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Abstract. This paper proposes an adaptive robust dynamic surface control (ARDSC)
method integrated a novel self-constructing neural network (SCNN) for a class of complete
non-affine pure-feedback systems with disturbances. By employing the mean-value theo-
rem and implicit function theorem, the adaptive robust control (ARC) method is extended
to pure-feedback systems, and improves the robustness and transient performance of the
closed-loop system. The “explosion of complexity” in backstepping scheme is avoided via
dynamic surface control (DSC) technique. Moreover, the controller complexity is further
reduced by introducing an SCNN based on a novel pruning strategy and a width adjust-
ment strategy. Input-to-state stability and small-gain theorem are utilized to analyze the
stability of the closed-loop system. At the end, simulation results demonstrate effective-
ness and advantages of the proposed control method.
Keywords: Adaptive robust control, Non-affine nonlinearity, Pure-feedback systems,
Self-constructing neural networks, Dynamic surface control, Input-to-state stability, Sma-
ll-gain theorem

1. Introduction. In the past decades, with the help of systematic backstepping tech-
nique, strict or semi-strict feedback systems with parameter uncertainties or nonlinear
uncertainties have received much attention, and various outstanding achievements have
been obtained [1-9]. However, due to non-affine appearance of the control input, a rela-
tively small number of results are available for control of complete non-affine pure-feedback
systems which generally can be described as follows [6]

ẋi = fi(x̄i, xi+1) + pi(x̄n, t) i = 1, · · ·, n− 1

ẋn = fn(x̄n, u) + pn(x̄n, t)

y = x1,

(1)

where x̄i = [x1, x2, · · ·, xi]T ∈ Ri with i = 1, · · ·, n are state vectors, y ∈ R and u ∈ R
are system output and input respectively, fi(x̄i, xi+1) and fn(x̄n, u) are unknown smooth
nonlinear functions, and pi(x̄n, t) i = 1, · · ·, n are unknown disturbances.

A mass of control systems with lower-triangular nonlinear structure can be represented
or transformed into the complete pure-feedback form, including strict and semi-strict
feedback systems as special cases. Practical instances can be found in aircraft flight control
systems, mechanical systems and biochemical processes [10]. Air delivery subsystem for
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PEM (proton exchange membrane) fuel cell is a recent practical example of non-affine
pure-feedback systems [11].
When dealing with complete non-affine pure-feedback systems, a tremendous challenge

arises from circular construction of the controller, caused by non-affine nonlinearity of
the system with respect to virtual controls and practical control signals [10,15]. In or-
der to deal with this problem, by employing the implicit function theorem and mean-
value theorem, Wang et al. explicitly constructed desired virtual and practical controls
without including themselves as the component [10]. Then, the input-to-state stabil-
ity (ISS) analysis and small-gain theorem, were employed to show the stability of the
closed-loop system. Based on the same methodology, a class of perturbed pure-feedback
systems with unknown dead-zone were investigated in [16]. In [17], non-affine functions
were expanded at a fixed point by exploiting the mean-value theorem, and then novel
Lyapunov-Krasovskii functions were employed to perform the stability analysis. In [18],
adaptive neural control for the pure-feedback system with generalized hysteresis input
was investigated, and the unknown virtual control direction problem was solved using the
Nussbaum function. Robust stabilization problem for a class of non-affine pure-feedback
systems with unknown time-delay functions and perturbed uncertainties was investigated
in [19], and novel continuous packaged functions were introduced in advance to remove
unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay
functions.
For the complete non-affine pure-feedback systems, the following problems should be

further taken into account, which are the motivations of this paper:

1) For pure-feedback systems, the transient performance and robustness have received
less attention than strict or semi-strict feedback systems. In [20], reconstruction errors
were suppressed by a smooth robust term. Zhao and Lin utilized an initialization tech-
nique to improve L∞ tracking performance [21]. However, how to guarantee transient
performance and system stability under reconstruction errors, parameter adaptation
errors and disturbance needs further consideration.

2) The “explosion of complexity” is a significant drawback of the backstepping design.
The complexity mainly comes from the derivative of virtual controls and the large
scale of neural networks at each backstepping design step. Therefore, how to simplify
controller design is another motivation of this paper.

Pertaining to the issue of improving robustness, an adaptive robust control algorithm
proposed in [22-24] can deal with reconstruction errors and parameter adaptation errors si-
multaneously by combining deterministic robust control with adaptive control effectively,
and meanwhile, endow the closed-loop system with prescribed transient performance. By
employing a discontinuous projection operator, the ARC guarantees the boundedness of
parameter estimation and adaptive control term, as well as the existence of a robust com-
pensator. This control method has been widely used in practical systems, and various
improved ARCs have also been proposed [25-29]. With the goal of improving the robust-
ness of the closed-loop system, this paper extended the ARC algorithm to the control of
non-affine pure-feedback systems.
To reduce the complexity caused by derivative of virtual controls, the DSC technique,

which introduces a first-order filter to replace the differential operation, was proposed for a
class of strict-feedback nonlinear systems [25,29-31]. Zhang and Ge developed an adaptive
DSC for a class of simple pure-feedback nonlinear systems with practical control signal
in affine form [14]. In [15,21], DSC design was performed by constructing an affine state
variable. However, the condition of implicit function theorem has not been rigorously
verified. In [47], DSC technique was also adopted for control of pure-feedback nonlinear
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systems and just one adaptive parameter was updated online, which reduced computation
load at the expense of sacrificing transient performance.

The complexity of neural network based controller is determined by the number of neu-
rons to some extent. For the sake of further reducing the complexity without deteriorating
control performance, different self-constructing algorithms have been proposed to shrink
the scale of neural networks. In literature, various self-constructing approximators have
been developed based on different generating and pruning strategies [32-39]. However,
self-constructing approximators proposed in [32-39] either employed estimation-based pa-
rameter adaptive laws which did not guarantee system’s stability [33-36], or applied ex-
tremely complex generating/pruning strategies which consumed lots of hardware resources
[34,35,37,38]. To solve these problems, pragmatic self-organizing fuzzy neural networks
were investigated [39-42], where a simple distance-based criterion and a “weight varia-
tion” based criterion were utilized as the generating strategy and the pruning strategy
respectively. However, in [40-42], Taylor expansion was used to deduce an adaptive law for
the nonlinear-in-the-parameter approximator, which increased approximation complexity
and computation load.

In this paper, we consider the disturbed complete non-affine pure-feedback system, and
try to give a solution for the above two problems. The main contributions are as follows.

1) The adaptive robust control (ARC) algorithm is extended to the control of non-affine
pure-feedback system. ARC can endow the closed-loop system with guaranteed system
stability and output transient performance, even switching off the adaptive term. This
feature implies that the closed-loop system has robust output tracking performance.

2) The complexity of the controller for complete pure-feedback systems is significantly
reduced by the DSC technique and SCNN. Unlike [15,21,47], we utilize DSC tech-
nique directly for control of pure-feedback nonlinear systems. At the same time, a
novel SCNN is proposed to simplify controller design and decrease the scale of neural
networks. Relying on these two techniques, the controller is simplified, and transient
performance is improved as much as possible.

3) A novel pruning strategy and a width adjustment strategy are proposed for SCNN
structure learning. The pruning strategy prevents neurons from being pruned blindly
by taking past behavior of the closed-loop system into account, which is different from
[39-42]. Furthermore, based on tracking performance, the width adjustment strategy
not only regulates the resolution of neural networks automatically with less knowledge
of the plant, but also avoids Taylor expansion.

