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Abstract. The transportation networks often become uncertain due to the occurrence
and development of disasters. In order to select proper paths under uncertain infor-
mation, we propose a novel scenario-based approach for emergency path selection. The
scenario factors are firstly analyzed and combined to describe the uncertainty of each
path section between two adjacent intersections in emergency transportation networks.
Then, according to the fuzzy properties of path sections, the membership transformation
algorithm M(1,2,3) is applied in fuzzy evaluation on the scenarios of path sections, which
can determine the satisfaction degrees of each path section. Combining the highest sat-
isfaction of each section under various scenarios, an optimal multi-attribute vector is
constructed to build the scenario-based optimization model for emergency path selection.
Finally, a numerical example is shown to illustrate the solution of this approach, whose
results show that this approach can produce the paths with maximized overall satisfaction
degree in a given confidence and that the satisfaction degree will increase as the given
confidence decreases.
Keywords: Large-scale disasters, Emergency path selection, Scenario analysis, M(1,2,3),
Scenario-based optimization

1. Introduction. In recent years, large-scale disasters such as earthquakes, tsunamis and
rainstorms occur frequently, which have been disturbing people’s normal life and bringing
about serious impacts on social stability and development. The suddenness, urgency and
uncertainty of these disasters make emergency response decisions face great challenges
[1,2]. Timely transportation of relief supplies right after disasters takes an important part
in emergency response, directly affecting the efficiency and effectiveness of disaster relief
[3]. However, emergency path selection is much different from conventional path selection
which mainly aims to searching the shortest path from feasible road networks. In emer-
gency response, disasters may make damages on roads and make some of them unsafe;
meanwhile the massive relief supplies transportation often exceeds the limited maximum
road capacity and may block some key roads. In a word, there are more uncertainties
in emergency transportation, which makes conventional path selection approaches inef-
fective. Thus, how to select a proper path for transporting relief supplies and wounded
victims safely is one of the key issues in emergency transportation, which has attracted
some researchers’ attention.
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Opasanon and Miller-Hooks [4] developed three adaptive path selection solutions which
can be applied in selection of routes for hazardous materials transport and emergency re-
sponse operations. Zografos and Androutsopoulos [5] presented a decision support system
for assessing alternative distribution routes in terms of travel time, risk and evacuation
implications while coordinating the emergency response deployment decisions with the
hazardous materials routes. Yuan and Wang [6] presented a single-objective path selec-
tion model whose objective is to minimize total travel time along a path, and a multi-
objective path selection model which considered the chaos, panic and congestions in time
of disaster, aiming at minimizing both the total travel time and the path complexity. Liu
and Zhao [7] studied the emergency materials distribution problem in anti-bioterrorism
system, modeling it as a multiple traveling salesman problem with time windows, and
designing a hybrid genetic algorithm to solve the model. Hu [8] took the system of con-
tainer multimodal transportation emergency relief as an affinity network, and proposed an
integer linear programming model to build the path selection for container supply chain
in the context of emergency relief.
The above studies produced effective solutions for selecting emergency paths from dif-

ferent aspects, and the consensus can be drawn that emergency path selection is not a
conventional shortest path problem due to its characteristics of uncertainty and being with
multiple decision-making attributes. Emergency decision-makers would consider various
uncertain factors to select relief supplies transportation paths, and the conditions of these
factors are often not unchanged due to the updated scenarios such as the occurrence of
secondary disasters, the traffic flow in the emergency road networks, and the transporta-
tion time of each road section. However, how to represent these uncertain decision-making
factors is an open issue needing more effective methods, which is also the precondition
of selecting proper emergency paths. Scenario analysis method can effectively solve the
decision-making issues under uncertain environment [9]. In this study, we take the com-
binations of multiple attributes as various scenarios, and then develop a scenario-based
emergency path selection model. To sum up, three main contributions are made in our
study. (1) The uncertain attributes are fuzzified and assembled to represent the decision-
making scenarios of emergency path selection. (2) A scenario-based optimization model
is built which aims at selecting the path with maximized overall satisfaction degree in
a given confidence. (3) An integrated algorithm of depth-first search and Monte Carlo
simulation is designed to solve the built model. These contributions have two main differ-
ences from the extant studies. One is that our developed approach considers more factors
than the conventional shortest path methods which aim at producing the optimal path
with shortest geographical distance. The other is that we build a fuzzy multiple attribute
vector to represent the decision-making scenarios of emergency path selection and embed
it into a scenario-based optimization model.
The remainder of this paper is organized as follows. Section 2 constructs a scenario

representation approach to describe the uncertain multiple attributes of each path sec-
tion. In Section 3, a scenario-based emergency path selection model is built. Section 4
illustrates an integrated algorithm for solving the built model, with a numerical example.
Conclusions are finally drawn in Section 5, with recommendations in future studies.

