individual violates multiple constraints
in the range [1, R], where R is the number of design constraints. The higher this index
is, the larger the penalty should be. Thus, penalty value P is defined as follows:

P = wp

R∑
j=1

|wL(Lj − yj) + wU(yj − Uj)|, (3.2)

where yj is a calculated value depending on the function of the design constraint; Uj and
Lj are the upper and lower bounds, respectively, of the function of the design constraint;
wp is a value used to distinguish between feasible and unfeasible individuals; and wL and
wU denote the weights. Additionally, if yj < Lj, then wL = 1 and wU = 0; if yj > Uj,
then wL = 0 and wU = 1; if Lj ≤ yj ≤ Uj, then wL = 0 and wU = 0.
7) Steps of the TIA

The steps for establishing the TIA, which are based on artificial immune principles and
on the Taguchi method, are as follows.

Step 1: Set parameters: antibody population size ps, replication rate pr, clonal selection
rate pc, hypermutation rate ph, and mutation rate pm.

Step 2: Use Algorithm 1 to generate the initial antibody population, and use the perfor-
mance index and penalty function to calculate the fitness value of each antibody.

Step 3: Perform selection by roulette wheel approach [39].
Step 4: Perform clonal proliferation within the hypermutation. From the antibody popu-

lation pool, select the antibody to join in clonal proliferation according to clonal
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selection rate pc. For each gene in a single antibody, perform hypermutation of
convex combination at hypermutation rate ph.

Step 5: Reproduce antibodies at replication rate pr. Apply Taguchi method to recombin-
ing antibodies from the replication with antibodies from the clonal proliferation.

Step 6: Perform Algorithm 2 (using matrix experiments and signal-to-noise ratios) to
generate improved offspring.

Step 7: Repeat Step 6 until the loop number
(
1
4
× ps × pr

)
has been met.

Step 8: The antibody population from the Taguchi method is generated.
Step 9: Perform the mutation operation at mutation rate pm.

Step 10: New antibody population is generated.

Step 11: For the antibody population of the last generation and for the new antibody
population of the current generation, sort the fitness values in increasing order.

Step 12: Select the best ps antibodies as the new antibody population of the next gener-
ation.

Step 13: If the stopping criterion has been met, go to Step 14. Otherwise, return to Step
3, and continue through Step 13.

Step 14: Display the best antibody and fitness value.

4. Experimental Results and Discussion. The models used for cancer chemotherapy
drug scheduling in this study were modifications of the models developed earlier by Liang
et al. [15-17]. However, the same parameter values were used. The differential equations,
parameters and constraints are as follows:

dx1

dt
= −λx1 + k(x2 − β)H(x2 − β), (4.1)

dx2

dt
= u− γx2, (4.2)

dx3

dt
= x2 − ηx3, (4.3)

where the initial state xT (0) = [ln(100) 0 0]. The parameters are λ = 9.9 × 10−4 day−1,
k = 8.4× 10−3 day−1D−1, β = 10 D, γ = 0.27 day−1, η = 0.4 day−1, and

H(x2 − β) =

{
1 if x2 ≥ β
0 if x2 < β

. (4.4)

The control optimization is performed subject to constraints on drug delivery, u ≥ 0,
on drug concentration, x2 ≤ 50, and on cumulative drug toxicity, x3 ≤ 100. For each
cancer treatment, the performance index I to be maximized is

I = x1(tf ), (4.5)

where tf is the final time. Here, tf is defined as 84 days. This study compared multi-dose
drug schedules for treatment periods of 84, 70, 60, 50, and 49 days. Fitness function
F , which is used to convert the optimization problem from a constrained problem to an
unconstrained problem, is defined as

F =
1

I
+ P, (4.6)

where P is the penalty value in Equation (3.2). Equation (4.6) represents the smaller-
the-better strategy of finding the optimal drug schedule. According to this equation, a
smaller fitness value implies a larger performance index I and P = 0 (i.e., x2 ≤ 50 and
x3 ≤ 100).
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To assist physicians in designing clinical cancer chemotherapy drug treatments based
on specific patient conditions, this study explored drug schedules for different treatment
periods. Drug scheduling patterns can generally be classified as continuous (drug delivery
on every day of the treatment period) or repeated (drug deliveries separated by speci-
fied durations during the treatment period) [15,16]. Details of the application of these
scheduling patterns in this study are given below.