The remainder of this paper is organized as follows. In Section 2, the problem and
some preliminaries are stated. A novel self-constructing neural network (SCNN) and
its parameter adaptive law are introduced in Section 3. How SCNN can serve as an
approximator in control system is also explained in Section 3. Section 4 shows the design
procedure of the controller in detail. The analysis of stability and transient performance
of the closed-loop system are given in Section 5. Section 6 shows simulations. Conclusions
are made in Section 7.

2. Problem Formulation and Preliminaries. Throughout this paper, ∗̂ denotes the
estimate of ∗, and ∗̃ = ∗ − ∗̂. ‖ ∗ ‖ represents the Euclidean norm of ∗, In denotes the
identity matrix of size n, ∅ denotes the empty set, and λmin(·) and λmax(·) denote the
smallest and largest eigenvalues of a square matrix, respectively.

2.1. Problem formulation. The objective is to design a controller u for system (1),
such that all the signals in the closed-loop system are bounded and the output y tracks
the desired output trajectory yr as closely as possible.
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To facilitate the controller design, the following assumptions and lemmas are needed.

Assumption 2.1. The desired reference signal yr and its ith (i = 1, 2) derivatives are
continuous and available, and [yr, ẏr, ÿr]

T ∈ Ωr, where Ωr is a known compact set and
defined as Ωr =

{
[yr, ẏr, ÿr]

T |y2r + ẏ2r + ÿ2r ≤ Br

}
⊂ R3, whose size Br is a known positive

constant.

Lemma 2.1 (Implicit Function Theorem [12]). If ∀(x, y) ∈ Rn×R, f(x, y) : Rn×R → R
is continuously differentiable, and ∀(x, y) ∈ Rn × R, ∃β s.t. ∂f(x, y)/∂y ≥ β > 0, then
there exists a continuous function y∗ = y(x) such that f(x, y∗) = r, r ∈ R.

To simplify the representation, let xn+1 denote u. According to the mean-value theorem
[43], fi(x̄i, xi+1) can be expressed as:

fi(x̄i, xi+1) = fi(x̄i, x
0
i+1) +

∂fi(x̄i, xi+1)

∂xi+1

∣∣∣xi+1=x
ρi
i+1

× (xi+1 − x0i+1), i = 1, · · ·, n (2)

where xρii+1 = x0i+1 + ρi(xi+1 − x0i+1) with 0 < ρi < 1. Define

hi(x̄i, xi+1) =
∂fi(x̄i, xi+1)

∂xi+1

, i = 1, · · ·, n (3)

where hi(x̄i, xi+1) i = 1, · · ·, n are unknown nonlinear functions.

Assumption 2.2. The signs of hi(·, ·), (i = 1, · · · , n) are known and fixed. In addition,
there exist constants 0 < hli < hui < ∞ such that |hi(x̄i, xi+1)| > hli, ∀(x̄i, xi+1) ∈ Ri × R
and |hi(x̄i, xi+1)| < hui , ∀(x̄i, xi+1) ∈ Ωi, where Ωi ⊂ Ri+1 are compact sets.

Without loss of generality, assume that hi(x̄i, xi+1) > 0.

Assumption 2.3. The unknown uncertain disturbances pi(x̄n, t) are assumed to be bound-
ed by

|pi(x̄n, t)| ≤ p∗i , ∀(x̄n, t) ∈ Rn ×R+ i = 1, · · · , n (4)

where p∗i are known positive constants.

2.2. Discontinuous projection operator. To prevent parameter estimates from drift-
ing unboundedly, the projection method is introduced herein to retain parameter estimates
within a pre-specified compact and convex set ΩΘ. In order to simplify the calculation,
the discontinuous projection operator [24,29] is used

ProjΘ̂(•) =

 0 if θ̂i = θi(min) and •i < 0

or θ̂i = θi(max) and •i > 0
•i otherwise

(5)

where θ̂i denotes the ith element of parameter estimates Θ̂, θi(min) and θi(max) represent

the minimum and maximum values of θ̂i, and • represents any reasonable adaptation
functions such as ΓΥ, where Γ is the gain of the adaptive law and Υ is the adaptive
function.
It is notable that the discontinuous projection operator has the following properties,

making it suitable for designing an adaptive robust controller.
Property 2.1 The projection operator guarantees:

(i) Θ̂ ∈ ΩΘ = {Θ : Θmin ≤ Θ ≤ Θmax} (6)

(ii) ∀Υ Θ̃T [Γ−1ProjΘ̂(ΓΥ)−Υ] ≥ 0 (7)
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3. Self-constructing Neural Networks. This section introduces SCNN and a novel
structure learning algorithm, and gives an SCNN-based approximator for controller de-
sign.

3.1. Radial basis function neural networks. The standard radial basis function neu-
ral network (RBFNN) is briefly described, and some assumptions are made.

According to the universal approximation theorem, RBFNN is able to approximate any
continuous function on a compact set as accurately as possible with a sufficient number
of neurons. On a compact set ΩP , any continuous function f(P ) can be estimated as

f(P ) = gN(P,Θ
∗) + ε(P ), ∀P ∈ ΩP

where ε(P ) is the residual approximation error, and

gN(P,Θ
∗) = Θ∗TΨ(P ) (8)

represents an RBFNN approximator with l (l > 1) neurons. P ∈ ΩP ⊂ Rm is the input
vector, and Ψ(P ) = [ψ1(P ), · · ·, ψl(P )]

T is the vector of radial basis function. In this
paper, we use Gaussian function as the radial basis function

ψi(P ) = exp

(
−(P − ci)

T (P − ci)

σ2
i

)
, i = 1, · · ·, l

where ci and σi are the center and the width of neuron i, respectively. Θ∗ = [θ∗1, · · ·, θ∗l ]T
is the optimal weight vector which satisfies

Θ∗ = argmin
Θ

(
sup
P∈ΩP

|gN(P,Θ)− f(P )|
)
.

Assumption 3.1. On the compact set ΩP , the bounded optimal weight vector Θ∗ exists
and makes |ε(P )| ≤ ε∗ for all P ∈ ΩP , where ε∗ is a positive constant. In addition,
Θ∗ ∈ ΩΘ with ΩΘ =

{
Θ ∈ Rl|Θmin ≤ Θ ≤ Θmax

}
, where Θmin and Θmax are known vectors.

Usually, Θ∗ is estimated by the adaptive law. Therefore, for the unknown function
f(P ), we have

f(P ) = Θ̂TΨ(P ) + ε̂(P ) (9)

where Θ̂ is the estimate of Θ∗ and ε̂(P ) = Θ̃TΨ(P ) + ε(P ).
If we know the bound of the function f(P ), it is easy to obtain the compact set ΩΘ.

Usually, in practical application, a sufficiently large ΩΘ can be adopted to make sure that
Θ∗ is included in ΩΘ. Moreover, in terms of Assumption 3.1 and Property 2.1, Θ∗, Θ̂ and
ε(P ) are bounded; hence, ε̂(P ) is also bounded. Note that the boundedness of ε̂(P ) does
not require that Θ∗ is included in ΩΘ.

Lemma 3.1 ([44]). Consider the Gaussian RBF network (8) and define cmin := 1
2
mini6=j

‖ci − cj‖. Then, there is an upper bound of ‖Ψ(P )‖:

‖Ψ(P )‖ ≤
∞∑
k=0

3m(k + 2)m−1e−2c2mink
2/σ2

i := ψ∗

where m denotes the dimension of input P , σi denotes the minimal width of the Gaussian
function, and ψ∗ is a positive constant.