2. Scenario Representations of Emergency Path Selection. Scenario analysis met-
hod, which considers the key factors and their mutual influences of complicated systems
to express the possible future development [9], can effectively solve the decision-making
problems under uncertain environment. Inspired by the application of scenario analy-
sis method [10,11], we consider the uncertainties of the occurrence and development of
disasters to build the decision-making scenarios of emergency path selection.
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Table 1. Scenario factors of emergency path selection

Attributes Scenario factors

The key factors

of decision-makers

selecting emergency

paths

f1: Road smoothness

f11: Road quality

f12: Road width

f13: Traffic density

f2: Road safety

f21: Geographic conditions

f22: Weather conditions

f23: Humane conditions

f3: Transportation time

f31: Road alignment

f32: Road facilities

f33: Road length

f4: Communication quality
f41: Communication equipment

f42: Communication environment

Figure 1. Scenario representations of emergency transportation paths

Different from conventional business logistics, the emergency transportation possesses
its own characteristics. By analyzing the key factors of decision-makers selecting emer-
gency paths, we summarize these factors into four attributes: road smoothness, road
safety, transportation time, and communication quality. The detailed scenario factors in
each attribute are shown in Table 1.

Assume that the emergency transportation network is represented by G(N,Arc) where
N denotes the set of road nodes and Arc denotes the set of road sections among nodes.
Due to the influence of the occurrence and development of disasters, road sections may be
in different statuses. We represent the status of each road section arci with the series of
the initial scenario, emergency scenarios and factor scenarios to describe the uncertainties
of emergency transportation network, shown as Figure 1.

After the occurrence of disasters, the status of each road section arci in the trans-
portation network is transformed from the initial scenario to the emergency scenario.
Assume that (ES, P1) is the set of emergency scenarios where ES = {es1, es2, . . . , esM},
M = |ES|, esm (m = 1, 2, . . . ,M) is one emergency scenario in ES, P1 is the set of
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probabilities of emergency scenarios, and p(esm) ∈ P1 is the probability of occurrence of

the emergency scenario esm under the initial scenario that guarantees
M∑

m=1

p(esm) = 1.

Each emergency scenario esm is composed of different factor scenarios. Assume that
(IS/m, P2/m) is the set of factor scenarios under the m-th emergency scenario where
IS/m = {is1/m, is2/m, . . . , isSm/m}, and Sm = |IS/m|. isS/m is one factor scenario in IS/m,
j = 1, 2, . . . , Sm, P2/m is the set of probabilities of factor scenarios, and p(isS/m/esm) ∈
P2/m is the probability of occurrence of the factor scenario isS/m under m-th emergency

scenario that guarantees
Sm∑
S=1

p(isS/m/esm) = 1.

Moreover, for each factor scenario isS/m, we use a fuzzy multi-attribute vector α =
[f1, f2, f3, f4] to denote the status of each path section under factor scenarios (f1: Road
smoothness, f2: Road safety, f3: Transportation time, and f4: Communication qual-
ity). αS/m(f1, f2, f3, f4) represents the impacts of emergency scenarios on the multiple
attributes in factor scenarios. Meanwhile, each attribute consists of multiple factors,
shown as Table 1 and Figure 1. We set four evaluation levels for each factors: {very good,
good, general, bad}. According to the evaluation value of each factor, we can finally judge
the statuses of each attribute, each factor scenario, and each emergency scenario by fuzzy
evaluation methods.
After getting all the statuses of path sections in emergency scenarios, we can use opti-

mization methods to search one satisfactory path connecting the starting point with the
end point in the uncertain emergency transportation network.

3. The Developed Approach for Emergency Path Selection in Uncertain Trans-
portation Networks. As mentioned above, the developed approach for emergency path
selection in this study can be taken as a two-stage method. Stage I uses fuzzy multi-
attribute vectors to describe the uncertainty of each path section and evaluates the sce-
narios of all path sections in uncertain emergency transportation networks. Stage II
builds an optimization model to find the paths with maximized overall satisfaction degree
in a given confidence. In this section, we firstly apply the membership transformation
algorithm-M(1,2,3) to determine the satisfaction degrees of each path section in Stage I.
Based on the evaluation results in Stage I, we combine the highest satisfaction of each
section under various scenarios to construct an optimal multi-attribute vector and further
establish the optimization model for emergency path selection with scenarios embedded
in Stage II.