Two continuous drug scheduling patterns were used in the 84-day treatment period:

1. {u1, (3× u2), u3, u4, (78× u5)}, daily drug delivery at five different doses.
2. {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, (70×u15)}, daily drug delivery at

15 different doses.

Eight different repeated-type scheduling patterns were used in the 84-day treatment
period:

1.
{
u1, (3× u2), 0, u3, (39× 0, u4)

}
, four different doses delivered on 44 days (1 day off

after each delivery except for front 4 days).
2. {u1, 0, u2, 0, u3, 0, u4, (38× 0, u5), u6}, six different doses delivered on 43 days (1 day

off after each delivery).

3.
{
u1, (3× u2) , 0, 0,

(
26× u3, (2× 0)

)}
, three different doses delivered on 30 days (2

days off after each delivery except for front 4 days).

4.
{
u1, (2× 0), u2, (2× 0), u3,

(
25× (2× 0), u4

)
, 0, u5

}
, five different doses delivered

on 29 days (2 days off after each delivery).

5.
{
u1, (3× u2),

(
20× (3× 0), u3

)}
, three different doses delivered on 24 days (3 days

off after each delivery except for front 4 days).

6.
{
u1, (3× 0), u2, (3× 0), u3,

(
18× (3× 0), u4

)
, 0, 0, u5

}
, five different doses delivered

on 22 days (3 days off after each delivery).

7.
{
u1, (4× 0), u2, (4× 0), u3,

(
14× (4× 0), u4

)
, 0, 0, u5

}
, five different doses delivered

on 18 days (4 days off after each delivery).

8.
{
u1,

(
13× (5× 0), u2

)
, (4× 0), u3

}
, three different doses delivered on 15 days (5

days off after each delivery).

This study used TIA with a Runge-Kutta method in Matlab [40] to construct can-
cer chemotherapy drug scheduling models, which are high dimensional, multimodal, and
nonlinear optimization problems described using differential equations with constraints.
Optimization was performed in both continuous and repeated cancer drug delivery sched-
ules. Optimizing the main parameters of evolutionary environments continues to be an
active area of research in the computer modeling literature. Studies have shown how the
performance of a genetic algorithm (GA) [41,42] can be improved by adapting the main
parameters used in other methods [43,44]. For example, Chou et al. [45] showed how the
performance of a GA can be improved by applying experimental design method to opti-
mize its evolutionary parameters. Therefore, this study applied the experimental design
method to adjusting the evolutionary parameters. The computational experiments for the
TIA were performed using the following evolutionary parameters: antibody population
size ps of 100, replication rate pr of 0.8, mutation rate pm of 0.2, clonal selection rate pc
of 0.2, and hypermutation rate ph of 0.8. The stopping criterion for the TIA was a fitness
value that did not decrease for at least 50 successive generations out of 300 generations.
Some drug scheduling problems were also performed in 30 independent runs to test the
stability of the solutions. Each of the continuous and repeated drug scheduling problems
involved 3 to 15 variables (factors), and one column was used to allocate each factor in an
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orthogonal array to perform recombination in the TIA. Therefore, 3 to 15 columns were
used in each array. The 7-column L8(2

7) orthogonal array was used if 7 or fewer variables
were involved. When performing the matrix experiments, the columns located in the front
part of the orthogonal array were selected first, and the unselected columns were ignored.
Therefore, the L16(2

15) orthogonal array was used because it met the criteria of more than
7 variables and fewer than or equal to 15 variables.
For each drug schedule, Table 1 shows the simulation results obtained by the TIA,