Remark 3.1. The inequality can be proven through the ratio test theorem, and it is notable
that provided cmin 6= 0, ψ∗ always exists.
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3.2. Structure learning algorithm. Compared with the standard RBFNN, SCNN can
adjust their structure and parameters simultaneously. For the structure learning phase,
the number of neurons varies over time, and neurons will be generated or pruned based
on new observations. For the parameter learning phase, weight vectors are updated by
the adaptive law derived from the Lyapunov function.
Through neuron generating, neuron pruning and width adjustment, the structure learn-

ing algorithm can automatically determine the number and the locations of neurons based
on the information contained in sequently received observations. To describe this algo-
rithm in detail, we define the normalized distance between input vector x and neuron
center c as

Dx,c = ‖x− c‖ =

(
(x− c)T (x− c)

σ2
c

) 1
2

(10)

where σc is the width of the Gaussian function associated with center c. si represents the
output tracking error of the ith state in each backstepping step.
Neuron Generating : We firstly consider the general situation in which there already

exist l (l ≥ 1) neurons in SCNN.
Condition 3.1 When any new input P is received, if DP,ci satisfies

DP,ci ≥ dgσi, ∀1 ≤ i ≤ l

where dg > 0 is the preset neuron generating coefficient and σi is the width of the ith
existing neuron, then a new neuron should be generated and added into the network.
The generated neuron is chosen as:

cl+1 = P, σl+1 = σ(t), θl+1 = 0 (11)

where cl+1 is the center of the new neuron, σl+1 is the width of the Gaussian function,
σ(t) is determined by the width adjustment strategy, and θl+1 is the weight associated
with the new neuron.
When the first input P1 is received, the first neuron is just located at P1 with width σ0.

σ0 represents the preset initial width of the Gaussian function which is also the maximum
width.
Note that, due to the Gaussian function is the local supported function, Condition 3.1

means that the previous network cannot cover the new input P sufficiently. Therefore,
when Condition 3.1 is satisfied, a new neuron located at P should be added into the
network.
Neuron Pruning : Large-scale neural network will result in a very complex controller

and large computation load. Therefore, neuron pruning strategy should be adopted to
insure the scale of the neural network acceptable. Inspired by [40], a novel neuron pruning
strategy is introduced herein. Firstly of all, we introduce some indexes used in the pruning
criterion. For any new observation P , significance index SIi and significance duration
index DIi of the ith existing neuron are denoted as

SIi =
|θiψi(P )|

l∑
m=1

|θmψm(P )|
, DIi :

{
DIi(t) = 1, tuj

≤ t ≤ tdj
DIi(t) = exp(−τp(t− tdj)), tdj < t < tuj+1

(12)

where τp > 0 is an adjustable parameter, and 0 < tuj
< tdj < tuj+1

, j = 0, 1, 2, . . .,
tu0 is the moment of the ith neuron created. Moreover, DP,ci ≤ dpσi in [tuj

, tdj ], and
DP,ci > dpσi in (tdj , tuj+1

), where dp represents the preset neuron pruning coefficient.
Condition 3.2 Based on above definitions, neurons can be pruned when the following
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conditions are satisfied:

(i) |si| ≤ εp
(ii) J := {j ∈ L|DP,cj > dpσj, DIj < DIp, SIj < Sp} 6= ∅

L = {1, 2, · · ·, l}

where DIp and Sp are adjustable parameters.
With Condition 3.2, the pruning operation can be described as: if tracking error si ≤ εp

and J 6= ∅, then neurons included in J can be removed from the network.
It is notable that the significance duration index DIi decays over time when the input

vector is far away from the center of the ith neuron. However, before the ith neuron is
removed from the network, if the input vector returns to the ith neuron’s effective range
dpσj, DIi will be reset to 1. The effect of SIi prevents the pruning operation from making
significant variation of the output of SCNN.

Width Adjustment : As one of the parameters of the Gaussian function, width σi can
be updated using adaptive law [40-42]. However, estimation of σi is a nonlinear opti-
mization problem, and some linearization technique may be used, which makes adaptive
law complex and less efficient. Therefore, in this paper, a simple width adjustment strat-
egy is introduced to improve the performance of the SCNN without requiring complex
computation.

It is well known that, the smaller width of the Gaussian function is, the higher resolution
the neural network has. However, a smaller width will increase the curvature of the
Gaussian function, and consequently, leads to a large-scale neural network. To maintain
the neural network in a suitable scale, the width should be decreased just when the
performance of the approximator is unacceptable.

To facilitate the statement, define time index ξ and accumulation error index eξ as:

ξi :

{
ξi(tr) = 1, tr, r = 0, 1, 2, . . .

ξi(t) = exp(−τξ(t− tr)), tr ≤ t < tr+1, r = 0, 1, 2, . . .
(13)

eξi (t) =

∫ t

tr

|si(t)|dt, tr < t ≤ tr+1, r = 0, 1, 2, . . . (14)

where tr is the moment such that ξi(t) = ξw or a new neuron is added into the network.
ξw is a positive constant.
Condition 3.3 The conditions of decreasing the width of the new generated Gaussian
function are

(i) eξi (tr+1) ≥ εrw (ii) eξi (tr)− eξi (tr+1) ≤ ew (iii) ∀i, 1 ≤ i ≤ l, DP,ci < dgσi,

where erw and ew are positive constants.
The current width σ(t) can be obtained by:

σ(t) =
σ0
2w

(15)

where w = 0, 1, 2, . . . and σ0 denotes the preset initial width. At the beginning w = 0, if
Condition 3.3 is satisfied, w should be increased and wnew = wold + 1.

On the contrary, the following condition indicates when w should be decreased.
Condition 3.4 The condition of increasing the width of the new generated Gaussian
function is:

∃w′, 0 ≤ w′ < w,
∀i ∈ {n ∈ L|σn = σ0

2w′ }, such that DP,ci ≥ dgσi,

Consequently, based on Condition 3.4, if w′ exists, we choose wnew = min{w′}.
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Remark 3.2. On one hand, Condition 3.3 indicates that, between time interval [tr, tr+1),
no neuron is generated although the output tracking error is still large and the performance
of the neural network is ineffective. This situation indicates that the current resolution
is too low to distinguish the variation of the unknown function. Therefore, a higher
resolution is needed and the width should be decreased. To prevent neuron number from
growing infinitely, an upper bound of w can be introduced. On the other hand, Condition
3.4 describes another situation in which the input vector P moves into the field which has
not been explored sufficiently, so a lower resolution is suitable and the width should be
increased.

Remark 3.3. Generally, how to choose a suitable value of the width of the Gaussian
function needs extensive experience in controller design and sufficient information of the
system. Therefore, the width adjustment strategy can assign suitable width automatically
based on system behavior and the performance of neural networks.

Remark 3.4. Among the parameters of SCNN, dg, dp, DIp, ξw and ew have greater impact
on neuron generating and pruning operations. The smaller dg is, the more neurons will
be generated. If large occurrence probability of pruning operation is expected, large dp and
small DIp are needed. Moreover, large ew and small ξw make the width tend to be smaller,
which will increase the number of neurons. As a result, tradeoff between the scale of SCNN
and the controller performance must be made.