3.1. Membership transformation algorithm-M(1,2,3). The core of fuzzy evaluation
is the membership degree transformation from index membership to object membership.
For the several common transformation methods, redundant data in index membership
degree is also used to compute object membership degree. In our previous study [12], we
proposed a novel membership transformation algorithm which can eliminate the redun-
dant data in index membership for object evaluation by defining distinguishable weight
and extract valid values to compute object membership. In this study, we use the al-
gorithm to calculate the fuzzy evaluation vector of each path section under different
scenarios.
Assume that there are m indexes which have impacts on evaluation object f , and the

importance weights λj (f) of the j-th index (j = 1, 2, . . . ,m) to f is given, which satisfies:

0 ≤ λj (f) ≤ 1,
m∑
j=1

λj (f) = 1 (1)
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Each index is classified into p levels. Ck represents the k-th level and Ck is superior
to Ck+1. The membership µjk (f) of the j-th index belonging to Ck is given, where
k = 1, 2, . . . , p and j = 1, 2, . . . ,m, and µjk (f) satisfies:

0 ≤ µjk (f) ≤ 1,

p∑
k=1

µjk (f) = 1 (j = 1, 2, . . . ,m) (2)

Then, what is the membership µk (f) of object f belonging to Ck? The membership
degree transformation is used to answer this question. The membership transformation
new algorithm we previously proposed can be briefly overviewed as follows.

A real number αj(f) can be quantitatively described by the entropy Hj(f) which sat-
isfies the following equations:

Hj(f) = −
p∑

k=1

µjk(f) · logµjk(f) (3)

vj(f) = 1− 1

log p
Hj(f) (4)

αj(f) =
νj(f)

m∑
j=1

νj(f)
(j = 1, 2, . . . ,m) (5)

Definition 3.1. If µjk (f) (k = 1, 2, . . . , p, j = 1, 2, . . . ,m) is the membership of the j-
th index belonging to Ck and satisfies Equation (2), then, by Equations (3)-(5), αj(f)
is called the distinguishable weight of the j-th index with respect to object f . Obviously,
αj(f) satisfies:

0 ≤ αj(f) ≤ 1
m∑
j=1

αj(f) = 1 (6)

Definition 3.2. If µjk (f) (k = 1, 2, . . . , p, j = 1, 2, . . . ,m) is the membership of the j-th
index belonging to Ck and satisfies Equation (2), and αj (f) is the distinguishable weight
of the j-th index with respect to f , then

αj(f) · µjk(f) (k = 1, 2, . . . , p) (7)

is called the effective value of the k-th class membership of the j-th index, or the k-th class
effective value for short.

Definition 3.3. If αj(f) · µjk(f) is the k-th class effective value of the j-th index, and
βj(f) is importance weight of the j-th index with respect to f , then

βj(f) · αj(f) · µjk(f) (k = 1, 2, . . . , p) (8)

is called comparable effective value of the k-th class membership of the j-th index, or the
k-th class comparable value for short.

Definition 3.4. If βj(f) ·αj(f) ·µjk(f) is the k-th class comparable value of the j-th index
of k, (j = 1, 2, . . . ,m), then

Mk(f) =
m∑
j=1

βj(f) · αj(f) · µjk(f) (k = 1, 2, . . . , p) (9)

is named as the kth class comparable sum of f .
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Definition 3.5. If Mk(f) is the k-th class comparable sum of object f , and µk(f) is the
membership of object f belonging to Ck, then

µk(f)
∆
=

Mk(f)
p∑

t=1

Mt(f)

(k = 1, 2, . . . , p) (10)

Up to now, assume that the index membership of each factor µjk (f) and their impor-
tance weights λj (f) are given, by Equations (3)-(10), the membership µk (f) of object f
belonging to Ck can be calculated. We call this membership transformation algorithm as
M(1,2,3).
In Stage I of the proposed approach, we use the above membership transformation

algorithm to calculate the membership vectors of path sections under different scenarios
which will be embedded in the emergency path selection optimization model in Stage II.

3.2. A scenario-based optimization model for emergency path selection. For the
attributes of some path section under different emergency scenarios f i

S/m, i = 1, 2, 3, 4,
S = 1, 2, . . . , Sm, we can find their best evaluation values and worst evaluation values
according to the calculation results by the algorithm in Subsection 3.1. Then, we use the
Euclidean distance to measure the deviation of each attribute value from the best values
and define the satisfaction degree of the multi-attribute vector by the relative deviation.
Assume that the best and worst values of the attribute f i

S/m are f i
max and f i

min which

respectively equal max f i
S/m and min f i

S/m, i = 1, 2, 3, 4, S = 1, 2, . . . , Sm, m = 1, 2, . . . ,M ,

then an optimal multi-attribute vector αmax = (f 1
max, f

2
max, f

3
max, f

4
max) can be defined.