including the number of drug deliveries, the performance index, and the corresponding
final number of tumor cells. For continuous-type drug scheduling, the best performance
index values reported for other approaches are x1 = 17.742 [33], x1 = 17.993 [12,34],
x1 = 18.03 [46], and x1 = 18.22 [14] for final tumor cell numbers of 1.97×104, 1.534×104,
1.478×104, and 1.22×104 cells, respectively. Comparison of the simulation results shows
that the best performance index obtained by the TIA (x1 = 24.72; N = 18 cells) is better
than those obtained by the above methods. For repeated-type drug scheduling, the best
performance index values obtained by the approach reported in Liang et al. [16] for
policies 2-4 are x1 = 24.331 (N = 27 cells), x1 = 23.806 (N = 46 cells), and x1 = 21.376
(N = 521 cells), respectively. In contrast, those obtained by TIA for policies 1, 3, and 5
(Table 1) are x1 = 24.526 (N = 22 cells), x1 = 23.841 (N = 44 cells), and x1 = 21.377
(N = 520 cells), respectively. Again, the simulation results obtained by the TIA are
consistently superior to those obtained by Liang et al. [16].
Figures 1 and 2 show the results for the 84-day continuous-type drug schedules, in-

cluding changes in values for control variables (u), numbers of tumor cells (N), drug
concentrations (x2), and cumulative drug toxicities (x3). Figures 3-7 show the represen-
tative results for the 84-day repeated-type drug schedules. Table 1 shows that the final

Table 1. Comparison of drug schedules obtained by the TIA in terms of
numbers of drug deliveries, performance indexes, and corresponding final
number of tumor cells

Continuous-type drug schedules for 84-day treatment periods

No. Drug schedule

No. of
Index

Final
drug

(x1)
no. of

deliveries cells

1
{
57.05, (3× 13.5), 2.309, 10.633, (78× 10.8)

}
84 24.72 18

2
{56.95, 8.89, 14.56, 15.42, 5.01, 4.25, 9.47, 20.93, 3.38,

84 24.629 20
13.16, 1.9, 21.09, 8.15, 10.6, (70× 10.8)}

Repeated-type drug schedules for 84-day treatment periods

No. Drug schedule

No. of
Index

Final
drug

(x1)
no. of

deliveries cells
1

{
57.05, (3× 13.5), 0, 15.79, (39× 0, 21.49)

}
44 24.526 22

2
{
55.18, 0, 24.68, 0, 23.26, 0, 19.15, (38× 0, 21.09), 6.59

}
43 24.0607 36

3
{
57.03, (3× 13.32), 0, 0, (26× 31.36, (2× 0))

}
30 23.8414 44

4
{56.17, (2× 0), 31.45, (2× 0), 31.93,

29 23.4927 63
(25× (2× 0), 31.14), 0, 16.3}

5
{
57.05, (3× 13.502), (20× (3× 0), 37.68)

}
24 21.377 520

6
{56.52, (3× 0), 37.85, (3× 0), 37.68,

22 21.012 749
(18× (3× 0), 37.47), 0, 0, 31.8}

7
{57.05, (4× 0), 42.26, (4× 0), 42.26,

18 18.8082 6787
(14× (4× 0), 42.23), 0, 0, 31.69}

8
{
57.05, (13× (5× 0), 45.76), 4× 0, 42.26

}
15 16.704 55658
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number of tumor cells gradually decreases as the number of drug deliveries increases dur-
ing the 84-day treatment period. The data for drug schedules 1 and 2 in Table 1 and in
Figures 1-4 also show that the final number of tumor cells is still small after completing
the continuous and repeated versions of drug schedules 1 and 2 but the cumulative drug
toxicity approaches the maximal value of 100 on most treatment days. If the treatment
goal is applying the drug schedule that is most efficient for reducing the tumor cells to
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Figure 1. Changes in values for u, N , x2, and x3 in continuous-type drug
schedule 1
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Figure 2. Changes in values for u, N , x2, and x3 in continuous-type drug
schedule 2
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Figure 3. Changes in values for u, N , x2, and x3 in repeated-type drug
schedule 1
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Figure 4. Changes in values for u, N , x2, and x3 in repeated-type drug
schedule 2

a number approaching zero, the continuous-type drug schedule 1 should be selected even
at the cost of increased cumulative drug toxicity. However, if the treatment objective is
to reduce the tumor cells to a specified number or to limit cumulative drug toxicity to
a specified value, other drug schedules may be preferable, depending on the condition of
the patient.
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Figure 5. Changes in values for u, N , x2, and x3 in repeated-type drug
schedule 3
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Figure 6. Changes in values for u, N , x2, and x3 in repeated-type drug
schedule 5

Efforts to adjust the drug scheduling model include many clinical trials by Liang et
al. [16,17]. A randomized phase II study performed by an oncologist on their research
team compared a gemcitabine-cisplatin combination with a gemcitabine-etoposide. They
then prospectively collected all drug administration-related data, including dosage, tumor
response and toxicity observed in further clinical experiments. Their modified model was
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Figure 7. Changes in values for u, N , x2, and x3 in repeated-type drug
schedule 7

used to test the drug scheduling obtained by the TIA. In the current study, the TIA
obtains superior simulation results.