3.3. Parameter adaptive law. Besides the structure learning phase, the parameter
learning phase is also necessary for approximating the unknown function. In this paper,
the Lyapunov-based technique is used for the design of weight adaptive law, which guar-
antees the boundedness of weights and the stability of the closed-loop system. Using the
discontinuous projection operator, the adaptive law for Θ̂i is chosen as

˙̂
Θi = Proj[−Γi(Ψi(Pi)si + ηiΘ̂i)], i = 1, · · · , n (16)

where Γi = ΓT
i > 0 is the adaptive gain matrix, and ηi > 0 is a positive constant.

3.4. Approximator based on self-constructing neural networks. Let lb denote
the acceptable maximum number of neurons. Then, the neurons can be classified into
two parts: the first part includes the neurons added into the neural network (activated
neurons), and the other part contains the neurons not yet included in the neural network
(unactivated neurons). Let l(t) denote the number of neurons in the network at t, for an
unknown continuous function f(P ), we have

f(P ) = Θ∗T
a Ψa(P ) + Θ∗T

p Ψp(P ) + ε(P ) ∀P ∈ ΩP ,

where Ψa(P ) = [ψ1(P ), · · ·, ψl(t)(P )]
T is the vector of activated neurons, Ψp(P ) = [ψl(t)+1

(P ), · · ·, ψlb(P )]
T is the vector of unactivated neurons, Θ∗

a ∈ Rl(t)×1 and Θ∗
p ∈ R(lb−l(t))×1

are the weight vectors of activated neurons and unactivated neurons, respectively. Define

Θ̂c = [Θ̂T
a ,01×(lb−l(t))]

T

Ψ(P ) = [ΨT
a (P ),Ψ

T
p (P )]

T

Ψ(P )c = [ΨT
a (P ),01×(lb−m(t))]

(17)

then
f(P ) = Θ̂T

c Ψc(P ) + Θ̃T
c Ψ(P ) + ε(P ) ∀P ∈ ΩP , (18)

where Θ̃c = Θ∗ − Θ̂c. Under Assumption 3.1, εc(P ) = Θ̃T
c Ψ(P ) + ε(P ) is bounded.

Therefore, the approximator using SCNN is represented as

f̂(P ) = Θ̂T
c Ψc(P ), (19)
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and used in adaptive robust controller in the next section.

4. Design of Adaptive Robust Controller with Dynamic Surface Control. In
this section, the design procedure of SCNN based ARDSC for the complete non-affine
pure-feedback system is explained. The DSC technique is employed to overcome the
“explosion of complexity” issue. In addition, SCNN is utilized as the adaptive term to
further reduce controller complexity. In each step, the implicit function theorem and the
mean-value theorem are used to transform the non-affine function into an affine form with
respect to virtual controls and practical control. The detailed design procedure is shown
as follows.

Step 1 : Consider the first equation of system (1):

ẋ1 = f1(x̄1, x2) + p1(x̄n, t), (20)

and define the first error surface s1 = x1 − yr, let p1 denote p1(x̄n, t), then the time
derivative of s1 is

ṡ1 = f1(x̄1, x2) + p1 − ẏr (21)

From Assumption 2.2, it is known that h1(x̄1, x2) > hl1 > 0,∀(x̄1, x2) ∈ R2. In addition,
since ẏr is not a function of x2, it is clear that ∂[f1(x̄1, x2)− ẏr]/∂x2 > hl1 > 0. According
to Lemma 2.1, there exists a continuous function x∗2 = α0

1(x̄1, ẏr) such that f1(x̄1, x
∗
2)−ẏr =

0. Using (2), we have

ṡ1 = h1(x̄1, x
ρ1
2 )(x2 − α0

1) + f1(x̄1, α
0
1) + p1 − ẏr

= h1(x̄1, x
ρ1
2 )(x2 − α0

1) + p1
(22)

where xρ12 = α0
1 + ρ1(x2 − α0

1), 0 < ρ < 1. An SCNN is utilized to approximate α0
1(x̄1, ẏr)

with P1 = [x̄1, ẏr] ∈ ΩP1 ⊂ R2, so α0
1(x̄1, ẏr) can be rewritten as

α0
1(P1) = Θ̂T

1cΨ1c(P1) + Θ̃T
1cΨ1(P1) + ε1(P1)

where Θ̂1c ∈ ΩΘ1c ⊂ Rl1×1, Θ̃1c = Θ∗
1 − Θ̂1c, Ψ1c(P1) ∈ Rl1×1 and l1 is the maximum

neuron number. According to Assumption 3.1, |ε1(P1)| ≤ ε∗1 with positive constant ε∗1.
In order to synthesize a virtual control function α1 for x2 such that x1 tracks the desired
trajectory yr as closely as possible, α1 is designed as:

α1 = α1a + α1s, α1a = Θ̂T
1cΨ1c(P1)

α1s = α1s1 + α1s2, α1s1 = −k1s1
(23)

where α1a denotes the adaptive term to compensate α0
1; α1s is the robust control law and

constructed by two parts: α1s1 is a proportional feedback to stabilize the nominal system;
α1s2 is a robust term to compensate the modeling error and model uncertainties, and
satisfies the following conditions:

i. s1h1(x̄1, x
ρ1
2 )

(
α1s2 − Θ̃T

1cΨ1(P1)− ε1(P1) + ph1

)
≤ δ1

ii. s1h1(x̄1, x
ρ1
2 )α1s2 ≤ 0

(24)

where δ1 is a positive constant, and ph1 = p1
h1(x̄1,x

ρ1
2 )

. α1s2 can be designed as

α1s2 = −π1h
u
1

2δ1
s1, π1 ≥ ‖Θ1max −Θ1min‖22‖Ψ1(P1)‖22 + ε∗21 +

p∗1
hl1

(25)

To avoid the requirement of α̇1, the desired trajectory x2r is produced from a first-order
low-pass filter with α1 being the input:

ν1ẋ2r + x2r = α1, x2r(0) = α1(0). (26)
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From (22) and (26), it is clear that DSC technique is used directly for controller design
by neither constructing affine state variables nor reducing adaptive parameters.
Define the second error surface as s2 = x2 − x2r, and let z2 = x2r − α1. Then, the first

error dynamic system can be represented as

E1 : λ̇1 = A1λ1 +B1µ1 + d1 (27)

where λ1 = [s1, z2]
T , µ1 = [s2, α̇1]

T and

A1 =

[
−k1h1(x̄1, xρ12 ) h1(x̄1, x

ρ1
2 )

0 − 1
ν1

]
, B1 =

[
h1(x̄1, x

ρ1
2 ) 0

0 −1

]
d1 =

[
h1(x̄1, x

ρ1
2 )(α1s2 − Θ̃T

1cΨ1(P1)− ε1(P1) + ph1)
0

]
.

Choose the Lyapunov function candidate V1 =
1
2
λT1 λ1. Taking the derivative of V1 along

(27) yields

V̇1 = λT (A1λ1 +B1µ1 + d1)

= − k1h1(x̄1, x
ρ1
2 )s21 + s1h1(x̄1, x

ρ1
2 )(s2 + z2) + z2(−

1

ν1
z2 − α̇1)

+ s1h1(x̄1, x
ρ1
2 )(α1s2 − Θ̃T

1cΨ1(P1)− ε1(P1) + ph1)

(28)

According to the Young’s inequality and (24), we have

V̇1 ≤− k1h1(x̄1, x
ρ1
2 )s21 + 2h1(x̄1, x

ρ1
2 )s21 +

1

4
h1(x̄1, x

ρ1
2 )s22

+

(
− 1

ν1
+ 1 +

1

4
h1(x̄1, x

ρ1
2 )

)
z22 +

1

4
|α̇1|2 + δ1

≤− (k1 − 2)h1(x̄1, x
ρ1
2 )s21 +

1

4
h1(x̄1, x

ρ1
2 )s22 + δ1

−
(

1

ν1
− 1− 1

4
h1(x̄1, x

ρ1
2 )

)
z22 +

1

4
|α̇1|2.