Definition 3.6. If αS/m denotes the values vector of some attribute f i
S/m, i = 1, 2, 3, 4 and

αmax is the best value of this attribute, then the deviation of αS/m from αmax is equivalent

to d = ||αS/m−αmax|| = [(f 1
S/m−f 1

max)
2+(f 2

S/m−f 2
max)

2+(f 3
S/m−f 3

max)
2+(f 4

S/m−f 4
max)

2]1/2,
and the satisfaction degree of this multi-attribute vector is defined as

θS/m = 1−
d(αS/m, αmax)

d(αmin, αmax)
(11)

where θS/m ∈ [0, 1], d(αS/m, αmax) denotes the deviation of αS/m from αmax, and d(αmin,
αmax) is the distance between the best values vector f i

max and the worst value vector f i
min.

θS/m = 0 means that the values vector f i
S/m equals the worst values vector f i

min; θS/m = 1

means the values vector f i
S/m equals the best values vector f i

max.

According to Equation (11), we can calculate all the satisfaction degrees of path sections
in the emergency transportation network. The following part is to develop an optimization
model to select the path with maximized overall satisfaction degrees. For a transportation
network G(N,Arc), ~x = {xij|(i, j) ∈ Arc} denotes a path connecting the starting point
with the end point, where xij = 1 means arc (i, j) is included in this path and xij = 0
means arc (i, j) is not in this path. Because the length of paths in G(N,Arc) is uncertain,
we define that the length of the transportation network is the sum of all the path sections,
that is, Dmax = |Arc|. An ideal path ~xDmax(1, 2, . . . , D − 1, Dmax) can be constructed in
which kth path section takes the best values vector under different scenarios (denoted
by θkmax, k ∈ Dmax). In actual emergency response, the decision-makers often pay main
attention to the most unsatisfactory path section, thus the overall satisfaction degree of
the ideal path is defined as θmax = min{θkmax}, k = 1, 2, . . . , Dmax.
As Figure 2 shows, any change of each path section’s scenario can be embedded in the

ideal path. We just replace the value of the corresponding path section in the ideal path
with the value of the changed section. Each time a path is chosen, the unchosen path
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Figure 2. Modeling analysis of the ideal path embedded with scenarios

sections are replaced by the ideal sections, which can make sure the length of the path
unchanged and thus make the satisfaction degrees of different paths comparable.

Inspired by the idea of α key paths proposed by Liu et al. [13], we use σ to represent
the confidence level that decision-makers expect, and define min

(i,j)∈Arc
(θijS/m, θijmax)xij/θmax

as the overall satisfaction degree of path ~x where θijS/m denotes the satisfaction de-

gree of the chosen path section and θijmax denotes the satisfaction degree of the un-
chosen path section whose values are taken as the ideal values of this section. Let

Pr
{

min
(i,j)∈Arc

(θijS/m, θijmax)xij/θmax

}
represent the probability of occurrence of selecting

the path ~x under different emergency scenarios. By this, we can embed the scenarios of
each path section and their impacts into the emergency path selection, and finally build
the scenario-based optimization model:

maxθ (12)

s.t.

Pr


min

(i,j)∈Arc
(θijS/m, θijmax)xij

θmax

≥ θ

 ≥ σ, S = 1, 2, . . . , Sm, m = 1, 2, . . . ,M (13)

∑
(i,j)∈Arc

xij −
∑

(j,i)∈Arc

xji =

 1, i = 1
0, i = 2, 3, . . . , n− 1
−1, i = n

(14)

xij ∈ {0, 1} , ∀(i, j) ∈ Arc (15)

The optimization objective (12) is to maximize the overall satisfaction degree of the
chosen path θ with the given confidence level σ. Constraint (13) makes sure the prob-
ability of occurrence of each scenario is satisfied where θijS/m is calculated by Equa-

tion (11) and Pr
{

min
(i,j)∈Arc

θijS/mxij

}
= min

(i,j)∈Arc
min

S∈[0,Sm],m∈[0,M ]
θijS/mp(isS/m/esm)xij. Con-

straint (14) makes sure the starting point and the end point are always selected and all
the path nodes in the transportation network have opportunities to be selected. Con-
straint (15) defines the values of the decision variable xij, where xij = 1 means arc (i, j)
is included in this path and xij = 0 means arc (i, j) is not in this path.

4. The Designed Solution and an Illustrated Example. In this section, we design
the solution for the developed approach in Section 3, illustrated with an example.
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Figure 3. Emergency transportation network in the example

Figure 3 shows a part of some transportation network, where node 1 is the starting
point and node 5 is the end point. As we can see, there are five different paths connecting
node 1 with node 5. According to conventional shortest path principle, path 1-3-5 is the
best selection. However, in the emergency response, the status of each path section may
be influenced by various uncertain factors as shown in Section 2. Decision-makers need
to consider these factors comprehensively to select the path with maximized satisfaction
degree. For simplicity, here we assume that there are two emergency scenarios and each
emergency scenario produces one factor scenario. The factors’ importance weights and
membership vectors of each path section’s factor scenario are given as Table 2 shows. In
Table 2, the values in brackets behind corresponding factors are their importance weights;
the vectors below each path section are various factors’ membership vectors with respect
to four evaluation levels: {very good, good, general, bad}. In this paper, we assume that
these original data are given.