Table 2. Performance of the TIA in solving drug scheduling problems in
30 independent runs

No. Drug schedule
Best

Mean x1
Standard

index (x1) deviation in x1

1 {u1, (3× u2), u3, u4, (78× u5)} 24.72 24.39778 0.37362
2 {u1, (3× u2), 0, u3, (39× 0, u4)} 24.526 24.25229 0.27907

3 {u1, (3× u2), 0, 0, (26× u3, (2× 0))} 23.8414 23.70808 0.34278

4 {u1, (3× u2), (20× (3× 0), u3)} 21.377 20.90986 0.21507

The systematic reasoning mechanism of the orthogonal array with signal-to-noise ratio
in the TIA represents an advance in micro space algorithms because it accelerates con-
vergence to the global solution. By contributing to macro real-number space, the AIA
enhances the performance of the TIA. Table 2 shows the good performance of the TIA
in solving some drug scheduling problems. Notably, the standard deviation in x1 is quite
small in all drug schedules, which indicates that the TIA is a robust method that can
obtain stable solutions. Therefore, we conclude that use of the TIA for solving drug
scheduling optimization problems is feasible.
Notably, this study and most relevant studies in the literature (e.g., [6,12-19,33,34]),

only consider an 84-day treatment period. Therefore, the question is whether the drug
scheduling models, parameters, and constraints are appropriate for treatment periods of
other durations. In the continuous-type drug scheduling problem considered here, i.e.,
{u1, (3 × u2), u3, u4, (p × u5)}, where p is a positive integer for matching the defined
treatment days, treatment periods of 84, 70, 60, 50, and 49 days and constraints of
x2 ≤ 50 and x3 ≤ 100 have been discussed. For these periods, Tables 3 and 4 show the
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Table 3. Computational results for continuous-type drug scheduling prob-
lems for varying treatment periods of 84, 70, 60, 50, and 49 days

No.
Continuous-type drug schedule

Period (days) Index (x1) Final no. of cells{u1, (3× u2), u3, u4, (p× u5)}
1 {57.05, (3× 13.5), 2.309, 10.633, (78× 10.8)} 84 24.72 18
2 {56.64, (3× 12.55), 6.97, 8.48, (64× 10.8)} 70 21.49064 464
3 {56.78, (3× 12.98), 4.98, 9.37, (54× 10.8)} 60 19.18160 4672
4 {55.94, (3× 13.62), 2.92, 10.29, (44× 10.8)} 50 16.83826 48667
5 {56.33, (3× 11.84), 8.33, 8.85, (43× 10.77)} 49 16.53774 65728

Table 4. Solution performance of the TIA in 30 independent runs of
continuous-type drug scheduling problems for different periods

No.
Continuous-type drug schedule Period Best

Mean x1
Standard

{u1, (3× u2), u3, u4, (p× u5)} (days) index (x1) deviation in x1
1 {u1, (3× u2), u3, u4, (78× u5)} 84 24.72 24.39778 0.37362
2 {u1, (3× u2), u3, u4, (64× u5)} 70 21.49064 21.28579 0.21035
3 {u1, (3× u2), u3, u4, (54× u5)} 60 19.18160 19.06981 0.12201
4 {u1, (3× u2), u3, u4, (44× u5)} 50 16.83826 16.75063 0.14531
5 {u1, (3× u2), u3, u4, (43× u5)} 49 16.53774 16.49567 0.13463

computational results and the overall performance of the TIA. Table 3 shows that the
final number of tumor cells gradually increases as the day of treatment period decreases.
Therefore, given the same constraints in drug concentration and cumulative drug toxicity,
changing the chemotherapeutic drug dose cannot substantially reduce tumor cells over
a treatment period shorter than 84 days. On most treatment days, all drug schedules
achieve a cumulative drug toxicity of 100, which approaches the maximal limit. Therefore,
in the continuous-type drug scheduling problem, {u1, (3 × u2), u3, u4, (p × u5)}, an 84-
day treatment period is reasonable under the constraint of a cumulative drug toxicity of
x3 ≤ 100. The TIA was further applied to solving these problems in 30 independent runs
to test whether it obtains stable solutions. Table 4 shows that, for each drug schedule,
the standard deviation in x1 is quite small, which confirms that the obtained solutions
are stable and that the drug schedules are feasible.