(29)

From Assumption 2.2, h1(x̄1, x
ρ1
2 ) is bounded on a compact set. Therefore, there exist k1

and ν1 such that

V̇1 ≤ −γ1V1 + β1‖µ1‖2 + δ1

Step i (2 ≤ i ≤ (n − 1)): Consider the ith equation of system (1), define ith error
surface as si = xi − xir, and let pi denote pi(x̄n, t), then we have

ṡi = fi(x̄i, xi+1) + pi − ẋir. (30)

From Assumption 2.2, it is known that hi(x̄i, xi+1) > hli > 0, ∀(x̄i, xi+1) ∈ Ri+1. In
addition, since ẋir is not a function of xi+1, it is clear that ∂[fi(x̄i, xi+1)− ẋir]/∂xi+1 >
hli > 0. According to Lemma 2.1, there exists a continuous function x∗i+1 = α0

i (x̄i, ẋir)
such that fi(x̄i, x

∗
i+1) − ẋir = 0. Employing an SCNN to approximate x∗i+1 with Pi =

[x̄i, ẋir] ∈ ΩPi
⊂ Ri+1, and using (2), we can rewrote (30) as

ṡi = hi(x̄i, x
ρi
i+1)(xi+1 − Θ̂T

icΨic(Pi)− Θ̃T
icΨi(Pi)− εi(Pi)) + pi (31)

where xρii+1 = α0
i + ρi(xi+1 − α0

i ), Θ̂ic ∈ ΩΘic
⊂ Rli×1, Θ̃ic = Θ∗

i − Θ̂ic, Ψic(Pi) ∈ Rli×1 and
li is the maximum number of neurons. Moreover, |εi(Pi)| ≤ ε∗i with the positive constant
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ε∗i . A virtual control function αi for xi+1 is synthesized such that xi tracks the desired
trajectory xir as closely as possible. Therefore, αi is chosen as:

αi = αia + αis, αia = Θ̂T
icΨic(Pi)

αis = αis1 + αis2, αis1 = −kisi
(32)

where αia, αis, αis1 and αis2 have similar definitions as (23). Choose a positive constant
δi, and let αis2 satisfy:

i. sihi(x̄i, x
ρi
i+1)(αis2 − Θ̃T

icΨi(Pi)− εi(Pi) + phi ) ≤ δi

ii. sihi(x̄i, x
ρi
i+1)αis2 ≤ 0

(33)

where phi = pi
hi(x̄i,x

ρi
i+1)

. Then, let αis2 be of the following form

αis2 = −πih
u
i

2δi
si, πi ≥ ‖Θimax −Θimin‖22‖Ψi(Pi)‖22 + ε∗2i +

p∗i
hli
. (34)

Construct the ith first-order low-pass filter as:

νiẋ(i+1)r + x(i+1)r = αi, x(i+1)r(0) = αi(0), (35)

define the (i+1)th error surface as si+1 = xi+1−x(i+1)r, and let zi+1 = x(i+1)r−αi. Then,
the ith error dynamic system is described as

Ei : λ̇i = Aiλi +Biµi + di (36)

where λi = [si, zi+1]
T , µi = [si+1, α̇i]

T and

Ai =

[
−kihi(x̄i, xρii+1) hi(x̄i, x

ρi
i+1)

0 − 1
νi

]
, Bi =

[
hi(x̄i, x

ρi
i+1) 0

0 −1

]
,

di =

[
hi(x̄i, x

ρi
i+1)(αis2 − Θ̃T

icΨi(Pi)− εi(Pi) + phi )
0

]
.

Choose the Lyapunov function candidate Vi =
1
2
λTi λi. In terms of Young’s inequality

and (33), the time derivative of Vi along (36) satisfies:

V̇i ≤− (ki − 2)hi(x̄i, x
ρi
i+1)s

2
i +

1

4
hi(x̄i, x

ρi
i+1)s

2
i+1 + δi

−
(
1

νi
− 1− 1

4
hi(x̄i, x

ρi
i+1)

)
z2i+1 +

1

4
|α̇i|2.

(37)

From Assumption 2.2, hi(x̄i, x
ρi
i+1) is bounded on a compact set, then there exist ki and

νi such that

V̇i ≤ −γiVi + βi‖µi‖2 + δi

Step n: Consider the nth equation of system (1), define the nth error surface as sn =
xn − xnr, and let pn = pn(x̄n, t) we can derive

ṡn = fn(x̄n, u) + pn − ẋnr (38)

Because ẋnr is not a function of u and hn(x̄n, u) > hln > 0,∀(x̄n, u) ∈ Rn+1, it is clear
that ∂[fn(x̄n, u)− ẋnr]/∂u > hln > 0. Therefore, there exists a continuous function u∗ =
α0
n(x̄n, ẋnr) such that fn(x̄n, u

∗)− ẋnr = 0. Employing an SCNN to approximate u∗ with
Pn = [x̄n, ẋnr] ∈ ΩPn ⊂ Rn+1, we can rewrite (38) as

ṡn =hn(x̄n, u
ρn)

(
u− Θ̂T

ncΨnc(Pn)− Θ̃T
ncΨn(Pn)− εn(Pn)

)
+ pn (39)
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where uρn , Θ̂nc, Θ̃nc, Ψnc(Pn) and ln are similar to those defined in step i, and |εn(Pn)| ≤ ε∗n
with a positive constant ε∗n. A practical control law u = αn is synthesized such that xn
tracks the desired trajectory xnr as closely as possible. Therefore, αn is designed as:

αn = αna + αns, αna = Θ̂T
ncΨnc(Pn)

αns = αns1 + αns2, αns1 = −knsn
(40)

and αns2 has the following form

αns2 = −πnh
u
n

2δn
sn, πn ≥ ‖Θnmax −Θnmin‖22‖Ψn(Pn)‖22 + ε∗2n +

p∗n
hln
, (41)

which satisfies

i. snhn(x̄n, u
ρn)

(
αns2 − Θ̃T

ncΨn(Pn)− εn(Pn) + phn

)
≤ δn

ii. snhn(x̄n, u
ρn)αns2 ≤ 0.

(42)

Defining λn = sn, we have

En : λ̇n = −knhn(x̄n, uρn)λn + dn (43)

where dn = hn(x̄n, u
ρn)(αns2 − Θ̃T

ncΨn(Pn)− εn(Pn)) + pn.
The time derivative of Vn = 1

2
λTnλn along (43) satisfies

V̇n = −knhn(x̄n, uρn)s2n + snhn(x̄n, u
ρn)(αns2 − Θ̃T

ncΨn(Pn)− εn(Pn) + phn)

≤ −knhn(x̄n, uρn)s2n + δn (44)

Because hn(x̄n, u
ρn) is bounded, there exists kn such that

V̇n ≤ −γnVn + δn

Remark 4.1. From the above design procedure, by replacing the derivative of virtual
control α̇i with ẋ(i+1)r, the dimension of neural networks’ input vectors is significantly
reduced; therefore, the controller is simpler than those proposed in [10,16]. Because of
introducing αi, the boundedness of α̇i should be guaranteed in the stability analysis. This
issue will be explained in detail in the next section.