4.1. Calculating the satisfaction degrees of attributes using M(1,2,3). According
to the importance weights and membership vectors in Table 2, we can calculate the
satisfaction degrees of the four attributes: road smoothness, road safety, transportation
time, and communication quality for each path section under the two emergency scenarios.
Taking the calculation process of the attribute f1 (road smoothness) of path section

1-2 under emergency scenario ES 1/IS as an example, the detailed steps are as follows.
Step 1: Calculating the distinguishable weights. f1 includes three factors f11, f12, f13,

and the membership matrix is:

U (f1) =

 0 0.8 0.2 0
0.8 0.2 0 0
0.3 0.7 0 0


According to the j-th row j (j = 1, 2, 3) of U (f1), we can calculate the distinguishable

weight of f1j using Equations (3)-(5), and then the distinguishable weight vector can be
obtained:

α (f1) = (0.348 0.348 0.304)

Step 2: Determining the importance weights. In Table 2, the importance weight vector
of f11, f12, f13 with respect to f1 is given:

β (f1) = (0.38 0.22 0.40)

Step 3: Calculating the comparable values. According to α (f1) and β (f1), we can get
the k-th comparable value of f1j (j = 1, 2, 3) using Equations (7) and (8), and then obtain
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Table 2. The factors’ importance weights and membership vectors of each
path section’s factor scenario

Scenarios Factors
Path sections and their membership vectors

1-2 1-3 2-3 2-4 3-4 3-5 4-5

ES1/IS

f11(0.38)(0.0,0.8,0.2,0.0)(0.1,0.8,0.1,0.0)(0.9,0.1,0.0,0.0)(0.1,0.8,0.1,0.0)(0.2,0.6,0.2,0.0)(0.8,0.1,0.0,0.1)(0.5,0.5,0.0,0.0)

f12(0.22)(0.8,0.2,0.0,0.0)(0.5,0.3,0.2,0.0)(0.6,0.4,0.0,0.0)(0.2,0.2,0.6,0.0)(0.1,0.8,0.1,0.0)(0.0,0.6,0.4,0.0)(0.8,0.2,0.0,0.0)

f13(0.40)(0.3,0.7,0.0,0.0)(0.2,0.2,0.6,0.0)(0.2,0.6,0.2,0.0)(0.3,0.5,0.2,0.0)(0.5,0.5,0.0,0.0)(0.3,0.4,0.4,0.0)(0.3,0.7,0.0,0.0)

f21(0.42)(0.3,0.2,0.5,0.0)(0.5,0.5,0.0,0.0)(0.3,0.7,0.0,0.0)(0.1,0.9,0.0,0.0)(0.3,0.3,0.4,0.0)(0.2,0.5,0.3,0.0)(0.1,0.8,0.1,0.0)

f22(0.37)(0.3,0.4,0.3,0.0)(0.2,0.2,0.6,0.0)(0.5,0.5,0.0,0.0)(0.8,0.2,0.0,0.0)(0.1,0.7,0.2,0.0)(0.4,0.5,0.0,0.1)(0.7,0.1,0.2,0.0)

f23(0.21)(0.2,0.6,0.2,0.0)(0.2,0.6,0.2,0.0)(0.7,0.3,0.0,0.0)(0.2,0.6,0.2,0.0)(0.2,0.0,0.8,0.0)(0.7,0.3,0.0,0.0)(0.5,0.2,0.2,0.1)

f31(0.36)(0.6,0.4,0.0,0.0)(0.6,0.3,0.1,0.0)(0.0,0.9,0.1,0.0)(0.3,0.7,0.0,0.0)(0.3,0.4,0.3,0.0)(0.6,0.4,0.0,0.0)(0.9,0.1,0.0,0.0)

f32(0.46)(0.7,0.2,0.1,0.0)(0.4,0.5,0.1,0.0)(0.8,0.2,0.0,0.0)(0.5,0.0,0.5,0.0)(0.6,0.2,0.2,0.0)(0.9,0.0,0.1,0.0)(0.8,0.2,0.0,0.0)

f33(0.18)(0.5,0.1,0.4,0.0)(0.1,0.8,0.1,0.0)(0.1,0.7,0.2,0.0)(0.1,0.7,0.2,0.0)(0.4,0.6,0.0,0.0)(0.7,0.3,0.0,0.0)(0.3,0.6,0.1,0.0)