Other issues that arise are the appropriate concentration and cumulative toxicity of the
drug when the treatment objective is to reduce the tumor cells to a number approaching
zero and whether the patient can endure the optimal drug concentration and cumulative
drug toxicity. The following two drug schedules obtained by the TIA, which achieve a
final number of tumor cells approaching zero, are given for reference. Where drug con-
centration (x2) and cumulative drug toxicity (x3) are defined as x2 ≤ 50 and x3 ≤ 125,
respectively:

{
57.05, (3× 13.5), 12.441, 14.304, (78× 13.495)

}
where the corresponding fi-

nal number of tumor cells is 0, and
{
57.05, (3× 13.5), 0, 23.805, (39× 0, 23.801)

}
where

the corresponding final number of tumor cells is 1. These two drug schedules are the most
efficient policies for a patient that can endure a drug concentration (x2) and cumulative
drug toxicity (x3) of 50 and 125, respectively, on most treatment days.

The evolutionary algorithm of the TIA has potential applications for solving many
problems including continuous- and repeated-type drug schedules used for cancer treat-
ment. Because it applies a systematic reasoning approach, the TIA can search a huge
space without prior knowledge. Currently, the TIA is also one of the best optimization
methods. The many uses of TIA for solving optimization problems in engineering design
include the use of real-coded encoding to design two-dimensional recursive filters [22].
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The TIA can also use real-coded and symbol encoding to optimize global numerical prob-
lems and to solve job-shop scheduling problems, respectively [21]. A real-coded TIA has
also been used to design digital IIR filters [20]. These diverse applications confirm its
applicability in many other task domains.
In terms of clinical treatment, drug scheduling policies can generally be classified as

continuous or repeated policies. Table 1 shows the two continuous-type and the eight
repeated-type drug scheduling policies applied in this study. When the treatment objec-
tive is to reduce tumor size with minimum toxicity, repeated-type drug scheduling policies
5-8 are suitable because cumulative drug toxicity is decreased to as low as 60. For other
patients, continuous-type drug scheduling policies 1-2 and repeated-type policies 1-2 may
be more efficient but with a high toxicity. These data show that, based on the unique con-
ditions of the individual patient, the TIA finds the most efficient drug scheduling policy
for cancer treatment.

5. Conclusions. In the study, modified versions of the drug scheduling models presented
by Liang et al. [15-17] were evaluated for effectiveness in optimizing both continuous-
type and repeated-type multi-dose drug schedules for cancer chemotherapy. Optimization
problems involving different treatment periods and different cumulative drug toxicities
were also considered. The significant and novel contributions are addressed as follows.
1) The performance tests confirmed the efficiency and robustness of the proposed TIA,
which combines the Taguchi method and the AIA, in solving optimal drug scheduling
problems. 2) For an 84-day treatment period, the simulation results show that the final
number of tumor cells gradually decreases as the number of drug deliveries increases.
Cumulative drug toxicity values, however, approach the maximal value of 100 on most
treatment days. 3) The data show that, for all treatment periods (70, 60, 50, and 49
days), the final number of tumor cells gradually increases as the day of treatment period
decreases. For treatment periods shorter than 84 days, the final number of tumor cells
cannot be substantially changed by increasing the chemotherapeutic drug dose, and the
cumulative drug toxicity on most treatment days is 100, which is the maximal limit. 4) An
interesting finding of this study is that tumor cells can be almost completely eliminated
in patients who can endure high cumulative drug toxicity. Two optimal drug schedules
were generated for patients who can endure cumulative drug toxicity (x3) of 125.
Because this study confirmed the potential contribution of drug scheduling models in

the quest for a cancer cure, future works by the authors will consider whether the model
can be improved by considering different conditions during the treatment period and by
including drug toxicity data obtained from clinical experience and trials.
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