Remark 4.2. Because of utilizing the SCNN, structure parameters of neural networks,
such as the location of centers and the number of neurons, are not necessary to be de-
signed in advance, which is very useful especially when rare information about the plant
is available. At the same time, with the structure learning algorithm, the size of SCNN
can be maintained in a smaller scale, while the traditional design method may produce
a large-scale RBFNN which contains many useless neurons. The simulation results will
further illustrate the effectiveness of SCNN.

Remark 4.3. In the above design procedure, by virtue of the robust term αis2, ARDSC
guarantees the transient performance and the boundedness of output tracking error even
without SCNN and adaptive law. Therefore, ARDSC provides an improved robustness
performance for the closed-loop system.

5. Stability Analysis. This section provides the stability and transient performance
analysis of the closed-loop system in detail. Firstly, the semi-global stability of the closed-
loop system is guaranteed by the proposed control method without considering SCNN
and parameter adaptive law. Then, all signals in the closed-loop system are shown to
be uniformly ultimately bounded when SCNN and adaptive law are applied, and the
steady state performance is improved by virtue of the adaptive component. The results
are summarized into the following two theorems.
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Theorem 5.1. Consider the closed-loop system consisting of plant (1) and controller
(40). If all the Assumptions 2.1-3.1 are satisfied, and SCNN and the adaptive law (16)

maintain switched off, then, for any bounded initial conditions
n∑

i=1

s2i +
n∑

n=2

z2i ≤ 2rc, there

exist ki and νi, such that all the signals in the closed-loop system remain bounded, and
the output tracking error is uniformly ultimately bounded by a neighborhood around zero.

Proof: Firstly, |α̇| is proved to be bounded by a continuous function. Then we give
the stability analysis of the closed-loop system.

The time derivative of virtual control αi can be exactly expanded as

α̇i =
˙̂
ΘT

icΨic(Pi) + Θ̂T
ic


∂Ψic(Pi)

∂Pi1
Ṗi1

...
∂Ψic(Pi)
∂Pili

Ṗili

− kiṡi + α̇is2, i = 1, · · · , n.

Note that x1 depends on yr and s1, so α1 is a function of Θ̂1c, yr, ẏr, s1. Because
x2 = s2+α1+z2, x2 relies on s1, s2, Θ̂1c, yr, ẏr and z2. According to (32), α2 is a function

of s1, s2, Θ̂1c, Θ̂2c, z2, yr and ẏr. Similarly, since xi = si+αi−1+ zi, xi relies on s1, · · · , si,
Θ̂ic, · · · , Θ̂(i−1)c, z2, · · · , zi, yr and ẏr. Therefore, αi is a function of s̄i = [s1, · · · , si]T ,
¯̂
Θic = [Θ̂1c, · · · , Θ̂ic]

T , z̄i = [z2, · · · , zi]T , yr and ẏr. Consequently, the closed-loop system

can be completely described by s̄i,
¯̂
Θic, z̄i, , yr, ẏr.

Due to the fact that
˙̂
ΘT

ic,
∂Ψic(Pi)

∂Pij
Ṗij, ṡi and α̇is2 can be bounded by continuous functions,

|α̇i| satisfies

|α̇i| ≤ Ci(Θ̄i, s̄i, z̄i, yr, ẏr)

where Ci is a positive-definite continuous function. On the compact set Π :=

{
s̄n, z̄n

∣∣∣∣ n∑
i=1

s2i

+
n∑

n=2

z2i ≤ 2rc

}
, the continuous function Ci has an upper bound

Ci(Θ̄ic, s̄i, z̄i, yr, ẏr) ≤Mi, i = 1, · · ·, n− 1

so

|α̇i| ≤Mi, i = 1, · · ·, n− 1 (45)

on the compact set Π.

Consider (29), (37) and (44), and choose the Lyapunov function Ve =
n∑

i=1

Vi, then its

time derivative is

V̇e ≤
n−1∑
i=1

[−kihi(x̄i, xρii+1)s
2
i + δi]− knhn(x̄n, u

ρn)s2n + δn

n−1∑
i=1

hi(x̄i, x
ρi
i+1)

[
2s2i +

1

4
s2i+1

]

+
n−1∑
i=1

[(
− 1

νi
+ 1 +

1

4
hi(x̄i, x

ρi
i+1)

)
z2i+1 +

1

4
|α̇i|2

]
(46)
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Note that hi(x̄i, x
ρi
i+1) > 0. Clearly, there exist ki and νi:

k1 ≥ 2 + ζ;

ki ≥ 2 +
1

4
+ ζ, i = 1, · · · , n− 1;

kn ≥ 1

4
+ ζ;

νi ≤
1

1
4
hui + 1 + ζ

, i = 2, · · · , n;

(47)

such that

V̇e ≤ −2ζV + b (48)

where ζ is a positive constant, and b =
n∑

i=1

δi +
n−1∑
i=1

1
4
M2. If we let ζ ≥ b

2rc
, then V̇e ≤ 0

when Ve(t) ≥ rc. Therefore, Ve(t) ≤ rc is an invariant set on t ∈ [0,∞).
Integrating the both sides of (48), we have

0 ≤ Ve(t) ≤ Ve(0)e
−2ζt +

b

2ζ
(1− e−2ζt), (49)

which indicates that si and zj (i = 1, · · · , n, j = 2, · · · , n) are uniformly ultimately

bounded. Because the adaptive law is switched off, Θ̂ic is bounded. Thus, αi (i = 1, · · · , n)
is bounded as well. Moreover, in terms of Assumption 2.1 and the boundedness of si and
zj (i = 1, · · · , n, j = 2, · · · , n), xi (i = 1, · · · , n) are also bounded. Finally, we can
conclude that all signals in the closed-loop system are bounded. In addition, the error
bound can be pre-specified by choosing a proper value of ζ.

Remark 5.1. From Theorem 5.1, it is clear that the ARDSC guarantees the pre-specified
exponential convergence rate 2ζ and steady state performance (uniformly ultimately bound)
by choosing suitable controller parameters ki and νi, even without the adaptive compen-
sator. However, the better performance is expected, the larger ki and the smaller νi are
required, and this finally results in a larger control input. Since it is impractical to require
an arbitrarily large control signal, an adaptive compensation term can be introduced to fur-
ther reduce the tracking error. Theorem 5.2 gives the stability analysis of the closed-loop
system with the SCNN and adaptive being law activated.

In the following, the stability of the closed-loop system with SCNN and adaptive law
being applied is analyzed by employing the ISS concept and small-gain theorem.

Theorem 5.2. Consider the closed-loop system consisting of plant (1) and the controller
(40). If all the Assumptions 2.1-3.1 are satisfied, and the SCNN is activated and the

adaptive law (16) is applied, then, for any bounded initial conditions
n∑

i=1

s2i +
n∑

n=2

z2i ≤ 2rc,

there exist ki and νi, such that all the signals in the closed-loop system still remain bounded,
and the output tracking error is also uniformly ultimately bounded by a neighborhood
around zero.

Proof: Firstly, the error dynamic subsystem with equations (27), (36) and (43) can be
regarded as a system with the inputs Θ̃a = [Θ̃T

1a, · · · , Θ̃T
na]

T and ε = [ε1, · · · , εn]T . As in

the proof of Theorem 5.1, choose Ve =
n∑

i=1

Vi as the Lyapunov function, and for the sake
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of simplifying the representation, let hi stand for hi(x̄i, x
ρi
i+1), then we have

V̇e =−
n∑

i=1

kihis
2
i +

n∑
i=1

sihi[αis2 − Θ̃T
icΨi(Pi)− εi(Pi)]

+
n−1∑
i=1

hi(sisi+1 + sizi+1) +
n∑

i=2

(
− 1

νi−1

z2i − ziα̇i−1

)
+

n∑
i=1

sipi.