f41(0.57)(0.3,0.4,0.3,0.0)(0.6,0.1,0.3,0.0)(0.7,0.3,0.0,0.0)(0.0,0.6,0.4,0.0)(0.5,0.3,0.2,0.0)(0.2,0.8,0.0,0.0)(0.9,0.0,0.1,0.0)

f42(0.43)(0.3,0.5,0.2,0.0)(0.5,0.3,0.2,0.0)(0.1,0.6,0.3,0.0)(0.3,0.0,0.7,0.0)(0.4,0.6,0.0,0.0)(0.1,0.6,0.2,0.1)(0.8,0.1,0.0,0.1)

ES2/IS

f11(0.38)(0.1,0.4,0.3,0.2)(0.0,0.3,0.7,0.0)(0.2,0.4,0.4,0.0)(0.0,0.5,0.3,0.2)(0.2,0.0,0.8,0.0)(0.1,0.8,0.1,0.0)(0.2,0.6,0.2,0.0)

f12(0.22)(0.6,0.2,0.2,0.0)(0.2,0.2,0.6,0.0)(0.5,0.1,0.2,0.2)(0.1,0.1,0.5,0.3)(0.0,0.5,0.5,0.0)(0.1,0.0,0.9,0.0)(0.2,0.8,0.0,0.0)

f13(0.40)(0.0,0.6,0.2,0.2)(0.0,0.5,0.5,0.0)(0.1,0.4,0.3,0.2)(0.2,0.5,0.3,0.0)(0.1,0.0,0.9,0.0)(0.0,0.3,0.7,0.0)(0.3,0.7,0.0,0.0)

f21(0.42)(0.2,0.5,0.2,0.1)(0.3,0.0,0.7,0.0)(0.0,0.5,0.4,0.1)(0.0,0.6,0.0,0.4)(0.3,0.0,0.7,0.0)(0.2,0.2,0.5,0.1)(0.0,0.9,0.1,0.0)

f22(0.37)(0.0,0.3,0.4,0.3)(0.0,0.1,0.9,0.0)(0.0,0.3,0.3,0.4)(0.0,0.2,0.3,0.5)(0.0,0.0,0.8,0.2)(0.0,0.0,0.9,0.1)(0.0,0.6,0.2,0.2)

f23(0.21)(0.2,0.4,0.3,0.1)(0.1,0.1,0.5,0.3)(0.5,0.2,0.3,0.0)(0.1,0.6,0.1,0.2)(0.1,0.6,0.0,0.3)(0.5,0.0,0.5,0.0)(0.2,0.3,0.5,0.0)

f31(0.36)(0.6,0.4,0.0,0.0)(0.6,0.3,0.1,0.0)(0.0,0.9,0.1,0.0)(0.3,0.7,0.0,0.0)(0.3,0.4,0.3,0.0)(0.6,0.4,0.0,0.0)(0.8,0.2,0.0,0.0)

f32(0.46)(0.2,0.6,0.2,0.0)(0.2,0.2,0.6,0.0)(0.0,0.7,0.3,0.0)(0.0,0.4,0.6,0.0)(0.3,0.0,0.5,0.2)(0.7,0.0,0.3,0.0)(0.7,0.0,0.3,0.0)

f33(0.18)(0.5,0.1,0.4,0.0)(0.1,0.7,0.2,0.0)(0.1,0.6,0.3,0.0)(0.1,0.7,0.2,0.0)(0.4,0.6,0.0,0.0)(0.6,0.4,0.0,0.0)(0.3,0.6,0.1,0.0)

f41(0.57)(0.2,0.2,0.3,0.3)(0.2,0.3,0.5,0.0)(0.4,0.2,0.3,0.1)(0.0,0.3,0.4,0.3)(0.2,0.4,0.4,0.0)(0.1,0.7,0.2,0.0)(0.8,0.0,0.2,0.0)

f42(0.43)(0.2,0.6,0.2,0.0)(0.3,0.0,0.5,0.2)(0.0,0.3,0.5,0.2)(0.1,0.0,0.7,0.2)(0.0,0.0,0.7,0.3)(0.0,0.4,0.2,0.4)(0.6,0.4,0.0,0.0)

the comparable value matrix N (f1) with respect to f1:

N (f1) =

 0 0.106 0.026 0
0.061 0.015 0 0
0.037 0.085 0 0


Step 4: Calculating the comparable sum. According to N (f1) and Equation (9), we

can calculate the k-th comparable sum with respect to f1 and obtain the comparable sum
vector:

M (f1) = (0.098 0.206 0.026 0)

Step 5: Calculating the membership vector. According to M (f1) and Equation (10),
we calculate the membership vector µ (f1) with respect to f1:

µ (f1) = (0.296 0.624 0.080 0)

Step 6: Calculating single-attribute satisfaction degree. Assign the four evaluation lev-
els: very good, good, general and bad with values 0.875, 0.625, 0.375 and 0.125 respec-
tively, then we can calculate the single-attribute satisfaction degree with respect to f1:

s (f1) = (0.296 0.624 0.080 0) ∗ (0.875 0.625 0.375 0.125)T = 0.679

In the same process, we can use the M(1,2,3) algorithm to calculate all the attributes’
satisfaction degrees of each path section under the two emergency scenarios, whose results
are shown as Table 3. After getting the attributes’ satisfaction degrees of each path
section, we can find the best and worst values vectors: [0.781, 0.739, 0.821, 0.808] and
[0.456, 0.404, 0.576, 0.375], and then calculate the satisfaction degrees of all the path
sections in the ideal path, as shown in the second column of Table 3.
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Table 3. Single-attributes’ satisfaction degrees of each path sections under
various scenarios

Algorithm Path sections θkmax
ES1/ IS ES2/ IS

p1/(f1, f2, f3, f4) p2/(f1, f2, f3, f4)

M(•,+)

1-2 0.619 0.2 / (0.680, 0.604, 0.753, 0.636) 0.8 / (0.530, 0.496, 0.684, 0.525)
1-3 0.628 0.4 / (0.602, 0.641, 0.705, 0.700) 0.6 / (0.487, 0.447, 0.620, 0.518)
2-3 0.789 0.3 / (0.744, 0.740, 0.704, 0.703) 0.7 / (0.541, 0.471, 0.573, 0.514)
2-4 0.449 0.5 / (0.613, 0.710, 0.648, 0.525) 0.5 / (0.494, 0.400, 0.579, 0.375)
3-4 0.617 0.7 / (0.675, 0.574, 0.689, 0.711) 0.3 / (0.461, 0.446, 0.574, 0.457)
3-5 0.695 0.1 / (0.675, 0.670, 0.803, 0.621) 0.9 / (0.511, 0.471, 0.752, 0.503)
4-5 0.895 0.6 / (0.747, 0.677, 0.807, 0.804) 0.4 / (0.666, 0.543, 0.752, 0.775)

M(1,2,3)

1-2 0.636 0.2 / (0.679, 0.604, 0.759, 0.637) 0.8 / (0.552, 0.463, 0.701, 0.615)
1-3 0.629 0.4 / (0.604, 0.662, 0.698, 0.700) 0.6 / (0.482, 0.452, 0.624, 0.518)
2-3 0.790 0.3 / (0.781, 0.739, 0.703, 0.728) 0.7 / (0.559, 0.478, 0.576, 0.457)
2-4 0.457 0.5 / (0.614, 0.714, 0.651, 0.525) 0.5 / (0.505, 0.404, 0.582, 0.375)
3-4 0.622 0.7 / (0.682, 0.556, 0.700, 0.715) 0.3 / (0.456, 0.435, 0.596, 0.399)
3-5 0.707 0.1 / (0.667, 0.694, 0.807, 0.650) 0.9 / (0.503, 0.433, 0.751, 0.533)
4-5 0.894 0.6 / (0.749, 0.674, 0.821, 0.808) 0.4 / (0.674, 0.565, 0.761, 0.775)

Meanwhile, we also give the results produced by one existing membership transforma-
tion method M(•,+) [12], as shown in Table 3. Seen from the compared results, we can
find that the results of the M(1,2,3) algorithm are in accord with those of the M(•,+)
algorithm, and most the satisfaction degrees of path sections produced by the M(1,2,3)
algorithm are higher than those by the M(•,+) algorithm, which test the effectiveness
and advantage of the M(1,2,3) algorithm.

4.2. Solving the scenario-based optimization model. We integrate depth-first sear-
ch and Monte Carlo simulation to design a hybrid algorithm to solve the built scenario-
based optimization model for emergency path selection in Subsection 3.2. The main steps
of this hybrid algorithm are as follows.
Step 1: Finding all the alternative paths. According to the topology of the emergency

transportation network, the depth-first search algorithm is applied to finding all the paths
that can connect the starting point with the end point in the transportation network.
Step 2: Simulating the scenarios of path sections. In this step, we randomly select one

path from the alternative paths and apply the Monte Carlo to simulating all the scenarios
of path sections in this path in terms of the given probabilities of occurrence p(esm) and
p(isS/m/esm).
Step 3: Calculating the overall satisfaction degree. According to the simulated results in

Step 2 and a given decision-making confidence level σ, we calculate the overall satisfaction
degree of this selected path under various scenarios, that is, θS/m.
Step 4: Getting the path with maximized satisfaction degree. We repeat Steps 2 and 3

until all the overall satisfaction degrees of alternative paths are attained. Then, we sort
the alternative paths in terms of their overall satisfaction degrees and finally get the path
with maximized overall satisfaction degree in the given confidence level σ.
Assume that the decision-making confidence levels σ take 0.9, 0.7 and 0.5 respectively.