(50)

Note that sihiαis2 ≤ 0, and from (17)

V̇e ≤−
n∑

i=1

kihis
2
i +

n∑
i=1

hi‖Θ̃ia‖‖Ψia(Pi)‖|si|+
n∑

i=1

sipi

−
n∑

i=1

sihiεi(Pi) +
n−1∑
i=1

hi(sisi+1 + sizi+1) +
n∑

i=2

(
− 1

νi−1

z2i − ziα̇i−1

)

≤−
n−1∑
i=1

(
ki − 4− 1

hi

)
his

2
i +

n∑
i=2

1

4
his

2
i −

(
kn − 2− 1

hn

)
hns

2
n +

n−1∑
i=1

1

4
|α̇i|2

−
n∑

i=2

(
1

νi−1

− 1− 1

4
hi

)
z2i +

n∑
i=1

1

4
hiψ

∗2
i ‖Θ̃ia‖2 +

n∑
i=1

1

4
hiε

2
i (Pi) +

n∑
i=1

1

4
p∗2i

Due to hi > hli > 0, let z1 = 0, ψ∗ = max
1≤i≤n

ψ∗
i and α̇n = 0, it is available to choose ki

and νi as: 

k1 ≥ 4 + ζ +
1

hl1
;

ki ≥ 4 +
1

4
+

1

hli
+ ζ, i = 2, · · · , n− 1;

kn ≥ 2 +
1

4
+

1

hln
+ ζ;

νi ≤
1

1
4
hui + 1 + ζhui

, i = 2, · · · , n;

(51)

such that

V̇e ≤
n∑

i=1

hi

[
−ζs2i − ζz2i +

1

4
ψ∗2‖Θ̃ia‖2 +

1

4
ε2i (Pi) +

|α̇i|2

4hi
+
p∗2i
4hi

]
where ζ is a positive constant. Consider that |hi| > hli > 0 and |α̇i| ≤Mi on the compact

set Π :=

{
s̄n, z̄n

∣∣∣∣ n∑
i=1

s2i +
n∑

n=2

z2i ≤ 2rc

}
, so

V̇e ≤
n∑

i=1

hi

[
−ζ(1− b)(s2i + z2i )− bζ(s2i + z2i ) +

1

4
ψ∗2‖Θ̃ia‖2 +

1

4
ε2i (Pi) + δis

]
. (52)

where δis =
|Mi|2+p∗2i

4hl
i

, 0 < b < 1. Denote Z = [0, z2, · · · , zn]T , S = [s1, · · · , sn]T and

Λ = [ST , ZT ]T . From (52), we can see that the error dynamic subsystem is input-to-state
practical stable with Lyapunov gain [45]:

γΛ
Θ̃a

=

(
ψ∗2

4bζ

) 1
2

, γΛε =

(
1

4bζ

) 1
2

. (53)
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Therefore, there exists a function βΛ of class KL such that

‖Λ‖ ≤ βΛ(‖Λ(0)‖, t) + γΛ
Θ̃a
(‖Θ̃a‖∞) + γΛε (‖ε‖∞) +

(
δs
bζ

) 1
2

(54)

where δs =
n∑

i=1

|Mi|2+p∗2i
4hl

i
.

Secondly, consider the parameter adaptive dynamics (16) as another subsystem which
has the state Θ̃a and the inputs Θ∗ and Λ. Select the Lyapunov function VΘ̃ = 1

2
Θ̃T

aΓ
−1Θ̃a,

and in terms of Θ̃a = Θ∗
a − Θ̂a, it is clear that

V̇Θ̃ = −Θ̃T
aΓ

−1Proj[−Γ(Ψa(P )S + ηΘ̂a)] (55)

where Γ = diag{Γ1, · · ·,Γn}T , Ψa(P ) = diag{Ψia(Pi), · · ·,Ψan(Pn)} and η = diag{η1I, · · ·,
ηnI}. Taking into account Property 2.1.ii and ‖S‖ ≤ ‖Λ‖, it is clear that

V̇Θ̃ ≤ Θ̃T
a [Ψa(P )S + η(Θ∗

a − Θ̃a)]

≤ − (1− p)Θ̃T
a Θ̃a − pΘ̃T

a Θ̃a + ηΘ̃T
aΘ

∗
a + Θ̃T

aΨa(P )S

≤ − (1− p)‖Θ̃a‖2 − p‖Θ̃a‖2 + ‖Θ̃a‖‖Θ∗
a‖+ ψ∗‖Θ̃a‖‖Λ‖

where 0 < p < 1. Similarly, the parameter adaptive subsystem is also input-to-state
stable with Lyapunov gain:

γΘ̃a
Λ =

ψ∗

p
, γΘ̃a

Θ∗
a
=

1

p
. (56)

and there exists a function βΘ̃a
of class KL such that

‖Θ̃a‖ ≤ βΘ̃a
(‖Θ̃a(0)‖, t) + γΘ̃a

Λ (‖Λ‖∞) + γΘ̃a
Θ∗

a
(‖Θ∗

a‖∞) (57)

Based on the small-gain theorem [46], the interconnected system with (27), (36), (43) and
(16) is input-to-state practical stable with the state x = (Λ, Θ̃a) and the input u = (ε,Θ∗

a),
if

λΘ̃a
Λ ◦ λΛ

Θ̃a
(s) < s. (58)

Therefore, we can choose

ζ >
Ψ∗4

4p2b
. (59)

Since ε < ε∗, ε∗a and Θ∗ are assumed to be constants, the boundedness of Λ and Θ̃a can

be established. As a result, x, Θ̂a and u are bounded. Therefore, all the signals in the
closed-loop system remain bounded. In addition, we must show the compact set Π is an
invariant set to guarantee the boundedness of α̇i. Considering (52), Assumption 3.1 and
Property 2.1, we have

V̇e ≤
n∑

i=1

hi

[
−ζ(s2i + z2i ) +

1

4
ψ∗2Q2

i +
1

4
ε∗2i + δis

]

≤
n∑

i=1

hi
[
−ζ‖Λi‖2 +∆is

] (60)

where Λi = [si, zi]
T and

Qi = ‖Θi(max) −Θi(min)‖, ∆is =
1

4
ψ∗2Q2

i +
1

4
ε∗2i + δis.
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Therefore, if we let

ζ >
∆s

2rc
, (61)

where ∆s = max{∆is}, i = 1, · · · , n, then V̇e ≤ 0 when Ve(t) > rc. Therefore, Ve(t) ≤ rc
is an invariant set on t ∈ [0,∞), and the assumption |α̇i| ≤Mi is reasonable. Finally, if

ζ = max

{
Ψ∗4

4p2b
,
∆s

2rc

}
, (62)

then the closed-loop system is input-to-state practical stable, and the compact set Π :={
s̄n, z̄n|

n∑
i=1

s2i +
n∑

n=2

z2i ≤ 2rc

}
is an invariant set. Because ε∗ and Θ∗ are assumed to

be constants, all the signals in the closed-loop system remain bounded, and the output
tracking error is also uniformly ultimately bounded by a neighborhood around zero.

Remark 5.2. From Theorem 5.2, by choosing suitable control parameters, the compact

set
n∑

i=1

s2i +
n∑

n=2

z2i ≤ 2rc is proved to be an invariant set on t ∈ [0,∞), which guarantees

the boundedness of α̇. Consequently, it is reasonable that the error dynamic subsystem is
input-to-state practical stable.

Remark 5.3. Theorem 5.1 and Theorem 5.2 show that, with the proposed ARDSC, the
bounded initial conditions result in the boundedness of all the signals in the closed-loop sys-
tem, which guarantees that it is possible to construct SCNNs with bounded approximation
error εi on a sufficiently large compact set ΩPi

such that Pi = [x̄i, ẋir] ∈ ΩPi
⊂ Ri+1.

6. Simulation Results. To verify the effectiveness and advantages of the SCNN based
ARDSC, numerical simulations are given in this section.

6.1. Example 1. Consider the following second-order complete non-affine pure-feedback
system [10]: 

ẋ1 = x1 + x2 +
x32
5

ẋ2 = x1x2 + u+
u3

7
y = x1

(63)

The famous van der Pol oscillator is considered as the reference model [10]:
ẋd1 = xd2

ẋd2 = −xd1 + β(1− x2d1)xd2

y = xd1

(64)

where β = 0.2 in this simulation and the initial states are [xd1(0) xd2(0)]
T = [1.5 0.8]T .

The objective is to design a control law u such that the output of system (63) tracks the
desired signal xd1 as closely as possible, and meanwhile, all the signals in the closed-loop
system are bounded.

There are two SCNNs used in this controller design, and the bounds of θij (i = 1, 2, j =
1, · · · , li) are set as θij min = −100 and θij max = 100. The parameters of the ARDSC and
SCNNs are chosen as follows: k1 = k2 = 20, π1 = 20, π2 = 30, δ1 = δ2 = 5, ν1 = 0.001,
Γ1 = 50Il1(t), Γ2 = 50Il2(t), η1 = η2 = 0.2, dg1 = dg2 = 0.5, dp1 = dp2 = 1, Sp1 = Sp2 = 0.05,
DIp1 = DIp2 = 0.1, τp1 = τp2 = 0.1, εp1 = εp2 = 0.001, εrw1 = εrw2 = 0.25, ξw1 = ξw2 = 0.1,
τξ1 = τξ2 = 0.1, ew1 = ew2 = 0.1, σ01 = σ02 = 2.
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Figure 1. Output tracking
error using SCNN based
ARDSC in example 1
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Figure 2. The number of
neurons in example 1

The simulation results are shown in Figure 1 and Figure 2. From Figure 1, we see
that, using the proposed control algorithm, the tracking error gradually converges to a
small neighborhood around zero. Compared with the result in [10], the proposed method
has a simple controller form as shown by the mathematical expression in Section 4. In
addition, Figure 2 shows that the number of neurons is significantly reduced to less than
15 by the proposed structure learning algorithm, while there were 160 neurons in the
controller designed in [10] and 180 neurons in [21]. Consequently, we can confirm that
the proposed control method is simpler and requires less hardware resources.

6.2. Example 2. The following third-order system is considered in this case:
ẋ1 = x21 sin(x1) + x32 + p1

ẋ2 = x1 cos(x2) + x1x2 + (2 + 0.7 sin(x1x2))x3 + p2

ẋ3 = x1x3 + x3 sin(x2) + (1 + 0.1 cos(x2x3))u+ u3 + p3

y = x1

(65)

where p1 = 0.1 cos(x1x2x3t), p2 = 0.1 sin(x2x3t) and p3 = 0.05 sin(x1t). The initial states
are [x1 x2 x3]

T = [0.5 − 0.5 0]T . The control objective is to design a controller for the
system (65) such that the output y tracks the reference signal yd = sin(2πt) as closely as
possible.
In the controller design, three SCNNs are used, and the bounds of θij (i = 1, 2, 3, j =

1, · · · , li) are set as θij min = −100 and θij max = 100. The parameters of the ARDSC
and SCNNs are chosen as follows: k1 = 20, k2 = 30, k3 = 40, π1 = 20, π2 = 30,
π3 = 40, δ1 = δ2 = δ3 = 5, ν1 = ν2 = 0.001, Γ1 = 50Il1(t), Γ2 = 50Il2(t), Γ3 = 50Il3(t),
η1 = η2 = η3 = 0.2, dg1 = dg2 = dg3 = 1, dp1 = dp2 = dp3 = 2, Sp1 = Sp2 = Sp3 = 0.05,
DIp1 = DIp2 = DIp3 = 0.8, τp1 = τp2 = τp3 = 0.1, εp1 = εp2 = εp3 = 0.001, εrw1 = εrw2 =
εrw3 = 0.25, ξw1 = ξw2 = ξw2 = 0.6, τξ1 = τξ2 = τξ3 = 0.1, ew1 = 0.05, ew2 = ew3 = 0.1,
σ01 = 0.5, σ02 = 1, σ03 = 4.

6.2.1. ARDSC without SCNN and adaptive law. In this simulation, SCNN and adaptive
law are disabled and the output tracking error is shown in Figure 3. From Figure 3, it is
clear that the output tracking error converges to the ultimate bound within no more than
one second, which confirms that the ARDSC guarantees transient performance and system
stability even without the adaptive compensator. Actually, when some knowledge of the
plant is known a priori, transient performance and ultimate bound of output tracking
error can be specified in advance by controller parameter design.
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Figure 3. Output tracking error using ARDSC without SCNN in example 2

6.2.2. ARDSC with SCNN and adaptive law. In this simulation, SCNN and adaptive law
are activated, and simulation results are shown in Figures 4-6.

Figure 4 shows the output tracking error using SCNN based ARDSC, and it can be seen
that tracking error converges into a smaller region, as compared with the result shown in
Figure 3. This phenomenon indicates that steady state tracking performance is improved
due to the parameter learning of SCNN.

Figure 5 presents the changes of neuron number over time. Figure 6 demonstrates how
the width of new generated neurons is regulated by the structure leaning strategy. At the
beginning (0s ∼ 3s), since system states cover a wide region, large width is chosen and
lots of neurons are created to capture system dynamics. In the period from 3s to 10s,
useless neurons are pruned when system states converge into a small region. During the
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Figure 4. Output tracking error using SCNN based ARDSC in example 2
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final stage (10s ∼ 100s), based on output tracking error and system dynamic behavior,
the width adjustment strategy automatically regulates resolution of SCNN by changing
neuron width to improve the tracking performance.
From Figures 5 and 6, the following three conclusions can be made:
(i) For high-order pure-feedback nonlinear systems, the proposed control algorithm is

much easier to be implemented, which can be verified from the mathematical expression
of the controller, the dimension of the input vector and the number of neurons shown in
Figure 5.
(ii) Due to lacking of knowledge about system (65), relative large widths are chosen as

the initial width for SCNNs. From Figure 6, we can find that, when the resolution of the
radial basis function is not competent for the control system, the radii of the generated
neurons will be decreased to obtain a high resolution.
(iii) The proposed SCNN is useful for reducing the scale of neural networks. Moreover,

it does not require constructing neural networks manually at the initial phase of controller
design, and this feature is especially useful for unknown nonlinear systems.

7. Conclusion. This paper proposed an SCNN based ARDSC for nonlinear systems in
complete non-affine pure-feedback form. The ARDSC guarantees the boundedness of all
signals in the closed-loop system even in the absence of adaptive components. Meanwhile,
the complexity of the controller is significantly reduced via DSC technique and SCNN
without deteriorating control performance. Stability analysis of the closed-loop system is
provided by employing ISS analysis and small-gain theorem. Finally, two simulations are
performed to verify the effectiveness of the proposed method.
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