Based on the results in Table 3, we can use the above hybrid algorithm to get the paths
with maximized overall satisfaction degrees in these confidence levels and their corre-
sponding overall satisfaction degrees θs, shown as Table 4.
Seen from the results in Table 4 and Figures 4-6, the developed approach in this study

can select the paths with maximized overall satisfaction degrees which are not in accord
with that selected by the conventional shortest path principle, and different confidence
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Table 4. Path ranking as confidence levels and overall satisfaction degrees

Results by the
conventional 1-3-5

shortest approach

σ = 0.9 θ σ = 0.7 θ σ = 0.5 θ
Results based 1-2-3-5 0.637 1-3-4-5 0.804 1-2-4-5 0.912
on M(•,+) 1-3-5 0.615 1-2-3-5 0.738 1-2-3-4-5 0.891
algorithm 1-2-4-5 0.537 1-3-5 0.721 1-3-4-5 0.843

1-3-4-5 0.504 1-2-3-4-5 0.640 1-3-5 0.724
1-2-3-4-5 0.396 1-2-4-5 0.622 1-2-3-5 0.637

σ = 0.9 θ σ = 0.7 θ σ = 0.5 θ
Results based 1-3-5 0.668 1-3-4-5 0.817 1-2-4-5 0.904
on M(1,2,3) 1-2-3-5 0.654 1-3-5 0.760 1-3-4-5 0.899
algorithm 1-2-4-5 0.551 1-2-3-5 0.741 1-3-5 0.871

1-2-3-4-5 0.489 1-2-3-4-5 0.698 1-2-3-4-5 0.701
1-3-4-5 0.407 1-2-4-5 0.647 1-2-3-5 0.647

Figure 4. The selected path by the conventional shortest path principle

(a) σ = 0.9 (b) σ = 0.7 (c) σ = 0.5

Figure 5. The selection paths by the developed approach based on
M(•,+) with different confidence levels

levels produce different optimal transportation paths. For example, if the confidence level
of the M(1,2,3) based approach is taken as 0.9, path 1-3-5 is the optimal; if σ is taken as
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(a) σ = 0.9 (b) σ = 0.7 (c) σ = 0.5

Figure 6. The selection paths by the developed approach based on
M(1,2,3) with different confidence levels

0.7, path 1-3-4-5 is the optimal. Decision-makers can select the most satisfactory paths
under various scenarios according to their expected confidence levels.
Meanwhile, the overall satisfaction degrees will increase as the confidence levels de-

crease, which implies that decision-makers may select the paths with low confidence levels
but high satisfaction degrees if they can bear bigger risks. The developed approach can
consider not only the distance between the starting point and the end point but also
other key attributes of each path section in the transportation networks which often have
important impacts on decision-makers in emergency response. However, how to integrate
the values of multiple attributes is a key issue where redundant and noisy information is
often mixed. The classical membership transformation algorithms such as the M(•,+)
do not recognize the redundant information, which may produce disturbed results. For
example, in Figures 5 and 6, the M(•,+) algorithm mistakenly selects the path 1-2-3-5
when σ is taken as 0.9.

5. Conclusions. The occurrence and development of disasters are always uncertain,
which directly influences the efficiency and effectiveness of emergency response. The
emergency path selection, which involves various uncertain factors, is not a conventional
shortest path problem. Scenario analysis approach provides a good technique for dealing
with the uncertainties of emergency transportation networks in response to disasters.
Different from the conventional approaches, we construct scenarios by multiple atti-

tudes and factors to describe the uncertainties of path sections, which can avoid the
disadvantages of conventional path selection approaches like the shortest path methods.
Moreover, we build a scenario-based optimization model for emergency path selection
whose aim is to select the path with maximized overall satisfaction degree in a given
confidence. Experimental results show the effectiveness of the developed approach, con-
cluding that this approach can provide emergency decision-makers the most satisfactory
paths under various uncertain scenarios according to their expected confidence levels and
the overall satisfaction degree will increase as the given confidence decreases.
In this study we provide a novel approach for selecting transportation paths in emer-

gency response. However, we do not consider the development of emergency scenarios
here. Meanwhile, the original evaluation values on the attributes of path sections have
direct impacts on results, which we also do not pay enough attention to. Further studies
are needed to focus on these directions.
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